
EXERCISES ON VARIOUS COHOMOLOGY THEORIES OF ELLIPTIC
CURVES

EMRE CAN SERTÖZ

Let k be a ring and set f = y2z − x3 + xz2 ∈ k[x, y, z], noting that f is the homogenization of
y2 − x(x− 1)(x+ 1). For the following exercises, E will be the scheme over k defined by f in P2

k.
Mark a point on E. If K is a k-algebra, then we will write E(K) for the K-valued points of E,
that is, K-valued solutions of f .

Exercise 1. Let k = C be the field of complex numbers and Ean be the complex Riemann surface
underlying the elliptic curve E. It is classical that there is a biholomorphism Ean ' C/Z〈1, τ〉
for some τ ∈ H = {z ∈ C | im z > 0}. In the following exercises we will compute τ .

(1) Find explicit loops γ1, γ2 ⊂ Ean such that their homology classes form a basis in H1(E,Z).
(2) In the affine chart C2 = {z = 1} ⊂ P2

C we may define the meromorphic 1-form dx/y.
Show that dx/y|E∩C2 extends uniquely to a holomorphic form ω on E.

(3) Compute the integrals
∫
γ1
ω and

∫
γ2
ω. What is the corresponding value of τ?

(4) Using the power series expansion of the j-invariant on the upper half plane, numerically
evaluate j(τ).

(5) The j-invariant of E is a rational number which can be computed directly from the
coefficients of f . Using this formulation, check your answer to (4).

The following exercise is more meaningful in light of the following two facts: the rational
numbers can be completed at a prime to obtain the p-adics and completed at the “place at infinity”
to obtain real numbers. Before we move on to p-adics, let us study the Gal(C/R) action on the
cohomology of our elliptic curve.

Exercise 2. Continue with the setup in Exercise 1. Let σ : SpecC → SpecC be the complex
conjugation. Pullback via σ induces a map on the set of complex points E(C) allowing us to act
on differential forms and homological cycles on Ean.

(1) Denote by σ∗ the linear map on H1(Ean,Z) obtained by acting on loops in Ean via
complex conjugation. Using your homology basis for Exercise 1 compute the 2×2 integral
basis representing σ. Evidently, the C-linear extension of σ∗ is not complex conjugation.

(2) The integrals of ω can be viewed as the coordinates of the line H0(E,Ω1
E/C) in H1(E,C).

Observe that the action of σ∗ on these coordinates is via complex conjugation.
(3) Using the Dolbeaux decomposition H1(Ean,C) = H1,0(Ean)⊕H0,1(Ean) explain why σ∗

maps H1,0 to H0,1.
(4) Observe that H1,0(Ean) ' H0(E,Ω1

E/C) = H0(E,Ω1
E/Q)⊗Q C. Show that Q-differential

forms ΩE/Q are invariant under σ.

The following exercise is an easy warm-up for Exercise 4. The choice of the prime 5 is so that I
can avoid saying “good reduction” but does not hold any greater significance.

Exercise 3. Let k = F5 be the field with five elements and fix an algebraic closure k. Recalling
E has a group structure, denote by E[n] the set of k-valued points of E of order n. That is
E[n] = {x ∈ E(k) | nx = 0}.
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(1) Determine explicitly the smallest field extension k′/k you need in order to define the
points in E[2].

(2) By fixing a basis, make the identification E[2] ' F2
2. The Galois group of k′/k acts on

E[2]. Determine the matrix in GL(2,Z/2Z) representing the action of the Frobenius on
E[2].

(3) It is not much harder to compute the minimal field extension required for E[4] and E[8].
Choosing a basis for E[8], and setting a basis for E[4] and E[2] as multiples of the basis
for E[8], compute the Frobenius action on E[2n] as a matrix Mn in GL(2,Z/2nZ) for
n = 1, 2, 3 respectively. Write M3 = M3,0 + 2M3,1 + 4M3,2 where M3,i ∈ {0, 1}2×2 and
compare to M1,M2. We are approximating a matrix in GL(2,Z2).

(4) Can you determine E[5]?

Now we look at the elliptic curve over the p-adic integers through `-adic cohomology. This will
combine the two worlds of complex and finite elliptic curves. Moreover, the action of the Galois
group Gal(Q̄5/Q5) enters into the picture.

Exercise 4. Let k = Z5 be the ring of 5-adic integers. If K ∈ {Q5,F5} we have maps k → K.
We will denote the fibers of E/k over these fields as EK. Fix a prime ` different from 5.

(1) Show that the Tate module T`EQ5 is non-canonically isomorphic to Z2
` .

(2) Show that the Tate module T`EF5
is non-canonically isomorphic to Z2

` .
(3) Show that there is a canonical isomorphism T`EQ5

' T`EF5
. What happens if we allow

` = 5.
(4) Show that there is a natural map between the Galois groups Gal(Q̄5/Q5)→ Gal(F̄5/F5)

and that the isomorphism in (3) is equivariant with respect to corresponding Galois
actions.

Note in particular that the Gal(Q̄5/Q5) action on H1
ét(EQ5

,Q`) ' hom(T`EQ5
,Q5) factors

through the much smaller group Gal(F̄5/F5).
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