
Emotions and the Design of Institutions∗

Burkhard C. Schipper†

Incomplete and preliminary: January 15, 2017

Abstract

Darwin (1872) already observed that emotions may facilitate communication. More-
over, since they are somewhat in between instinctive and conscious choice, they convey
some truthful information about the agent. This mitigates problems with interaction of
agents in institutions because it eases incentive compatibility constraints. This note pro-
vides just a brief exposition of these simple ideas by reinterpreting work on mechanism design
with partial state verifiability by Deneckere and Severinov (2008) in the context of emotions.
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1 Design of Institutions

In this section, I briefly review the basics of the design of institutions; see Mas-Colell, Whinston,

and Green (1995, Chapter 23) for a textbook treatment. In economics, institutions refer to mar-

kets, allocations mechanisms, voting systems, legal frameworks, organizations etc. Economists

not only analyze existing institutions, but also study the design of institutions. The study of

design of institutions is called mechanism design. Roughly it can be understood as the “con-

verse” to game theory. In game theory, we take the game as given and aim to find the outcome

resulting from optimal behavior. In mechanism design, we take the outcome as given and aim

to design a game that when played optimally implements that outcome.

Consider a nonempty finite set N = {1, ..., n} of agents. There is a nonempty finite set

of states Ω that summarizes everything that is relevant to the situation. Each agent i ∈ N

observes a subset of states according to a possibility correspondence Πi : Ω −→ 2Ω \ {∅} that

for simplicity forms a partition of Ω. For simplicity, we assume that there is a strict positive

common prior µ on Ω.

There is a nonempty finite set of allocations, social alternatives, or simply outcome X.

The utility of agent i is given by the utility function ui : X × Θ −→ R. The space Θ a

nonempty finite set of payoff indices. We assume that it has a product structure, Θ := ×i∈NΘj ,

for some nonempty finite sets Θi, i ∈ N . These indices are determined by the state via functions

τi : Ω −→ Θi, for i ∈ N . We let τ(ω) :=
∏

i∈N τi(ω). We assume that each agents knows one

component of payoff relevant information. I.e., for each agent i ∈ N , ω′ ∈ Πi(ω) implies

τi(ω
′) = τi(ω).

Agents are expected utility maximizers.

The outcome that agents adopt may depend on the agents’ preferences. More formally, a

social choice function is a mapping f : Θ −→ X. We are interested in social choice functions

that can be implemented in institutions. The formal notion of a institution is a mechanism.

Definition 1 A mechanism G = 〈(Ai)i∈N , g〉 consists of a nonempty set of actions Ai each

agent i and an outcome function g :
∏

i∈N Ai −→ X that assigns to each profile of strategies an

outcome.

A mechanism summarizes the choices each agent can take and the rules that determine the

outcome that emerges from these choices taken by the agents.

Definition 2 A mechanism G together with the set of states Ω, the prior µ, possibility corre-

spondences Πi, utility functions ui, and payoff mapping τ define a Bayesian game

〈N,Ω, µ, (Πi)i∈N , (Ai)i∈N , τ, (ũi)i∈N 〉 in which the utility function ũi : (×i∈NAi) × Θ −→ R is
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defined by ũi(a1, ..., an, θ) = ui(g(a1, ..., an), θ) for all (a1, ..., an) ∈ ×i∈NAi and θ ∈ Θ. We

abuse notation and simply write ui(a1, ..., an, θ).

A strategy of player i in a Bayesian game is a map σi : Ω −→ Ai such that for all ω, ω′ ∈ Ω

with ω′ ∈ Πi(ω), we have σi(ω′) = σi(ω). That is, the strategy of player i is adapted to her

information.

For simplicity, we focus on Bayesian Nash equilibrium. A profile of strategies σ = (σi)i∈N

is a Bayesian Nash equilibrium of the Bayesian game 〈N,Ω, µ, (Πi)i∈N , (Ai)i∈N , τ, (ui)i∈N 〉 if

(σi(ω))i∈N,ω∈Ω is a Nash equilibrium of the strategic game defined as follows:

(i) The set of players is {(i,Πi(ω)) | i ∈ N,ω ∈ Ω}.

For each player (i, ω),

(ii) the set of actions is Ai,

(iii) the utility function of player (i,Πi(ω)) is the expected utility function

U(i,Πi(ω))(σ) :=
∑
ω′∈Ω

ui(σ(ω′), τ(ω′)) · µ
(
{ω′} | Πi(ω)

)
Definition 3 A mechanism G = 〈(Ai)i∈N , g〉 implements a social choice function f in Bayesian

Nash equilibrium if there is a strategy profile σ that is a Bayesian Nash equilibrium of the

Bayesian game induced by the mechanism such that g(σ(ω)) = f(τ(ω)) for all ω ∈ Ω. A social

choice function f is Bayesian implementable if there exists a mechanism G that implements it

in Bayesian Nash equilibrium.

Denote by Pi := {Πi(ω) | ω ∈ Ω} the partition of Ω formed by player i’s possibility

correspondence.

Remark 1 From the Revelation Principle we know that a social choice function f is Bayesian

implementable if and only if there exists a “direct” mechanism G = 〈(Pi)i∈N , g〉 that implements

f in Bayes Nash equilibrium. In such a direct mechanism, player i’s set of actions are reports of

her information sets, for every players i ∈ N . Moreover, for all ω ∈ Ω we have g(P1, ..., Pn) =

f(τ(ω)) where Pi = Πi(ω) for all i ∈ N .

The significance of the revelation principle is that we do not need to search over all games

but can restrict ourselves without loss of generality to “truthtelling” or “direct” mechanisms in

which agents report their information. The downside is that the mechanism often appear a bit

abstract and may not resemble institutions in the real world.

If f is Bayesian implementable, then it should be measurable with respect to each of the

players’ information partition. Hence it must be measurable with respect to the join of the

players’ information partition. We abuse notation and write f(Pi,Π−i(ω)) or similar.
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Remark 2 A social choice function f is Bayesian implementable if for all i ∈ N and all ω ∈ Ω,∑
ω′∈Ω

ui(f
(
Πi(ω),Π−i(ω

′)
)
, τ(ω′)) · µ

(
{ω′} | Πi(ω)

)
≥∑

ω′∈Ω

ui(f
(
Pi,Π−i(ω

′)
)
, τ(ω′)) · µ

(
{ω′} | Πi(ω)

)
for all Pi ∈ Pi.

Economists are usually interested in particular social choice functions that satisfy certain

desirable properties such as ex post efficiency, budget balance (when transfers are involved),

and participation constraints. We define these properties in turn.

Definition 4 (Ex post efficiency) The social choice function f is ex post efficient if there

doesn’t exist a state ω ∈ Ω for which there is an outcome x ∈ X such that ui(x, τ(ω)) ≥
ui(f(τ(ω)), τ(ω)) for all i ∈ N and ui(x, τ(ω)) > ui(f(τ(ω)), τ(ω)) for some i.

Consider now a context in which outcomes do not only consist of an allocation of physical

goods but also on monetary transfers. A social choice function satisfies ex post budget balance

if the sum of transfers over all agents add up to zero in every state.

Consider now a context in which each agent has an outside option when not participating in

the mechanism. A mechanism satisfies the interim participant constraint if each agent expects

a weakly larger expected utility from participating in the mechanism than her outside option.

2 Emotions

Now let each state and action also determine the (interim) emotions of each agent i. (We take

these emotions to arise after a state occurred and the agent decided which action take but before

the uncertainty or the outcome is resolved.) Consider a psychological classification system with

m different categories of emotions. For each category j = 1, ...,m, the emotions can take values

in a set Ej . The space of all emotions is given by the set of profiles E := ×m
j=1Ej . We draw

on Darwin’s old idea that emotions help to communicate (Darwin, 1972). Moreover, since they

are somewhat involuntary and somewhat between instinctive and conscious choice, they convey

some truthful information about the agent. The emotions of an agent may not be perfectly

observable by the mechanism designer or other agents. The observability of emotions of agent

i is modelled by the “mood” correspondence Mi : Ω × Ai −→ 2E \ {∅}. We assume that the

mood correspondence is measurable with respect to the agent’s partition since otherwise she

could use her mood to discriminate among states in her possibility set. That is, for every player

i ∈ N , state ω ∈ Ω, and action ai ∈ Ai, if ω′ ∈ Πi(ω) then Mi(ω
′, ai) = Mi(ω, ai).
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Given a ‘mood’ of player i, E′ ⊆ E, and her action ai, the inverse image (Mi(ai))
−1(E′) is

the set of states consistent with such a mood of player i when player i takes action ai.

Denote by Pi(E′, ai) = {Πi(ω) | ω ∈ (Mi(ai))
−1(E′)} be the set of members of the partition

induced by player i’s possibility correspondence and the observation of player i’s mood E′ and

her action ai. Note that for all i ∈ N , ai ∈ Ai, E
′ ⊆ E, Pi(E, ai) ⊆ Pi.

Observing player i’s mood, E′, is now a partial proof of her type. Her type (i.e., possibility

set) must be an element of Pi(E′, ai) when she takes action ai.

3 Example of Bilateral Trade with Blushing Traders

In one of the most fundamental results of mechanism design, Myerson and Satterthwaite (1983)

showed that a social choice function that is ex-post efficient and budget balanced is not Bayesian

implementable in a mechanism satisfying interim participation constraints. We show by example

how emotions can overcome this impossibility. This example is essentially due to Deneckere and

Severinov (2008), who study mechanism design with partial state verifiability. In our context,

partial state verifiability is due to emotions.

We consider a bilateral trade setting with a single good and a buyer and a seller. We denote

by x = 1 the trade outcome and by x = 0 the no-trade outcome. The buyer’s value for the

good can take ` possible values denoted by

0 < θ1
b < θ2

b < ... < θ`b.

The seller’s cost can take ` possible values denoted by

0 < θ1
s < θ2

s < ... < θ`s.

We assume that

θj−1
b ≤ θj−1

s < θjb ≤ θ
j
s

for all j > 1. If agents trade, the buyer pays a price p to the seller. The profit of a buyer with

value θjb is ub(1, θ
j
b , p) = θjb − p. The profit of a seller with cost θjs is us(1, θ

j
s, p) = p − θjs. For

any agent i, the profit from no-trade is normalized to zero, ui(0, θi, p) = 0 for all θi and p.

We assume each trader knows her value or cost, respectively, but not the other’s parameter.

I.e., ω′ ∈ Πi(ω) if and only if τi(ω
′) = τi(ω). Thus, instead letting traders report their possibility

set, we can let traders report their payoff type. For all θj−i ∈ Θ−i and ω ∈ Ω, there exists

ω′ ∈ Πi(ω) such that τ−i(ω
′) = θj−i.

For simplicity, we consider just one kind of emotion; let’s call it content and discontent.

Moreover, we assume that when an agent is discontent, then she blushes. In the context of the

example, we assume that traders can lie about their value or costs by at most one grid point
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without blushing (denoted by b). Agent i’s mood observability correspondence is a function,

Mi : Ω×Θi −→ {b,¬b}, defined by

Mi(ω, θi) =


¬b if θi ∈ {θj−1

i , θji , θ
j+1
i } with θji = τi(ω)

¬b if θi ∈ {θ1
i , θ

2
i } with θ1

i = τi(ω)

¬b if θi ∈ {θ`−1
i , θ`i} with θ`i = τi(ω)

b otherwise.

That is, if at state ω agent i reports θi then she blushes unless she reports within one grid point

of her true payoff type τi(ω).

We claim that there exists a Bayesian incentive compatible, ex-post efficient, budget bal-

anced mechanism that satisfies interim participation constraints. Transfer the good from the

seller to the buyer if and only if the reports θjb and θks are such that j > k and both agents do

not blush at a price p(θjb , θ
k
s ) ∈ [θjb , θ

k
s ] that shall be nondecreasing in both reports θb and θs.

Ex post efficiency and budget balance are obvious.

For Bayesian incentive compatibility, by a result by Deneckere and Severinov (2008) it is

enough to check that payoff type θ2
i does not want to report θ1

i and payoff type θ`−1
i does not

want to report θ`i , for i = b, s. Type θ1
b never gets to trade. Hence θ2

b has no incentive to

report θ1
b . Type θ`−1

b has no incentive to report θ`b as she cannot profit from trading with θ`−1
s .

Moreover, type θ`b would trade at a weakly higher price with any θjs with j < `− 1. Similarly,

type θ`−1
s has no incentive to report θ`s as such a seller never trades. Moreover, type θ2

s has no

incentive to report θ1
s as she cannot profit from trading with θ1

b and would trade as a weakly

lower price with any θjb for j > 1.

Finally, for participation constraints, note that any type prefers to participate in the mech-

anism. Types θ1
b and θ`s never get to trade. So they are not worse off by participating in

the mechanism. For all other types, (ex post) profits from participating in the mechanism are

weakly positive.

4 Open Issues

1. How to go beyond Deneckere and Severinov (2008)?

2. Which emotions are better observable than others?

3. Which emotions are less easy to fake?

4. Which emotions are correlated with which consequentialist preferences?

5. How about uncertainty about the “fakeability” of an agent’s emotion?
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6. Why this inelegant formalization with possibility sets and beliefs? Replace by type spaces

(not just payoff types of course)?

7. How about emotions about allocations? Are they “summarized” already in consequen-

talist preferences or should the domain of utility functions be extended? How about

“psychological mechanisms” akin to psychological games? How to think about welfare in

such a setting?

8. How about emotions about mechanisms?

9. ...
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1 Introduction

Consider the following two lotteries. Lottery L(1, 5) features two outcomes, $1 and $5, with

equal probability. Lottery L(5, 9) has two outcomes, $5 and $9, also with equal probability.

Consider two players, one who plays lottery L(1, 5) and draws $5 and one who players lottery

L(5, 9) and draws $5. In terms of material payoffs, both players are equally good off. Yet, the

player receiving $5 in lottery L(5, 9) may be upset or disappointed because he “lost” while the

player receiving $5 in lottery L(1, 5) may feel joy or elation because he got “lucky” and “won”.

Somehow the lottery L(5, 9) creates a higher aspiration or expectation than lottery L(1, 5) such

that the “loosing” amount $5 in L(5, 9) creates a disappointment while the “winning” amount

$5 in L(1, 5) creates eleation even though the amounts are the same.

Figure 1: Lotteries.

$1 $5
L(1,5)

$5 $9
L(5,9)

Now consider an observer who is endowed with an lump sum of $10 and who can decide

whether and how much of it to transfer to the player she observes. If the observer is capable

of feeling empathy for the player, then she may transfer some non-zero amount to the player

drawing $5 in lottery L(5, 9) to mitigate him feeling disappointed about “loosing” the lottery.

In contrast, she may not transfer that much to a player drawing $5 in lottery L(1, 5) because

he won already. We take empathy here to mean the ability to “share in the affect of others”

(e.g., Singer, 2006).

At a first glance, the discussion above seem to capture in a straightforward way our intu-

ition about how empathy might work in such a setting. Yet, there are issues. For instance,

the discussion focused on empathy to “loosing” the lottery. But there may be also empathic

responses to “joy” or elation. Perry et al. (2012) observe empathic responses to joy although

they argue that some of the neural correlates for empathic responses to joy differ from the

neural correlates for empathic responses to distress. Anyway, if there are empathic responses to

joy, then giving a higher transfer may create more joy in the player and consequently a larger

empathic response by the observer. This may apply to drawing $5 in both lotteries.
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2 A Simple Model

There are two players, player 1 and player 2. Player 1 is passive. He has no choices to make

but collects a payoff. The game proceeds in three stages:

Stage 1: Nature plays out player 1’s lottery. As outlined in the Introduction, we consider two

different lotteries (see Figure 1). Lottery L(1, 5) pays either $1 or $5 with equal probability.

The lottery L(5, 9) pays either $5 or $9 with equal probability. We denote by L any lottery

and by denote by x the amount of money received by player 2 from the lottery. Note that the

expected values are given by

E[L] =

{
3 if L = L(1, 5)

7 if L = L(5, 9)

Stage 2: Player 1 receives a lumpsum of $10 and decides how much to transfer to player 2.

We denote the transfer by y ∈ {$0, $1, $2, ..., $10}. The transfer is deducted from the payment

of $10 that player 1 receives upfront.

Stage 3: The game ends. All players collect their payoffs. The utility function of player 1

when facing lottery L is given below.

u1(x, y, L) = x + y + min{x + y − E[L], 0}+ max{x + y − E[L], 0} (1)

= 2 · (x + y)− E[L]

The first term, x + y, is player 1’s material payoff. It consists of the payout from the lottery

as well as the payment received from player 2. The second term can be interpreted as the

disappointment induced by losing the lottery. The term min{x + y − E[L], 0} is negative or

zero. The magnitude is depends on the difference between the payout from the lottery and

the expected payment from the lottery mitigated by any payment received from player 2. The

third term, max{x + y − E[L]}, can be interpreted as the elation felt by player 1 from winning

the lottery. This term is positive or zero.

It is important that the transfer from player 1 to player 2 if any comes as a surprise to

player 2. Otherwise, player 2 may also form prior expectations about player 1’s transfer and

consequently may experience disappointment or elation with respect to the transfer. Moreover,

if the transfer is not anticipated by player 2, then it is reasonable to assume that any payment

received from player 1 positively affects player 1 and mitigates his disappointment.

The utility function of player 2 is a version of the disappointment-elation model proposed

in Loomes and Sugden (1986) (see also Bell, 1985, for a closely related model). They consider

a utility function that takes the sum of the outcome of the lottery and a term that measures

disappointment or elation from the outcome via a monotone function of the difference between
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the realized outcome and the expected outcome. The second and third term of function (1)

together is analogous to their disappointment-elation function. The difference is that they only

consider differentiable disappointment-elation functions and do not consider the mitigation of

disappointment by transfers from another player.

The utility function of player 2 is

u2(x, y, L, d, j) = 10− y + d ·min{x + y − E[L], 0}+ j ·max{x + y − E[L], 0}. (2)

The first term, 10− y, represents player 2’s material payoff. The second term, d ·min{x + y −
E[L], 0}, represents player 2’s empathy with player 1’s disappointment from losing the lottery.

The parameter d may be interpreted as player 2’s level of empathy for disappointment of player

1. The third term, j ·max{x+y−E[L], 0}, represents player 2’ empathy with player 1’s elation

emanating from winning the lottery. The parameter j may be interpreted as player 2’s level of

empathy for joy/elation of player 1.

Any d > 0 represents a player 2 who displays some degree of empathy for disappointment

of player 1 (analogous for j > 0). Yet, we are interested in “substantial” levels of empathy

that even outweigh the importance that player 2 attaches to his own substantial payout from

the experiment. Given our simple model, we can define substantial levels of empathy for

disappointment and eleation, respectively, as follows:

Definition 1 Player 2 has substantial empathy for disappointment if d > 1. Player 2 has

substantial empathy for elation if j > 1.

We are interested in player 2’s behavior after observing that player 1 receives a payoff of $ 5

as this behavior can be used to reveal information about player 2’s empathy for disappointment

and elation, respectively.

Proposition 1 The relationship between player 2’s empathy for disappointment and elation

and player 2’s individually optimal transfers to player 1 upon observing the realization of $ 5 is

characterized in Figure 2 for lotteries L(5, 9) and L(1, 5), respectively.

The proof is straightforward and relegated to the appendix.

3 Experimental Design

Participants arrive in the lab. They are randomly assigned to the role of player 1 or player 2

with an even split of participants. Each of the two groups is taken to a separate room. In each

room, all players are numbered consecutively. This numbering will be used to match players of
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Figure 2: Characterization of Optimal Transfers upon Realization of $ 5
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different rooms so that participant n in one room will be matched anonymously with participant

n in the other room without them knowing who exactly is their counterpart.

In the room of players 1, every player receives an envelope with ten $1 bills, so $10 altogether.

All players are instructed that each participant in room of players 2 will play lottery. The

treatments differ by lotteries. In treatment 1-5, the lottery is L(1, 5). In treatment 5-9, the

lottery is L(5, 9).

A phineas cage is prepared in the room with players 2. It contains an equal number of red

versus blue balls and will be used to play out lotteries. Moreover in both rooms, a computer with

Skype is prepared (without tone). The idea is to transmit the lottery draws from the phineas

cage done in front of players 1 to the room containing players 2 in such a way that players 2 do

not see the players they are match with but nevertheless get to know the lottery draw of their

counterpart. E.g., participant n of players 1 observes by Skype the draw from the lottery of

the corresponding player 2. This draw is also recorded by the experimenter. Immediately after

watching the lottery draw, player 1 is asked to decide whether and how much to transfer money

from her envelope to her counter part. This amount is put privately (so that other players 1

do not know how much is put into the envelope and no “norm” is created) in an envelope with

the number of the participant on it, recorded by the experimenter, and given to the participant

with the same number in the room of players 1.

Participants in the room of players 2 are called to watch the lottery draw for their coun-

terpart one by one without watching lottery draws of previous or further participants. Their

5



empathy if any shall be focuses just on their anonymous counterpart.

Prior to eventually receiving a transfer, participants in the room of player 1 are not made

aware that they might receive a transfer. This is to avoid expectation formation about the

transfer.

The experimental design allows for a between-subject design of transfers depending on

the treatment. The hypotheses are informed by the behavioral characterization of substantial

empathy towards disappointment and elation in the previous section.

Hypothesis 1 There is substantial empathy for disappointment but much less empathy to ela-

tion. I.e., upon observing a draw $5, the transfer amounts are significantly smaller in treatment

1-5 than in treatment 5-9. Moreover, the transfers in treatment 5-9 are bounded away from $10.

4 Results

5 Discussion

A Proof of Proposition 1

Let L = L(5, 9) and x = 5. Then

u2(5, y, L, d, j) = 10− y + d ·min{5 + y − 7, 0}+ j ·max{5 + y − 7, 0}

= 10− y + d ·min{y − 2, 0}+ j ·max{y − 2, 0}

If y ≥ 2, then

u2(5, y, L, d, j) = 10− y + j ·max{y − 2, 0}

= 10− y + j · (y − 2)

= 10− 2 · j + (j − 1) · y

Thus, given y ≥ 2, the optimal y is $ 10 if j > 1. In this case,

u2(5, 10, L, d, j) = 8 · j.

If j ≤ 1 and y ≥ 2, then the optimal y is $ 2. In this case,

u2(5, 2, L, d, j) = 8.

If y ≤ 2, then

u2(5, y, L, d, j) = 10− y + d ·min{y − 2, 0}
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= 10− y + d · (y − 2)

= 10− 2 · d + (d− 1) · y

Thus, given y ≤ 2, the optimal y is $ 2 if d > 1. In this case,

u2(5, 2, L, d, j) = 8.

If d ≤ 1 and y ≤ 2, then the optimal y is $ 0. In this case,

u2(5, 0, L, d, j) = 10− 2 · d.

If d ≤ 1 and j > 1, then a transfer of $ 10 is preferred to a transfer of $ 0 if and only if

8 · j ≥ 10− 2 · d

4 · j ≥ 5− d.

Note that if d = 1 = j, then any transfer is optimal.

Now, let L = L(1, 5) and x = 5. Then

u2(5, y, L, d, j) = 10− y + d ·min{5 + y − 3, 0}+ j ·max{5 + y − 3, 0}

= 10− y + d ·min{y + 2, 0}+ j ·max{y + 2, 0}

= 10− y + j ·max{2 + y, 0}

= 10− y + j · (2 + y)

10 + (j − 1) · y + 2 · j

If j < 1, then the optimal transfer is $ 0. If j ≥ 1, then the optimal transfer is $ 10. This

completes the characterization. �

References

[1] Bell, D. (1985). Disappointment in decision making under uncertainty, Operations Research

33, 1–27.

[2] Loomes, G. and R. Sugden (1986). Disappointment and dynamic consistency in choice

under uncertainty, Review of Economic Studies 53, 271–282.

[3] Perry, D., Hendler, T., and S.G. Shamay-Tsoory (2012). Can we share the joy of others?

Empathic neural responses to distress versus joy, Social Cognitive Affective Neuroscience

7, 909–916.

[4] Singer, T. (2006). The neuronal basis and ontogeny of empathy and mind reading: Review

of literature and implications for future research, Neuroscience and Biobehavioral Reviews

30, 855-863.

7


