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The aim of statisti
al thermodynami
s is to explain the thermodynami
 behaviour of large systems us-

ing mi
ros
opi
 models and probability theory. A statisti
al me
hani
al model for an equilibrium ensemble

spe
i�es a probability distribution p(x|[θi]) for a mi
ros
opi
 state of the system, x, given mi
ros
opi
 pa-

rameters [θi], e.g. intera
tion strength between neighbouring atomi
 spins. The ma
ros
opi
 observables are

the expe
tations of 
olle
tive variables, X(x), for example, total magnetization of material. The traditional

thermodynami
 quantities su
h as entropy, S, heat Q, work W , internal energy U , free energy F 
an be

shown to arise as expe
tations of 
ertain 
olle
tive fun
tions [1℄.

A probability distribution p(x|[θi]) possesses a natural di�erential geometri
 stru
ture, sin
e the distri-

bution 
an be regarded as a point on a di�erential manifold with 
oordinates (θ1, ..., θn). The analysis of

probability distribution from the point of view of di�erential geometry is known as information geometry

[2℄. Central to information geometry is the interpretation of Fisher information as the natural metri
 of the

manifold and the 
on
ept of α-
onne
tion whi
h spe
i�es the 
urvature of the manifold. The ri
h analyti
al

framework provided by information geometry has been applied in statisti
al inferen
e, ma
hine learning,

signal pro
essing, and optimization [3℄. Naturally, information geometry is also useful for the analysis and

design of statisti
al me
hani
al thermodynami
 systems and pro
esses. For example, Fisher metri
 pro-

vides a measure of distan
e between thermodynami
 states [4℄ and provides a way of dete
ting proximity to

thermodynami
 
riti
al points [5, 6, 7℄. So far, the role of information geometri
 α-
onne
tion in thermody-

nami
s remains largely unexplored. The aim of this work is to 
larify the role of information geometry in

thermodynami
s and provide an thermodynami
 interpretation of α-
onne
tion and related 
on
epts, su
h

as parallel transport, 
ovariant derivatives and geodesi
s.

We start by re
alling that the probability of a statisti
al me
hani
al system in thermal equilibrium to be

in state x is given by the Gibbs measure

(1) p(x|[λi]) =
e−βH(λi,x)

Z(λi)
=
e−βλ

iXi(x)

Z(λi)
,

where x denotes the state of the system, Z(λi) ≡
∑

x e
−βλiXi(x)

is the partition fun
tion that normalizes the

distribution, β is inverse temperature, H = λiXi is the Hamiltonian of the system, λi are the generalized

for
es 
onjugate to the 
olle
tive variables Xi. The probability distribution given by equation (1) belongs to

the well studied exponential family of distributions. In the notation 
ommonly used in information geometry

equation (1) is written as

(2) p(x|[θi]) = eθ
iXi−ψ(θi),

where θi ≡ −βλi and ψ(θi) ≡ logZ(θi) = log
∑

x e
θiXi(x)

is the so-
alled Massieu potential, whi
h in

thermodynami
s is also known as free entropy. From the point of view of probability theory, ψ(θ) is the

moment generating fun
tion.

A natural metri
 on the manifold is the Fisher information given by

(3) gij = ∂i∂jψ,

where ∂i ≡ ∂/∂θi.
In information geometry, of 
entral importan
e is one parameter family of a�ne 
onne
tions 
alled the

α-
onne
tions. This is be
ause there exists an important duality stru
ture. Given a 
oordinate system [θi]
whi
h is α-�at, one 
an always �nd a dual 
oordinate system [ηj ] whi
h is (−α)-�at. Dual 
oordinate systems

are 
onne
ted via a Legendre transformation. For a distribution (1), the Legendre transformation is given

by

(4) ϕ(θ) = −ψ(θ) + θiηi(θ),
1



where ϕ and ψ are dual potential of the Legendre transformation and θi and ηi are dual 
oordinate systems.

From the point of view of statisti
al me
hani
s ϕ is the negative of the 
on�guration entropy, i.e. ϕ = −S,
and ηi are the expe
tation of the 
olle
tive variables Xi

(5) ηi = ∂iψ = 〈Xi〉 .

In di�erential geometry a standard way of spe
ifying a 
onne
tion is through Christo�el symbol Γkij , or

through Γij,k ≡ Γhijghk, where ghk is the Riemannian metri
. {Γkij} are the 
onne
tion 
oe�
ients with

respe
t to the 
oordinate system [θi]. The α-
onne
tions are denoted by Γ
(α)
ij,k. It 
an be shown [2℄ that

Γ
(−1)
ij,k = ∂i∂j∂kψ(6)

Γ(1)ij,k = ∂i∂j∂kϕ(7)

Γ
(1)
ij,k = Γ(−1)ij,k = 0(8)

Thus in the [θi] 
oordinate systems the Gibbs distribution is 1-�at and in the [ηi] 
oordinate system it

is −1-�at. Sin
e both ψ and ϕ are moment generating fun
tions, equation (6) and (7) imply that both

-1-
onne
tion and 1-
onne
tion are the third moments of the 
olle
tive variables o

urring in the p(x|[θi])
and p(x|[ηi]) distributions.

In order to begin interpreting the 
onne
tion thermodynami
ally, we must obtain an equation linking the


onne
tion 
oe�
ients to quantities with thermodynami
 meaning. Su
h equation is obtained by di�erenti-

ating equation (4) twi
e with respe
t to the 
ontrol parameter [θi] giving

(9) θi∂i∂j∂kψ = − (∂i∂jS + ∂i∂jψ) .

The 
onne
tion 
oe�
ients appear on the left hand side of (9). The right hand side of (9) is the di�eren
e

between 
urvatures (Hessians) of two fun
tions - the 
on�gurational entropy, S, and the free entropy, ψ.
The di�eren
e between these two 
urvatures is the quantity S

+
that was de�ned in a re
ent work dis
ussing

thermodynami
s of natural 
omputation in swarms [8℄, but without an information geometri
 interpretation.

If we 
onsider a quasi-stati
 thermodynami
 driving proto
ol in the spa
e [θi], the system always remains

in thermal equilibrium and it 
an be shown [8℄ that the 
hanges in ψ 
orrespond to work done, W . Hen
e,

for a quasi-stati
 proto
ol, we 
an interpret equation (9) as

(10) θi∂i∂j∂kψ = ∂i∂jW − ∂i∂jS.

Thus the 
urvature of the information geometri
 manifold is related to the fun
tional 
urvatures of work

done and 
on�guration 
hange in quasi-stati
 pro
ess. We dis
uss the notions of 
ovariant derivatives,

geodesi
s and parallel transport in thermodynami
 terms using an example of trapped 
olloidal parti
le

model system.
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