
EXERCISES ON THE THEOREM OF FONTAINE-WINTENBERGER

1. Warm-up Questions

1.1. “Fermat’s Little Theorem”. Let R be a ring, and let t ∈ R be an element such that
p ∈ (T ). Given a, b ∈ R with a ≡ b mod t, show that ap

n ≡ bpn mod tn+1 for all n ≥ 0.

1.2. Krasner’s Lemma.

(1) Let K be a non-archimedean field and let K be a separable closure of K. Given an element
α ∈ K, denote its Galois conjugates by α2, . . . , αn. Then show that if an element β ∈ K is
such that

|α− β| < |α− αi|
for i = 2, . . . , n, then K(α) ⊆ K(β).

(2) Show how this is used to conclude the proof of the theorem of Fontaine–Wintenberger.

1.3. Let OK be the valuation ring of a complete and algebraically closed non-archimedean field.
Let P (T ) =

∑n
i=1 aiT

i ∈ OK [T ] be a polynomial such that n ≥ 1 and such that a0, ai ∈ O×K for at
least one 1 ≤ i ≤ n. Then show that P vanishes at a unit of OK . (Hint: This can be done either
using Newton polygons or via an algebraic argument.)

1.4. Let f : R → S be a map of characteristic p rings that is surjective with nilpotent kernel.
Show that limφR ' limφ S. Show that the same result holds if f factors a power of Frobenius on
either ring.

2. The Tilting Correspondence

2.1. Examples. Compute explicitly the tilts of the following rings:

(1) Zp
(2) Fp[t]
(3) Fp((t1/p

∞
))

(4) ̂Qp[p1/p
∞ ]

(5) ̂Qp(µp∞)
(6) A finite type algebra R over an algebraically closed field k

What happens to the rank of the rings under the tilt?

2.2. Let R be a p-adically complete ring. Show the following:

(1) If R is a domain, then so is its tilt R[.

(2) If R is a valuation ring, then so is its tilt R[.1

2.3. Let R be a ring that is p-adically complete. Show that the projection map R→ R/p induces
a bijection of the multiplicative monoids

lim
x 7→xp

R→ R[.

(Hint: Use “Fermat’s Little Theorem” in the warm-up questions.)

1In fact, the valuation on R[ is obtained from the valuation |·| : R→ Γ∪{0} by the composition R[ ]−→ R
|·|−→ Γ∪{0}.
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3. Tilting Perfectoid Fields

In this section K will always denote a perfectoid field with corresponding ring of integers K◦.

3.1. Check that the following topologies on K◦[ are equivalent:

(1) The inverse limit topology via K◦[ ' limφK
◦[/π.

(2) The inverse limit topology via K◦[ ' limx 7→xp K
◦.

(3) The inverse limit topology via K◦[ ' limφK
◦/p, where the topology on K◦/p is the one

induced from K2.

3.2. Tilting Perfectoid Fields. Here we show step-by-step that the tilt of a perfectoid field will
be a perfectoid field. We fix K to be a perfectoid field with a chosen pseudouniformizer π with
|p| ≤ |π| < 1, so p ∈ (π).

(1) Verify the commutativity of the following diagram:

limx 7→xp K
◦

limx 7→xp K
◦/pK◦[ :=

limx 7→xp K
◦/π

K◦

K◦/p

K◦/π

'

��

'

��

red

��

red

��

pr //

pr //

pr // .

(Hint: Use Exercises 1.4 and 2.3.)

(2) Show there exists an element t ∈ K◦[ such that |t]| = |π|. Moreover, show that t maps to

0 in K◦/π and that this gives an isomorphism K[◦/t ' K◦/π. (Hint: Choose an element

f ∈ K◦ such that |f |p = |π|, and analyze a lift of f ∈ K◦/π in K◦[.)

(3) Show that with t as above that K◦[ is t-adically complete, and that the t-adic topology
coincides with the given topology.

(4) Conclude that K◦[ is a valuation ring and K[ := K◦[[1t ] is a perfect (and thus perfectoid)

field such that the value groups of K and K[ are canonically identified. (Hint: Recall the
conclusion of Exercise 2.2.)

3.3. Algebraically Closed Perfectoid Fields. Here we show that if K[ is algebraically closed,
then its untilt K is algebraically closed. The argument is done by inductively constructing a
sequence {xn ∈ K◦} such that for each n the following two conditions are satisfied

• |xn+1 − xn| ≤ |p|
n
d ,

• |P (xn)| ≤ |p|n for an (arbitrary) monic polynomial P of degree d ≥ 1 with coefficients in
K◦,

where by the first condition we conclude that {xn} converges to some element x ∈ K◦, and by the
second condition that |P (x)| = 0, and thus P (x) = 0, showing that K is algebraically closed.

We take x0 = 0 and assume by induction that we have constructed x0, . . . , xn satisfying the
above two properties.

2This topology is discrete when K has characteristic zero, but is not when K has characteristic p.
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(1) Write P (T + xn) =
∑d

i=0 biT
i and show the quantity

c = min

{∣∣∣∣b0bj
∣∣∣∣ 1j : j > 0, bj 6= 0

}
satisfies c = |u| for some unit u ∈ K◦. Use this to show that there exists i > 0 such that
bi
b0
· ui ∈ K◦ is a unit.

(2) Let Q(T ) ∈ K◦[[T ] be any polynomial lifting
∑d

i=0
bi
b0
uiT i ∈ K◦/p[T ], where we use the

identification K◦[/t ' K◦/p to construct the lift. Show there exists a unit y ∈ K◦[ such
that Q(y) = 0. (Hint: Use Exercise 1.3)

(3) Check that the element xn+1 = xn + u · y] ∈ K◦ satisfies the two itemized conditions.

4. Witt Vectors and Ainf

4.1. Witt Vectors of Characteristic p Rings. Fix R to be a ring of characteristic p.

(1) Given x ∈ R, show that the Teichmüller lift [x] := limn→∞(x1/pn)p
n ∈W (R) is well-defined,

independent of the choices of representatives x1/pn ∈W (R) of each x1/p
n ∈ R.

(2) Show that for any x ∈W (R), there is a unique sequence of elements {cn}n≥0 ∈ R such that

x =
∑
n≥0

[cn]pn.

Such a sum is called a Teichmüller representation of x ∈W (R).
(3) Verify the following universal property: for any p-adically complete ring A, reduction mod-

ulo p induces a bijection:

Hom(W (R), A)
∼−→ Hom(R,A/pA).

4.2. Verify3, by using the universal properties of Ainf , that for L[ a finite Galois extension of the
perfectoid field K[,

L[] ' (W (L[◦)⊗Ainf(K◦) K
◦)[

1

π
].

4.3. Étale Infinitesimal Lifting property. Let R be any ring.

(1) Show that for any surjective map R̃ → R with a nilpotent kernel, base change induces an

equivalence between the category of étale R-algebras and the category of étale R̃-algebras.
(2) Show that if R is equipped with a non-zero divisor f ∈ R, then reduction modulo f induces

an equivalence between the category of f -adically complete and f -torsionfree R-algebras S
with R/f → S/f étale and the category of étale R/f -algebras.

(3) Verify that for L[ a finite Galois extension of the perfectoid field K[, the field L[] =

(W (L[◦) ⊗Ainf(K◦) K
◦)[ 1π ] constructed in the lecture is a finite Galois extension of K (and

of the same degree!).

3In particular, this verifies that the untilt of L[ as a field extension of K[ via Fontaine’s construction of the untilt
coincides with the untilt operator on fields.
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