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Introduction
Self-organizing (SO) systems have the capabilities to induce low-dimensional global behavior in a high-dimensional
system, for instance in bird flocks or ant colonies. These systems tend to be resilient under changeable conditions
or to malfunction of individual parts. In the case of agents’ behavior, the self-organization relies on the embodied
interaction with the environment and exploits physical effects. These properties make it natural to aim for the ap-
plication of a self-organizing method to robot development. A difference between the prominent SO systems and a
robot is that it consists of a single component instead of many largely independent components. In order to obtain
a self-organized behavioral development, a guiding principle is required. One of the prominent principles is Home-
okinesis – balancing activity and predictability. The maximization of the predictive information (PI) [1] is another
such principle that was also cast into a online algorithm [3]. Although these methods lead to self-organization of be-
havior in a large variety of robots, the principle has an inherent disadvantage of constantly increasing the complexity
of the behavior. As an effect the system aims for behaviors with maximal attractor dimension, see [5]. However,
natural behavior such as walking, crawling, reaching, etc. are low-dimensional. Conceptually, it might be a question
of timescales. If a succession of low-dimensional behaviors is generated then on a longer time-scale the predictive
information can potentially also be maximized. Nevertheless, for direct behavior generation, it may ultimately not
be suitable.

Recently the differential extrinsic plasticity (DEP) [2] learning rule was proposed, which originated from a
simplification of the PI rule. It leads to the emergence of low-dimensional behaviors in different systems. Examples
are a humanoid robot starting to crawling, turn a wheel or a hexapod robot to locomote [2]. Applied to a real tendon
driven anthropomorphic arm the learning rule led to the SO development of bottle swinging, and shaking, table
wiping and wheel turning, just due to the brain-body-environment coupling [4]. The DEP rule creates a dynamics
with a multitude of attractors. Depending on the body and environmental conditions different attractor behaviors
are reached. These can be switched by perturbations. However, a systematic understanding is still missing. In this
contribution we provide a first analysis of DEP rule and propose a method to obtain a systematic sweep through the
behavior landscape.

Differential Extrinsic Plasticity (DEP)
We consider a robotic system. Let xt ∈ Rn be the vector of sensor values at time t. The motor commands yt ∈ Rm
are given by a one-layer neural network: yt = tanh(κ Ct

‖Ct‖+λxt) with the normalized synaptic strength matrix C.
λ� 1 is a regularization parameter. The synaptic strengths are adapted according to the DEP rule as

τ∆Ct = 〈˜̇ytẋt〉 − Ct , (1)

where ˜̇yt = F (ẋt+1) with F being an adaptive inverse model, relating sensor values to actions.
It was shown in [2] that oscillatory behaviors are stationary solutions of the dynamics. There are two main

parameters: κ regulates the norm of the acting synaptic matrix, thus controlling the amplitude of the oscillations
and how strongly the neurons are in their saturation region; the second parameter τ controls the time scale of the
synaptic dynamics. Intuitively it controls how many momentary correlation terms ˜̇ytẋt are effectively contributing
to the synaptic matrix C.

For a systematic understanding of the DEP rule we consider a short circuit setup. In this setup the robot is
replaced by a “short circuit” such that the next sensor values are given directly by the motor actions, i. e. xt+1 = yt.
Thus, also the inverse model can by replaces by the unit mapping: F (x) = Ix.

Attractors and their Basins
In principle the dynamical system in the 2-dimensional short circuit setup (n = 2) is already at least 8 dimensional,
because the state is given by x, its derivative ẋ and C. In practice, for the robotic experiments, the initial condition
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Figure 1: Number of Attractors and their basin of attraction. (a) Attractor behavior depending on starting position x for κ = 1.8
and τ = 20. Note the regions with tiny basin of attractions. The color codes for the rotation angle between subsequent sensor
states x. Red denotes x = 0 and cyan the period-2 orbits. (b) Number of different attractor behaviors depending on the parameter
κ for τ = 20 determined by a linkage clustering analysis.

was C = 0, such that all initial entries in the controller matrix (C) arise from the initial sensor configuration and
environmental feedback included in ẋ and ˜̇y. To emulate this in the short circuit setting we consider the dynamics
when starting from different x. During the first 3 steps there is not enough information to compute the derivative in
Eq. (1), such that we follow the dynamics with C = I. Afterwards, the usual update equations are evaluated.

The dynamics settles into stable attractors, either with a fixed C matrix, or with a quasiperiodic oscillation of C
with a very small amplitude, which is treated as a fixed C matrix. The attractors are most decisively characterized
by the dynamics of the sensor vector x. There is one fixed point x = 0, two period-2 oscillations, two period-4
oscillations and several quasiperiodic osciallations with slower frequency, see Fig. 1(a). The basis of attraction for
each attractor are varying in size and there are regions with tiny basins. In this region the system is highly sensitive
to the initial conditions. We studied the number of attractors depending on the parameter choice, an example is
given in Fig. 1(b). Analogously, we performed this in higher dimensions. There is a wide range of values for κ with
many attractors. In the robotic applications, the sensitivity to initial conditions allows the system to be sensitive
to feedback from the physical system, such as faint footprints of a latent oscillations. The fact that the system has
many attractors, even without any physical system attached, gives hints on why the rule can excite many different
behaviors and that these can be easily switched by external influences.

Active switching of behavior – systematic sweep of attractors

Figure 2: Active switching of attractors,
here shown, for visualization purposes, in the
determinant-trace plot of the C matrix, over time.

The advantage of attractor behaviors is their stability. However,
in view of a self-determined exploration of a robotic system, it
would be great to actively explore all attractor behaviors in a sys-
tematic fashion. In this contribution, we will highlight our new
approach to achieve this. Considering the DEP rule (1) as a dif-
ferential equation we can add the derivative of a potential V that is
constructed in a way to avoid all visited attractors in the space ofC:
τĊ = 〈˜̇yẋ〉 − C + ∂

∂CV (C, C), where C is the set of all attractors
to be avoided. The potential is constructed by a sum of gaussians
around each element of C. In order to avoid the creation of spuri-
ous attractors, a particular merging of repellors is performed, such
that the potential landscape is not excessively deformed. In prelim-
inary experiments we find that the new method finds all attractor
behaviors in a sequential fashion, as shown in Fig. 2. All origi-
nal attractors (black dots) are visited one by one. The automatic
repellor placement is indicated by the empty circles.

Conclusions
We have presented our recent advances in the analysis of the recently proposed DEP learning rule. Through the
systematic study of a simplified system, we can find support for the observed behavior in the robotic experiments [2,
4]. Our newly proposed method can be used to systematically switch behavior. A practical evaluation in robotic
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experiences is left for future work.
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