EXERCISES FOR "WHAT IS p-ADIC GEOMETRY?"

MARTA PANIZZUT

Exercise 1.

(1) Eisenstein irreducibility criterion for polynomials over \mathbb{Q}_p . Let

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$$

be a polynomial with p-adic integer coefficients. Show that f is irreducible over \mathbb{Q}_p if a_n is not divisible by p, the coefficients a_{n-1}, \ldots, a_1 are divisible by p, and the constant therm a_0 is divisible by p but not p^2 .

(2) Show that there exist finite extensions of arbitrary degree of \mathbb{Q}_p . See Exercise 2 of Section 2 of Christoph's exercises for more on Eisenstein polynomials over non-archimedean field.

Exercise 2. Let K be a complete, algebraically closed, non-archimedean valued field, and let $D_r(a)$ be the closed disk $D_r(a) = \{x \in K \mid |x - a| \le r\}$. Define

$$||\cdot||_{D_r(a)}: K[T] \rightarrow \mathbb{R}_{\geq 0}$$

 $f \mapsto \sup_{x \in D_r(a)} |f(x)|$

- (1) Given $f = \sum_{i=1}^{n} c_i T^i$, show that $||f||_{D_1(0)} = \max |a_i|$. This is called the Gauss norm.
- (2) Show that $||\cdot||_{D_r(a)}$ defines a multiplicative seminorm on K[T].

Exercise 3. Let K be a complete, algebraically closed, non-archimedean valued field. Given a positive real number R, let

$$K\langle R^{-1}T\rangle = \Big\{ f = \sum_{k=0}^{\infty} c_k T^k \in K[[T]] : \lim_{k \to \infty} R^k |c_k| = 0 \Big\},$$

be the ring of formal power series with radius of convergence at least R. It is complete with respect to the norm $||f||_R := \max |c_k|R^k$. We define $\mathcal{D}_0(R)$ as the set of multiplicative seminorms on $K\langle R^{-1}T\rangle$ extending the absolute value on K. We equip it with the weakest topology for which $x\mapsto ||f||_x$ is continuous for all $f\in K\langle R^{-1}T\rangle$.

- (1) Explain that if 0 < R' < R, then $\mathcal{D}_0(R')$ can be seen as a subspace of $\mathcal{D}_o(R)$.
- (2) Prove that

$$\mathbb{A}_K^{1,\operatorname{Berk}} \cong \bigcup_{R>0} \mathcal{D}_R(0).$$

Exercise 4. A valued field K is spherically complete if every descending nested sequence of closed disks has nonempty intersection. Prove that the completion \mathbb{C}_p of the algebraic closure $\overline{\mathbb{Q}_p}$ is not spherically complete.