Polynomial Optimization

Optimization Day at MPI Leipzig, February 12, 2018

Some Problems to be discussed in the Afternoon

1. Pack n circles of radius r inside a unit square. How large can r be?
2. Find the orthogonal matrix closest to a multiple of the Hilbert matrix

$$
[1 /(i+j-1)]_{1 \leq i, j \leq n} .
$$

3. Maximize the volume of the convex hull of k points on the unit sphere \mathbb{S}^{2}.
4. Pick a random polynomial of degree d in n variables, and maximize your polynomial over the cube $[-1,1]^{n}$. Try various values of d and n.
5. Pick a random polynomial of degree d in n variables, and maximize that polynomial over $\{-100, \ldots, 100\}^{n}$. Try various values of d and n.

6 . Find the largest regular m-gon inside a regular n-gon.
7. Does there exist an $n \times n$-matrix that is both Hankel and orthogonal?
8. Consider a Gaussian random vector $X=\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$ whose entries satisfy $X_{1} \Perp X_{2}, X_{3} \Perp X_{4}, X_{1} \Perp X_{3} \mid\left\{X_{2}, X_{4}\right\}$, and $X_{2} \Perp$ $X_{4} \mid\left\{X_{1}, X_{3}\right\}$. What is the maximum correlation between X_{1} and X_{3} ?
9. Consider the cone of vectors (a, b, c, d, e) in \mathbb{R}^{5} such that the univariate polynomial $a x^{4}+b x^{3}+c x^{2}+d x+e$ is nonnegative. Describe this cone by a Boolean combination of polynomial inequalities in 5 unknowns.
10. Let $M_{k} \subset \mathbb{R}^{m \times n}$ be the set of $m \times n$ matrices of rank $\leq k$. Let $X=$ $U V^{T} \in M_{k}$ with $U \in \mathbb{R}^{m \times \ell}$ and $V \in \mathbb{R}^{n \times \ell}$ having rank ℓ. Compute the tangent cone of M_{k} at X. True or false: If X is a relative local minimum of a function $f: M_{k} \rightarrow \mathbb{R}$ then $\operatorname{rank}(X)=k$ or $\nabla f(X)=0$?
11. Pick explicit random instances of U, V, k in the previous problem. Determine a semialgebraic description of the corresponding tangent cone.
12. For polynomial $p \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$, we consider the Rayleigh difference

$$
\Delta_{i j}(p)=\frac{\partial p}{\partial x_{i}} \cdot \frac{\partial p}{\partial x_{j}}-p \cdot \frac{\partial^{2} p}{\partial x_{i} \partial x_{j}}, \quad 1 \leq i, j \leq n
$$

Let $e_{k, n}$ be the elementary symmetric polynomial of degree k in n variables. Is $\Delta_{i j}\left(e_{k, n}\right)$ a sum of squares? Next consider the polynomial
$V=e_{4,8}-\left(x_{1} x_{2} x_{3} x_{4}+x_{1} x_{2} x_{5} x_{6}+x_{1} x_{2} x_{7} x_{8}+x_{3} x_{4} x_{5} x_{6}+x_{3} x_{4} x_{7} x_{8}\right)$.
For which values of i, j is $\Delta_{i j}(V)$ nonnegative? a sum of squares?
13. How to maximize a linear function over the lattice points inside a spectrahedron? On which preprint server can one find the article "A Framework for Solving Mixed-Integer Semidefinite Programs"? Why?
14. Try the SONC Method on two of the problems above. How does it do?

