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Information Geometry is an interdisciplinary and expanding research field at
the intersection of statistics and differential geometry, which studies the geom-
etry of statistical models, represented as manifolds of probability distributions.
Notably, Information Geometry provides a principled framework for the analysis
and design of natural Riemannian gradient descent algorithms for the optimiza-
tion of functions defined over statistical models, with applications in machine
learning, statistical inference, information theory, stochastic optimization, and
several fields in computer science, such as robotics and computer vision.

The task of optimizing a function whose variables are the parameters of a
statistical model is widespread in data science, think for example to the opti-
mization of the expected value of a function with respect to a distribution in
a statistical model, the maximization of the likelihood, or more in general the
minimization of a loss function. Whenever the closed formula for the solution
of the problem is unknown, gradient descent methods constitute a classical ap-
proach to optimization. However, it is a well-known result in statistics that the
geometry of a statistical model is not Euclidean, instead the unique metric which
is invariant to reparameterization is the Fisher information metric. It follows
that the direction of maximum decrement of a function over a statistical model
is given by the Riemannian natural gradient, first proposed by Amari. Despite
the directness of first-order methods, there are situations where taking into ac-
count the information on the Hessian of the function to be optimized gives an
advantage, for instance for ill-conditions problems for which gradient methods
may converge too slowly. Similarly to the natural gradient, also the definition of
the Hessian of a function depends on the metric, so that second-order methods
over statistical manifolds need to be generalized to the Riemannian geometry
of the search space.

When we move to the second-order geometry of a differentiable manifold,
the notion of covariant derivative is required for the parallel transport between
tangent spaces, in particular to compute directional derivatives of vector fields
over a manifold. However, an important result in Information Geometry af-
firms that exponential families, and more in general Hessian manifolds, have
a dually-flat nature, which implies the existence of at least two other relevant



geometries for statistical models: the mixture and the exponential geometries.
Differently from the Riemannian geometry, the exponential and mixture geome-
tries are independent from the notion of metric, and they are defined by two
dual affine connections, the mixture and the exponential connections. The dual
connections, which are equivalently specified by the dual covariant derivatives,
allow to define dual parallel transports, dual geodetics, and ultimately the expo-
nential and mixture Hessians. What is specific of Hessian manifolds, is that the
combination of dual Hessians and geodetics allows to define alternative second-
order Taylor approximations of a function, without the explicit computation
of the Riemannian Hessian and the Riemannian geodetic, which are computa-
tionally expensive operations in general. Compared to Riemannian manifolds,
dually-flat manifolds have a richer geometry that can be exploited in the design
of more sophistical second-order optimization algorithms.

Second-order methods, such as the Newton method, conjugate gradient, and
trust region methods, are popular algorithms in mathematical optimization,
known for their super-linear convergence rates. The application of such meth-
ods to the optimization over statistical manifolds using second-order Rieman-
nian optimization algorithms is a novel and promising area of research, indeed
even if Information Geometry and second-order manifold optimization are well
consolidated fields, surprisingly little work has been done at the intersection of
the two. The optimization methods developed for statistical models based on
dual geometries can be adapted to the larger class of Hessian manifolds. Indeed,
all Hessian manifolds admit a dual geometrical structure analogous to that of
statistical manifolds, given by the dual affine connections. Hessian manifolds
include matrix manifolds, such as the cone of positive-definite matrices, and sev-
eral other convex cones, with applications in robotics, computer vision, pattern
recognition, signal processing, conic optimization, and many others.

In this work, after a description of the general theory behind second-order
Information Geometry, we present two examples: an application to the opti-
mization over an exponential family defined over a finite sample space, and the
case of the multivariate Gaussian distribution.
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