THERMODYNAMIC INTERPRETATION OF INFORMATION GEOMETRIC
CURVATURE

RAMIL NIGMATULLIN, MIKHAIL PROKOPENKO

The aim of statistical thermodynamics is to explain the thermodynamic behaviour of large systems us-
ing microscopic models and probability theory. A statistical mechanical model for an equilibrium ensemble
specifies a probability distribution p(x|[6?]) for a microscopic state of the system, z, given microscopic pa-
rameters [0%], e.g. interaction strength between neighbouring atomic spins. The macroscopic observables are
the expectations of collective variables, X (x), for example, total magnetization of material. The traditional
thermodynamic quantities such as entropy, S, heat @, work W, internal energy U, free energy F' can be
shown to arise as expectations of certain collective functions [1].

A probability distribution p(z|[0?]) possesses a natural differential geometric structure, since the distri-
bution can be regarded as a point on a differential manifold with coordinates (6!,...,6™). The analysis of
probability distribution from the point of view of differential geometry is known as information geometry
[2]. Central to information geometry is the interpretation of Fisher information as the natural metric of the
manifold and the concept of a-connection which specifies the curvature of the manifold. The rich analytical
framework provided by information geometry has been applied in statistical inference, machine learning,
signal processing, and optimization [3]. Naturally, information geometry is also useful for the analysis and
design of statistical mechanical thermodynamic systems and processes. For example, Fisher metric pro-
vides a measure of distance between thermodynamic states [4] and provides a way of detecting proximity to
thermodynamic critical points [5, 6, 7]. So far, the role of information geometric a-connection in thermody-
namics remains largely unexplored. The aim of this work is to clarify the role of information geometry in
thermodynamics and provide an thermodynamic interpretation of a-connection and related concepts, such
as parallel transport, covariant derivatives and geodesics.

We start by recalling that the probability of a statistical mechanical system in thermal equilibrium to be
in state x is given by the Gibbs measure
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where x denotes the state of the system, Z(\') = __ e~#2'Xi(#) i5 the partition function that normalizes the
distribution, 3 is inverse temperature, H = \'X; is the Hamiltonian of the system, A\’ are the generalized
forces conjugate to the collective variables X;. The probability distribution given by equation (1) belongs to
the well studied exponential family of distributions. In the notation commonly used in information geometry
equation (1) is written as

(2) plalB]) = X,

where 0 = —BX\ and ¥(0;) = logZ(6;) = log)_, e’ Xi(® is the so-called Massieu potential, which in
thermodynamics is also known as free entropy. From the point of view of probability theory, ¥ () is the
moment generating function.

A natural metric on the manifold is the Fisher information given by

(3) 9ij = 0;0;1,
where 0; = 0/06".

In information geometry, of central importance is one parameter family of affine connections called the
a-connections. This is because there exists an important duality structure. Given a coordinate system [6°]
which is a-flat, one can always find a dual coordinate system [r;] which is (—«)-flat. Dual coordinate systems

are connected via a Legendre transformation. For a distribution (1), the Legendre transformation is given
by

(4) p(0) = = (0) + 0" (0),



where ¢ and v are dual potential of the Legendre transformation and % and 7; are dual coordinate systems.
From the point of view of statistical mechanics ¢ is the negative of the configuration entropy, i.e. p = —9,
and 7; are the expectation of the collective variables X;

(5) ni = 0 = (Xi) .

In differential geometry a standard way of specifying a connection is through Christoffel symbol T'¥

i
through T’y = I‘?jghk, where gpi is the Riemannian metric. {I‘fj} are the connection coefficients with
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respect to the coordinate system [6?]. The a-connections are denoted by I‘g;‘i It can be shown [2] that

(6) Y = 80000
(7) Tk = 9igighy
(8) e

Thus in the [#?] coordinate systems the Gibbs distribution is 1-flat and in the [r;] coordinate system it
is —1-flat. Since both ¢ and ¢ are moment generating functions, equation (6) and (7) imply that both
-1-connection and 1-connection are the third moments of the collective variables occurring in the p(z|[0%])
and p(z|[n;]) distributions.

In order to begin interpreting the connection thermodynamically, we must obtain an equation linking the
connection coefficients to quantities with thermodynamic meaning. Such equation is obtained by differenti-
ating equation (4) twice with respect to the control parameter [0%] giving

9) 0°0:0;00 = — (0:0;S + ;071)) .

The connection coefficients appear on the left hand side of (9). The right hand side of (9) is the difference
between curvatures (Hessians) of two functions - the configurational entropy, S, and the free entropy, .
The difference between these two curvatures is the quantity ST that was defined in a recent work discussing
thermodynamics of natural computation in swarms [8], but without an information geometric interpretation.

If we consider a quasi-static thermodynamic driving protocol in the space [0?], the system always remains
in thermal equilibrium and it can be shown [8] that the changes in ¢ correspond to work done, W. Hence,
for a quasi-static protocol, we can interpret equation (9) as

(10) 0'0;0;00b = 0;0;W — 9,0, 5.

Thus the curvature of the information geometric manifold is related to the functional curvatures of work
done and configuration change in quasi-static process. We discuss the notions of covariant derivatives,
geodesics and parallel transport in thermodynamic terms using an example of trapped colloidal particle
model system.
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