Steiner representations of hypersurfaces

Vincenzo Antonelli

Dipartimento di Scienze Matematiche, Politecnico di Torino

Abstract. Let $X \subseteq \mathbb{P}^{n+1}$ be an integral hypersurface of degree d. The description of hypersurfaces in \mathbb{P}^{n+1} as zero loci of suitable square matrices (possibly with some further properties, e.g. with linear entries, symmetric, skew-symmetric, etc.) is a very classical topic in algebraic geometry. In this talk we show that each locally Cohen–Macaulay instanton sheaf \mathcal{E} on X with respect to $\mathcal{O}_X \otimes \mathcal{O}_{\mathbb{P}^{n+1}}(1)$ yields the existence of Steiner bundles \mathcal{G} and \mathcal{F} on \mathbb{P}^{n+1} of the same rank r and a morphism $\varphi: \mathcal{G}(-1) \to \mathcal{F}^{\vee}$ such that the form defining X to the power $\operatorname{rk}(\mathcal{E})$ is exactly $\det(\varphi)$. In particular, we show that the form defining a smooth integral surface in \mathbb{P}^3 is the pfaffian of some skew–symmetric morphism $\varphi: \mathcal{F}(-1) \to \mathcal{F}^{\vee}$, where \mathcal{F} is a suitable Steiner bundle on \mathbb{P}^3 of sufficiently large even rank. Finally we deal with the case of cubic fourfolds in \mathbb{P}^5 , showing how the existence of Steiner pfaffian representations is related to the existence of particular subvarieties of the cubic. This is a joint work with Gianfranco Casnati.