EXERCISES FOR RAMIFICATION AND PERFECTOID FIELDS

CHRISTOPH EIKEMEIER

1. Ramification

(1) [CF67, Ch I] Let F be a non-archimedian complete discretelty valued field with perfect residue field. All extensions are supposed to be separable. Show, that there is a correspondence between.

{unramified extensions of F} \longleftrightarrow {extensions of $\kappa(F)$ }

- Let E/F is unramified. There exists an element $\alpha \in \mathcal{O}_E$ such that $\kappa(E) = \kappa(F)[\overline{\alpha}]$, where $\overline{\alpha}$ denotes the reduction mod ϖ_F . If f is the minimal polynomial of α over F, then $\mathcal{O}_E = \mathcal{O}_F[\alpha]$, $E = F[\alpha]$ and \overline{f} is separable and irreducible in $\kappa(F)[T]$.
- Let g be a monic polynomial in $\mathcal{O}_F[T]$ such that \overline{g} is separable and irreducible in $\kappa(F)[T]$. If β is a root of g then $E = F[\beta]$ is unramified over F and $\kappa(E) = \kappa(F)[\beta]$.
- (2) [CF67, Ch I] A seperable, nonzero polynomial $f(X) = b_n X^n + b_{n-1} X^{n-1} + ... + b_0 \in F[X]$ is called *Eisenstein polynomial*, if $v_F(b_n) = 0$, $v_F(b_i) \ge 1$ for $1 \le i < n$ and $v_F(b_0) = 1$. Show, that Eisenstein polynomials correspond to totally ramified extensions:

 $\{\text{totally ramified extensions of } F\} \longleftrightarrow \{\text{roots of Eisenstein polynomials}\}$

- An Eisenstein polynomial f is irreducible
- If α is a root of f, then $E = F[\alpha]$ is totally ramified over F and $v_E(\alpha) = 1$.
- If E/F is totally ramified and $v_E(\beta) = 1$, then the minimal polynomial of β over F is Eisenstein, $\mathcal{O}_E = \mathcal{O}_F[\beta]$ and $E = F[\beta]$.

2. Perfectoid Fields and almost mathematics

- (1) Show that the completion of $\mathbb{Q}_p(\mu_{p^{\infty}})$ is a perfectoid field, where μ_{p^n} is the group of p^n -th roots of unity.
 - Consider the extension $\mathbb{Q}_p(\mu_{p^n})/\mathbb{Q}_p$. It is a splitting field, what is the corresponding minimal polynomial?
 - Show, that the ramification degree is $p^{n-1}(p-1)$.
- (2) [Sta18, Tag 02MN] Construction of the Serre quotient category
 - Let \mathcal{A} be an abelian category. A nonempty full subcategory \mathcal{C} of \mathcal{A} is called *Serre subcategory* if given an exact sequence

$$A \to B \to C$$

with $A, C \in Ob(\mathcal{C})$, then also $B \in Ob(\mathcal{C})$.

- There exists an abelian category \mathcal{A}/\mathcal{C} and an exact, essentially surjective functor $\mathcal{F}: \mathcal{A} \to \mathcal{A}/\mathcal{C}$ with kernel \mathcal{C}
- Construct \mathcal{A}/\mathcal{C} as the localized category $S^{-1}\mathcal{A}$ where

$$S = \{ f \in \operatorname{Arrow}(\mathcal{A}) \mid \ker(f), \operatorname{coker}(f) \in \operatorname{Ob}(\mathcal{C}) \}.$$

Convince yourself, that the name quotient category makes sense.

• Let A be an integral domain, (A - Mod) the category of A-modules and \mathcal{T} the serre subcategory of torsion modules. Then there is a caononical equivalence of categories

$$(A - \text{Mod})/\mathcal{T} \to (Q(A) - \text{Vect})$$

where the category on the right is the category of Q(A)-vector spaces.

- (3) [GR03, 2.2.6] Let K be a perfectoid field. Show that $(\mathcal{O}_K^a \text{mod})$ has the structure of an abelian tensor category.
 - The corresponding objects are defined in such a way, that they are compatible with the functor $\mathcal{F}: \cdot \mapsto \cdot^a$.
 - $\bullet\,$ Show, that for M,N $\mathcal{O}_K\text{-Modules},$ we have

$$\operatorname{Hom}_{\mathcal{O}_K^a}(M^a, N^a) = \operatorname{Hom}_{\mathcal{O}_K}(\mathfrak{p}_K \otimes M, N)$$

References

- [CF67] J. W. S. Cassels and A. Froehlich. Algebraic Number Theory. 1967.
- [GR03] O. Gabber and L. Ramero. Almost Ring Theory. 2003.
- [Sta18] The Stacks project authors. The stacks project. https://stacks.math.columbia.edu, 2018.