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Introduction The free energy principle/active in-
ference (FEP, Friston et al. 2006, 2015), empower-
ment maximization (EM, Klyubin et al. 2005; Salge
et al. 2014), and predictive information maximiza-
tion (PIM, Ay et al. 2008, 2012; Martius et al.
2013) have all been proposed as information theo-
retical principles for driving autonomous behaviour.
In this sense they are instances of intrinsic motiva-
tions (see Oudeyer and Kaplan, 2008; Schmidhuber,
2010; Barto et al., 2013; Santucci et al., 2013, for
definition attempts and other approaches). In spite
of the similar purpose of these principles, we are
not aware of systematic comparisons between them.
Since they are usually presented in differing formal
frameworks, comparisons remain unnecessarily time-
consuming and intransparent. Furthermore, simula-
tion comparisons of the generated behaviours have
not been undertaken either. Here we sketch our work
on formulating the three principles within the same
formalism. This will permit a direct and transpar-
ent comparison. A simulation analysis based on this
unifying formalism is in work.

Figure 1: One PA-loop step.

Perception-action (PA-) loop We use the
Bayesian network representation of the PA-loop as
in Fig. 1. E}, S, A¢, M; are finite discrete random
variables representing Environment, Sensor, Action,
and agent Memory respectively. We assume an ini-
tial distribution over FEy, My at time ¢t = 0 and a
final time T'. For all times and all values of the in-
volved random variables the environment and sen-
sor dynamics are given via conditional probabilities
plest+1]at+1,er) and p(seler). An agent is defined by
specifying the values stored in M; as well as their

dynamics p(mg41]st, ar, m¢) and an action selection
mechanism p(a;|m;). We choose the same M; and
agent dynamics for all considered principles and only
vary the action selection mechanisms. For clarity,
we formally distinguish explicitly between transition
probabilities constituting the PA-loop (denoted by
the symbol p as above) and probabilistic models (de-
noted by symbols ¢,r) that are used to define and
calculate the agents’ dynamics and actions. Param-
eters of the agents’ models are denoted using the
Greek alphabet (e.g. Eq. (2)). We also indicate es-
timates, predictions, and “contemplated” values of
random variables with a hat: an estimate of environ-
ment state e; will be denoted é; and a future action
at t + 1 that is contemplated is denoted a;1.

Sensor value prediction and agent dynamics
Our setup so far corresponds to that of a partially ob-
servable Markov decision process (POMDP) without
a given reward function. In place of the reward, the
evaluation of actions is provided by the three prin-
ciples. More precisely, all three can be formulated
as evaluating predicted future consequences/sensor
values of contemplated actions and then choosing
an actual action accordingly. In order to allow a
fair comparison, the predictions are generated by the
same variational inference (VI) mechanism in each
case. Note that due to differences in action choice,
the sensor values each agent will encounter will dif-
fer and so will the quality of predictions. Assume
a model q(3,|ds;0) of all future sensor value re-
sponses to future actions with parameters (possibly
including latent variables, e.g. environment states
ét) 6 e Ag and hyperprior q(é; &) with hyperparam-
eters & € Ag. Then after a history h<; = (s<¢, a<¢)
of all sensor values and actions until time ¢, full
Bayesian inference (e.g. Bishop, 2011) gives us:

Q(*§>—t|&>—tahjt) =

s A n o Y
/q(s>t|a>t;9) q(Olh=<¢; &) g(é&lh<y) db da.
Variational inference (e.g. Beal and Ghahramani,
2006) approximates the two history dependent terms
by a “recognition” model r(6; ¢;y1) where ¢ry1 =
¢1+1(h=¢). If the recognition model is chosen as a

conjugate prior to q(8.¢|ds; 0) the resulting integral
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becomes tractable (notationally the resulting model
inherits the symbol r via “contamination”). In
summary, we have m; = (h<¢—1,¢;) and
p(mis1]se, ar,me) = p(dey1lh<e)p(h=ilag, s¢, h<i—1)
with the first factor obtained from variational infer-
ence and the second just by concatenation. Both
factors are deterministic. We also choose a deter-
ministic action selection with p(a:|m:) = p(at|dt) =
Saz (¢,)(ar) where aj(¢¢) is defined for each principle
below.

Free energy principle As mentioned in Friston
et al. (2015, p.188), active inference results from
“one straightforward imperative — to minimize sur-
prise [...]”. Free energy minimization itself is only in-
voked as a proxy for surprise minimization (see also
Friston et al., 2012, Sec.3.1). We therefore formulate
the FEP as the choice of actions that minimize ex-
pected surprise directly. For times ¢ to ¢ + k surprise
is defined as —logr(3/*|alt*: ¢,), so its expecta-
tion is an entropy. Since we only want to choose the
next action, we can take into account longer action
sequences by minimizing the expected surprise over
distributions of subsequent actions:

(qzﬁt)—argmln min H(St+k|Afilf,dt,¢t). (3)

n q( 1+k)

Empowerment maximization Empowerment is
the channel capacity from a sequence of actions to
the subsequent sensor value. Again we want to
choose only the immediate action, and do this such
that empowerment starting of the subsequent actions
is maximized. Formally:

((j)t)fargmax max I(At+1 St+k|at,¢’t) (4)

at (a’t+l

Predictive information maximization Predic-
tive information is the mutual information between
past and future. Similar to the time-local predictive
information of Martius et al. (2013), we choose the
immediate action such that the predicted subsequent
predictive information of the sensor values is maxi-
mized. For the subsequent actions we again choose
a maximizing distribution (k now an even integer):

Gitk)2
a; (¢¢) = arg max max I(Stil/ ttil;j/2+1|at,¢t)

ag Q( 1+1
(5)

Notes Variational inference involves the minimiza-
tion of past surprise —logg(s<¢|a<s, &) w.r.t. & via
the minimization of a “free energy”. As action se-
lection in the FEP usually also minimizes (expected)
surprise via a free energy-like term, it is justifiable to
package both together as a single “free energy prin-
ciple”. From a Bayesian perspective, however, the

past surprise minimization (and in turn free energy
minimization) is only an approximation and it would
seem a stretch to elevate it to a principle. The rea-
son for this elevation stems from the formal similarity
to thermodynamic entropy and free energy (Friston
et al., 2006).

In our formulation the three principles look strik-
ingly similar. This is not only due to rigorous deriva-

tion but also to deliberate reformulation. In partic-

ular this concerns the use of optimization of q(aif{’)

in the FEP and PIM which resembles the standard
method for EM. We are investigating the assump-
tions necessary to justify these reformulations. In-
tuitively however, the expressions still capture the
main ideas behind the principles.

It also remains to be seen whether and how any
similarities will extend to the behaviour exhibited in
simulations.
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