Convex Geometry Exercises

Max Planck Institute for Mathematics in the Sciences

July 2021

1 Convexity and Optimization

Exercises:

1. Fix a linear functional a € (R")* and a set S C R™. Show that

sup{(a,x) | v € S} = sup{{a, z) | x € conv(S)}.

2. Consider a convex body C C R™ and a linear functional a € (R")*. Show that the
maximizers of the following optimization problem:

maximize (a,x) subjectto x € C

constitute an exposed face of C.

3. Consider the following spectrahedron:

S = {:L‘ ] ZA(i)xi < B}
i=1

Here AD ..., A™ B e SF. If the matrices A, ..., A™ B are simultaneously diag-
onalizable, then show that S is a polyhedron. (This result generalizes the observation
from the lectures that if A1, ... A™ B are diagonal, then S is a polyhedron.)

4. Draw a labelled figure describing the following spectrahedron:
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5. Show that every point on the boundary of the Euclidean ball in R™ is an extreme
point of the Euclidean ball.



6. This problem concerns the faces of the spectraplex:
Spec, = {X €SF| X =0, tr(X) =1}.
(a) Fix any subspace ¥ C R*. Show that the set {M € SF | col-space(M) C
V} N Spec,, is a face of Specy,. Here col-space(+) refers to the column space.
(b) Are the faces from the previous part exposed?

7. Describe the face lattices of the ¢; and /., norm balls in R? and in R?. Comment on
any notable properties.

8. Consider a bounded polyhedron P C R" with 0 € int(P):
P={z| (@ 2)<1,i=1,... k).
The goal of this problem is to show that P° = conv{a”, i =1,..., k}.

(a) First, show that conv{a?, i =1,...,k} C P°.

(b) To show the opposite inclusion, we’ll appeal to the separation theorem from
convex analysis. Specifically, a consequence of this theorem is that if a point
x ¢ C for a compact convex set C C R", then there exists a linear functional
¢ € (R™)* such that:

{e;x) > sup{(c,y) | y € C}.

Using this result (without proof), show that P° C conv{a®, i = 1,...,k}.
Combined with the previous part, you can conclude that P° = conv{a®, i =

1,....k}.

(c) Interpret this result in the context of the ¢; and /., norm balls in R? and R3.
Research problems:
1. Consider the following spectrahedron:
S = {36 | ZA(i)in < B}
i=1

Here AW ... A B ¢ S*. Provide conditions (beyond simultaneous diagonalizabil-
ity) on the matrices A, ..., AM™ B such that S is a polyhedron.

2. If the symmetric matrices in the description of a spectrahedron are diagonal matrices,
then we obtain a polyhedron. Suppose instead we replace those symmetric matrices
with block diagonal symmetric matrices where each block is 2 x 2. What kinds of
convex objects do we get? In R3? In general?
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