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Building models for creating predictions based on empirical data is a current
and active research topic with numerous applications. The amount of data we
collect today increases rapidly resulting in high-dimensional datasets and cor-
responding regression or classification problems. There is a number of classical
machine learning methods like support vector machines, neural networks, and
decision trees, see e.g. [15, 1, 5], to tackle these problems. However, the question
of how the predictions come to pass, i.e., the interpretability of these models,
is ever more important. With this information one may omit certain (possibly
expensive) measurements if they have a small influence or use it to influence
predictions to a desired outcome. While there is new research in the area of
interpretability of the classical methods, see e.g. [32, 23], those models do not
intrinsically allow for it.

In this talk we present the approximation method introduced and applied
in [26, 27, 28]. It is based on the analysis of variance (ANOVA) decomposition,
cf. [6, 29, 21, 19, 16, 13], for functions in L2 spaces and corresponding complete
orthonormal systems. The ANOVA decomposition in this setting uniquely de-
composes a function into terms that correspond to variable couplings or variable
interactions. The assumption we use for tackling the curse of dimensionality is
that the function has a low superposition dimension, i.e., it can be explained well
by low-dimensional interactions, cf. [6, 19, 10, 24, 14]. In [26] we showed that
functions of certain smoothness types have this property. Moreover, it has been
theorized that most real word applications consist only of low-order interactions
relating to sparsity-of-effects, cf. [35], or the Pareto principle. The method pairs
this idea with the concept of grouped index sets together with grouped transfor-
mations we presented in [2]. We are able to use different orthonormal systems
that allow for fast transformations. In particular, the grouped transformations
are based on the non-equispaced fast Fourier transform and the non-equispaced
fast cosine transform, see [18, 25, 17].

From the model we immediately obtain importance information on the vari-
able couplings by using global sensitivity indices or Sobol indices, cf. [33, 34, 21],
and sensitivity analysis, see [31]. Therefore, we are able interpret the model and
gain information about the importance of attributes and attribute interactions.
Moreover, we improve it by a number of techniques using this information. By
the utilization of attribute rankings we can remove an unimportant variable
entirely and reduce the dimensionality of the problem. It is also possible to
find that the representation of the data in the groups, i.e., the ANOVA de-
composition, is sparse. In this case we have that some variable interactions do
not influence the approximation (significantly) and can therefore be discarded.
These techniques allow us to build an active set of couplings that will in the
end represent the model we use for predictions. This simultaneously gives us
a control mechanism for the complexity of the model and combat overfitting.



The technique is also related to low-dimensional structures and active subspace
methods [12, 8, 9] as well as random features [30, 7, 36, 20, 14]. The main
difference to random features is that random features draws weights or in our
language indices/frequencies at random and uses a different optimization prob-
lem.

We present numerical results, cf. [28], for synthetic test functions, the Fried-
man functions, see [22, 3, 4], as an example of how it performs on synthetic data
with Gaussian noise and compare our findings to previously obtained benchmark
results in the same setting. Moreover, we show performance on application
datasets from the UCI database [11] and other sources. Each datasets provides
a different challenge and we compare our results to different machine learning
methods. We observe very promising results and in many cases outperform
previous benchmark experiments.
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