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Abstract

Information geometry (IG) [1] provides us a powerful framework for studying a fam-
ily of probability distributions by identifying the space of probability distributions with a
differentiable manifold endowed with a Riemannian metric and an affine connection which
is not Levi-Civita connection. An exponential family of probability distributions is most
familiar in IG, and it played an important role especially in early developments of IG. In
recent years much attention has been paid for studying the information geometric struc-
tured of some deformed exponential families of probability distributions. Some of them are
Tsallis’ g-deformed exponential [2] and Kaniadakis’ k-deformed exponential families [3] in
non-extensive statistical mechanics. The x-deformed exponential function is defined by

exp,(z) == (m: +V1+ /12a:2> - ) (1)

for a real deformed parameter x. The x-deformed exponential function and its inverse func-
tion, i.e., k-deformed logarithmic function, are important ingredients of the generalized sta-
tistical physics based on k-entropy [3]. In addition some operators are also deformed by
using these k-deformed functions. For example, the x-deformed sum is defined by

xéy:: Q:\/1+52y2+y\/1+/£2x2, (2)

which reduces to the standard sum x + y in the limit of x — 0.

Naudts’ ¢-exponential function [4] is a unified deformed-exponential function which in-
cludes the ¢- and k-exponential function as special cases. We had studied some IG structures
on the x-deformed exponential families of probability distributions, which are non-Gaussians
and with heavy-tails. For the k-deformed exponential families, we constructed the suitable
statistical manifolds and showed some information geometric structures such as k-generalized
Fisher metrics, 6- and n-potentials, dually-flat structures, xk-generalized divergence functions,
and so on [5, 6, 7].

On the other hand, Fokker-Plank equation (FPE) is one of the most fundamental equa-
tions in statistical physics, and it is well known that for a thermal particle which is diffusing
in a harmonic potential, the steady state solution of the corresponding linear FPE is Gaus-
sian distribution. Harmonic (or parabolic) potential is a strongly confining potential, from
which any particle never escape. In stead of such a strongly confining potential, we consider
a thermally diffusing particle in a weakly confining potential defined by
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with a control parameter z.. In the limit of z. — oo, this potential reduces to a parabolic
potential 22/2. Accordingly V (z;z.) can be considered as a deformation of the parabolic
potential x?/2. For a finite z, this potential is weak (or shallow) in order to confine a
thermal particle. Consequently when a particle has an enough amount of thermal energy, it
can escape from a weakly confining potential. The corresponding FPE is still linear but has
a nonlinear drift force caused by this nonlinear potential V (z;z.) [8].

In this contribution we consider the thermal probability distributions for the weakly
confining potential V(x;z.) of Eq. (3) in the basic framework of statistical physics. In
contrast to the well-known standard case of Gaussian distribution for strongly confining
potential #2/2, it is found that the quasi-equilibrium thermal probability distribution for
this weakly confining potential V'(x; x.) is non-Gaussian with heavy-tails. The corresponding
FPE of the thermal probability distribution for this weakly confining potential describes an
anomalous diffusion (or anomalous transport) in a parameter region in which the second
moment (z?) diverges [8].

In addition we relate the canonical distribution for this weakly confining potential to the
k-exponential distribution
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for the strongly conning potential #2/2 by introducing a suitable re-parameterization of the
control parameter z.. We further discuss some relations with the associated x-deformed sum
(2) and information geometric structures.
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