EXERCISES ON THE THEOREM OF FONTAINE-WINTENBERGER

1. Warm-up Questions

1.1. "Fermat's Little Theorem". Let R be a ring, and let $t \in R$ be an element such that $p \in (T)$. Given $a, b \in R$ with $a \equiv b \mod t$, show that $a^{p^n} \equiv b^{p^n} \mod t^{n+1}$ for all $n \geq 0$.

1.2. Krasner's Lemma.

(1) Let K be a non-archimedean field and let \overline{K} be a separable closure of K. Given an element $\alpha \in \overline{K}$, denote its Galois conjugates by $\alpha_2, \ldots, \alpha_n$. Then show that if an element $\beta \in \overline{K}$ is such that

$$|\alpha - \beta| < |\alpha - \alpha_i|$$

for i = 2, ..., n, then $K(\alpha) \subseteq K(\beta)$.

- (2) Show how this is used to conclude the proof of the theorem of Fontaine–Wintenberger.
- 1.3. Let \mathcal{O}_K be the valuation ring of a complete and algebraically closed non-archimedean field. Let $P(T) = \sum_{i=1}^n a_i T^i \in \mathcal{O}_K[T]$ be a polynomial such that $n \geq 1$ and such that $a_0, a_i \in \mathcal{O}_K^{\times}$ for at least one $1 \leq i \leq n$. Then show that P vanishes at a unit of \mathcal{O}_K . (Hint: This can be done either using Newton polygons or via an algebraic argument.)
- 1.4. Let $f: R \to S$ be a map of characteristic p rings that is surjective with nilpotent kernel. Show that $\lim_{\phi} R \simeq \lim_{\phi} S$. Show that the same result holds if f factors a power of Frobenius on either ring.

2. The Tilting Correspondence

- 2.1. **Examples.** Compute explicitly the tilts of the following rings:
 - $(1) \mathbb{Z}_p$
 - (2) $\mathbb{F}_p[t]$
 - (3) $\mathbb{F}_p((t^{1/p^\infty}))$
 - (4) $\widehat{\mathbb{Q}_p[p^{1/p^{\infty}}]}$
 - (5) $\mathbb{Q}_p(\mu_{p^{\infty}})$
 - (6) A finite type algebra R over an algebraically closed field k

What happens to the rank of the rings under the tilt?

- 2.2. Let R be a p-adically complete ring. Show the following:
 - (1) If R is a domain, then so is its tilt R^{\flat} .
 - (2) If R is a valuation ring, then so is its tilt R^{\flat} .
- 2.3. Let R be a ring that is p-adically complete. Show that the projection map $R \to R/p$ induces a bijection of the multiplicative monoids

$$\lim_{x \mapsto x^p} R \to R^{\flat}.$$

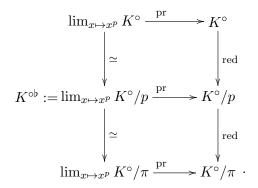
(Hint: Use "Fermat's Little Theorem" in the warm-up questions.)

¹In fact, the valuation on R^{\flat} is obtained from the valuation $|\cdot|: R \to \Gamma \cup \{0\}$ by the composition $R^{\flat} \xrightarrow{\sharp} R \xrightarrow{|\cdot|} \Gamma \cup \{0\}$.

3. Tilting Perfectoid Fields

In this section K will always denote a perfectoid field with corresponding ring of integers K° .

- 3.1. Check that the following topologies on $K^{\circ\flat}$ are equivalent:
 - (1) The inverse limit topology via $K^{\circ\flat} \simeq \lim_{\phi} K^{\circ\flat}/\pi$.
 - (2) The inverse limit topology via $K^{\circ \flat} \simeq \lim_{x \mapsto x^p} K^{\circ}$.
 - (3) The inverse limit topology via $K^{\circ \flat} \simeq \lim_{\phi} K^{\circ}/p$, where the topology on K°/p is the one induced from K^2 .
- 3.2. Tilting Perfectoid Fields. Here we show step-by-step that the tilt of a perfectoid field will be a perfectoid field. We fix K to be a perfectoid field with a chosen pseudouniformizer π with $|p| \le |\pi| < 1$, so $p \in (\pi)$.
 - (1) Verify the commutativity of the following diagram:



(Hint: Use Exercises 1.4 and 2.3.)

- (2) Show there exists an element $t \in K^{\circ \flat}$ such that $|t^{\sharp}| = |\pi|$. Moreover, show that t maps to 0 in K°/π and that this gives an isomorphism $K^{\flat \circ}/t \simeq K^{\circ}/\pi$. (Hint: Choose an element $f \in K^{\circ}$ such that $|f|^p = |\pi|$, and analyze a lift of $f \in K^{\circ}/\pi$ in $K^{\circ \flat}$.)
- (3) Show that with t as above that $K^{\circ \flat}$ is t-adically complete, and that the t-adic topology coincides with the given topology.
- (4) Conclude that $K^{\circ\flat}$ is a valuation ring and $K^{\flat} := K^{\circ\flat}[\frac{1}{t}]$ is a perfect (and thus perfectoid) field such that the value groups of K and K^{\flat} are canonically identified. (Hint: Recall the conclusion of Exercise 2.2.)
- 3.3. Algebraically Closed Perfectoid Fields. Here we show that if K^{\flat} is algebraically closed, then its until K is algebraically closed. The argument is done by inductively constructing a sequence $\{x_n \in K^{\circ}\}$ such that for each n the following two conditions are satisfied

 - $|x_{n+1} x_n| \le |p|^{\frac{n}{d}}$, $|P(x_n)| \le |p|^n$ for an (arbitrary) monic polynomial P of degree $d \ge 1$ with coefficients in

where by the first condition we conclude that $\{x_n\}$ converges to some element $x \in K^{\circ}$, and by the second condition that |P(x)| = 0, and thus P(x) = 0, showing that K is algebraically closed.

We take $x_0 = 0$ and assume by induction that we have constructed x_0, \ldots, x_n satisfying the above two properties.

²This topology is discrete when K has characteristic zero, but is not when K has characteristic p.

(1) Write $P(T+x_n) = \sum_{i=0}^d b_i T^i$ and show the quantity

$$c = \min \left\{ \left| \frac{b_0}{b_j} \right|^{\frac{1}{j}} : j > 0, b_j \neq 0 \right\}$$

satisfies c = |u| for some unit $u \in K^{\circ}$. Use this to show that there exists i > 0 such that $\frac{b_i}{b_0} \cdot u^i \in K^{\circ}$ is a unit.

- (2) Let $Q(T) \in K^{\circ \flat}[T]$ be any polynomial lifting $\sum_{i=0}^d \frac{b_i}{b_0} u^i T^i \in K^{\circ}/p[T]$, where we use the identification $K^{\circ \flat}/t \simeq K^{\circ}/p$ to construct the lift. Show there exists a unit $y \in K^{\circ \flat}$ such that Q(y) = 0. (Hint: Use Exercise 1.3)
- (3) Check that the element $x_{n+1} = x_n + u \cdot y^{\sharp} \in K^{\circ}$ satisfies the two itemized conditions.

4. WITT VECTORS AND Ainf

4.1. Witt Vectors of Characteristic p Rings. Fix R to be a ring of characteristic p.

- (1) Given $x \in R$, show that the Teichmüller lift $[x] := \lim_{n \to \infty} (\overline{x^{1/p^n}})^{p^n} \in W(R)$ is well-defined, independent of the choices of representatives $\overline{x^{1/p^n}} \in W(R)$ of each $x^{1/p^n} \in R$.
- (2) Show that for any $x \in W(R)$, there is a unique sequence of elements $\{c_n\}_{n\geq 0} \in R$ such that

$$x = \sum_{n \ge 0} [c_n] p^n.$$

Such a sum is called a *Teichmüller representation* of $x \in W(R)$.

(3) Verify the following universal property: for any p-adically complete ring A, reduction modulo p induces a bijection:

$$\operatorname{Hom}(W(R), A) \xrightarrow{\sim} \operatorname{Hom}(R, A/pA).$$

4.2. Verify³, by using the universal properties of \mathbb{A}_{inf} , that for L^{\flat} a finite Galois extension of the perfectoid field K^{\flat} ,

$$L^{\flat\sharp} \simeq (W(L^{\flat\circ}) \otimes_{\mathbb{A}_{\mathrm{inf}}(K^{\circ})} K^{\circ})[\frac{1}{\pi}].$$

4.3. Étale Infinitesimal Lifting property. Let R be any ring.

- (1) Show that for any surjective map $\widetilde{R} \to R$ with a nilpotent kernel, base change induces an equivalence between the category of étale R-algebras and the category of étale \widetilde{R} -algebras.
- (2) Show that if R is equipped with a non-zero divisor $f \in R$, then reduction modulo f induces an equivalence between the category of f-adically complete and f-torsionfree R-algebras S with $R/f \to S/f$ étale and the category of étale R/f-algebras.
- (3) Verify that for L^{\flat} a finite Galois extension of the perfectoid field K^{\flat} , the field $L^{\flat\sharp} = (W(L^{\flat\circ}) \otimes_{\mathbb{A}_{\inf}(K^{\circ})} K^{\circ})[\frac{1}{\pi}]$ constructed in the lecture is a finite Galois extension of K (and of the same degree!).

³In particular, this verifies that the until of L^{\flat} as a field extension of K^{\flat} via Fontaine's construction of the until coincides with the until operator on fields.