Convex Geometry Exercises

Max Planck Institute for Mathematics in the Sciences

July 2021

1 Polyhedra

1. (a) Find the vertices of the following \mathcal{H}-polyhedra:
i. $P=\{(x, y, z) \mid x+y \leq 2, y+z \leq 4, x+z \leq 3,-2 x-y \leq 3,-y-2 z \leq$ $3,-2 x-z \leq 2\}$
ii. $P=\{(x, y) \mid x \geq 0, y \geq 0, y-x \leq 2, x+y \leq 8, x+2 y \leq 10, x \leq 4\}$.
(b) How can we identify vertices from the structure of A for $P=\{x: A x \leq b\}$?
2. Prove that a point v in a polytope $P \subset \mathbb{R}^{d}$ cannot be written as a convex combination two distinct points of P if and only if it is a zero-dimensional face of P, that is, $v=P \cap\left\{x: c^{\top} x=\gamma\right\}$ for some $c \in \mathbb{R}^{d}, \gamma \in \mathbb{R}$.
3. Let $A \in \mathbb{R}^{m \times d}, b \in \mathbb{R}^{m}$. Prove the following versions of Farkas' Lemma:
(a) The system $A x=b$ has a nonnegative solution if and only if there is no vector y satisfying $y^{\top} A \geq 0$ and $y^{\top} b<0$.
(b) Prove that there exists a vector $x \neq 0$ with $x \geq 0$ such that $A x=0$ if and only if there is no vector y satisfying $y^{\top} A>0$. (Gordan's theorem (Gordan [1873]).)
4. Prove Carathéodory's theorem: If $z \in \operatorname{conv}(X)$, then there exist affinely independent vectors $x_{1}, \ldots, x_{m} \in X$ such that $z \in \operatorname{conv}\left\{x_{1}, \ldots, x_{m}\right\}$. (Note: this means any point in a d-polytope is a convex combination of at most $d+1$ vertices.)
Recall x_{1}, \ldots, x_{m} are affinely independent if $\sum_{i=1}^{m} \lambda_{i} x_{i}=0$ and $\sum_{i=1}^{m} \lambda_{i}=0$ only for λ_{i} all zero. (There was a slight error in the way this way stated in lecture.)
5. Prove the the intersection of two faces of a polytope P is also a face of P.

Let F be a face of P. Prove that the faces of F are exactly the faces of P contained in F.
6. Show that every subset of vertices of the standard $(n-1)$-simplex form a face.
7. (a) Prove the following facts about the poset of faces of a d-polytope.
i. It is a lattice.
ii. It is graded of rank $d+1$.
iii. It is atomic and coatomic.
(b) Which properties hold for the faces of a non-polyhedral convex body?
(c) Pick two polytopes. Compute the face lattice of their join, product, and direct sum.
8. Choose your favorite polytope $P=\operatorname{conv}\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{R}^{d}$. Can you write down a polytope $Q=\operatorname{conv}\left\{y_{1}, \ldots, y_{n}\right\} \subset \mathbb{R}^{d}$ so that Q is not an affine transformation of P ? (That is $Q \neq T P+t$ for some invertible $T \in \mathbb{R}^{d \times d}$ and $t \in \mathbb{R}^{d}$
9. Let $K \subset \mathbb{R}^{d}$ and let $K^{\circ}=\left\{y \in \mathbb{R}^{d}: y^{\top} x \leq 1\right.$, for all $\left.x \in K\right\}$ be its polar. Show
(a) K° is closed and convex.
(b) $K \subset L \Rightarrow L^{\circ} \subset K^{\circ}$
(c) $K \subseteq K^{\circ \circ}$. If, in addition, If K is closed and convex with $0 \in K$ then $K^{\circ \circ}=K$.
10. Pick your favorite 3-polytope.
(a) What polytope do you get when you apply the affine projection

$$
\pi(x)=\left[\begin{array}{ccc}
\sqrt{3} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
1 & \sqrt{\frac{3}{2}} & \frac{1}{\sqrt{2}}
\end{array}\right] x+\binom{1}{-1}
$$

(b) A projective transformation on \mathbb{R}^{d} is a map of the form

$$
\phi(x)=\frac{A x+b}{c^{\top} x+\gamma}
$$

for $A \in \mathbb{R}^{d \times d}, b, c \in \mathbb{R}^{d}, \gamma \in \mathbb{R}$ with $\operatorname{det}\left[\begin{array}{cc}A & c^{\top} \\ b & \gamma\end{array}\right] \neq 0$. What happens to your polytope under some projective transformations of \mathbb{R}^{3} ?
11. Recall, the extension complexity of a polytope P is the minimum number of facets of a polytope Q which projects onto P. Give an upper bound on the extension complexity of a polytope with n vertices.

References

[1] Alexander Barvinok. A course in convexity, volume 54. American Mathematical Soc., 2002.
[2] Grigoriy Blekherman, Pablo A. Parrilo, and Rekha R. Thomas, editors. Semidefinite optimization and convex algebraic geometry, volume 13 of MOS-SIAM Series on Optimization. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA; Mathematical Optimization Society, Philadelphia, PA, 2013.
[3] Venkat Chandrasekaran and James Saunderson. Terracini Convexity, 2020. arXiv preprint: arxiv.org/abs/2010.00805.
[4] Richard J. Gardner. Geometric tomography, volume 58 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, New York, second edition, 2006.
[5] Pierre Lairez, Marc Mezzarobba, and Mohab Safey El Din. Computing the volume of compact semi-algebraic sets. In Proceedings of the 2019 on International Symposium on Symbolic and Algebraic Computation, ISSAC '19, page 259-266, New York, NY, USA, 2019. Association for Computing Machinery.
[6] Daniel Plaumann, Rainer Sinn, and Jannik Lennart Wesner. Families of faces and the normal cycle of a convex semi-algebraic set, 2021.
[7] Motakuri Ramana and A. J. Goldman. Some geometric results in semidefinite programming. J. Global Optim., 7(1):33-50, 1995.
[8] Kristian Ranestad and Bernd Sturmfels. The convex hull of a variety. In Petter Brändén, Mikael Passare, and Mihai Putinar, editors, Notions of Positivity and the Geometry of Polynomials, pages 331-344. Springer Verlag, Basel, 2011.
[9] Kristian Ranestad and Bernd Sturmfels. On the convex hull of a space curve. Advances in Geometry, 12(1):157-178, 2012.
[10] Philipp Rostalski and Bernd Sturmfels. Dualities in convex algebraic geometry. Rendiconti di Mathematica, 30:285-327, 2010.
[11] Raman Sanyal, Frank Sottile, and Bernd Sturmfels. Orbitopes. Mathematika, 57(2):275-314, 2011.
[12] Rolf Schneider. Convex Bodies: The Brunn-Minkowski Theory. Encyclopedia of Mathematics and its Applications. Cambridge University Press, 2014.
[13] Rainer Sinn. Algebraic Boundaries of Convex Semi-Algebraic Sets. PhD thesis, Universität Konstanz, Konstanz, 2014.
[14] Rainer Sinn. Algebraic boundaries of convex semi-algebraic sets. Research in the Mathematical Sciences, 2(1):3, 2015.

