Convex Geometry Exercises

Max Planck Institute for Mathematics in the Sciences

July 2021

1 Polyhedra

- 1. (a) Find the vertices of the following \mathcal{H} -polyhedra:
 - i. $P = \{(x, y, z) \mid x + y \le 2, y + z \le 4, x + z \le 3, -2x y \le 3, -y 2z \le 3, -2x z \le 2\}$
 - ii. $P = \{(x, y) \mid x \ge 0, y \ge 0, y x \le 2, x + y \le 8, x + 2y \le 10, x \le 4\}.$

(b) How can we identify vertices from the structure of A for $P = \{x : Ax \le b\}$?

- 2. Prove that a point v in a polytope $P \subset \mathbb{R}^d$ cannot be written as a convex combination two distinct points of P if and only if it is a zero-dimensional face of P, that is, $v = P \cap \{x : c^{\top}x = \gamma\}$ for some $c \in \mathbb{R}^d, \gamma \in \mathbb{R}$.
- 3. Let $A \in \mathbb{R}^{m \times d}$, $b \in \mathbb{R}^m$. Prove the following versions of Farkas' Lemma:
 - (a) The system Ax = b has a nonnegative solution if and only if there is no vector y satisfying $y^{\top}A \ge 0$ and $y^{\top}b < 0$.
 - (b) Prove that there exists a vector $x \neq 0$ with $x \geq 0$ such that Ax = 0 if and only if there is no vector y satisfying $y^{\top}A > 0$. (Gordan's theorem (Gordan [1873]).)
- 4. Prove Carathéodory's theorem: If $z \in \operatorname{conv}(X)$, then there exist affinely independent vectors $x_1, \ldots, x_m \in X$ such that $z \in \operatorname{conv}\{x_1, \ldots, x_m\}$. (Note: this means any point in a *d*-polytope is a convex combination of at most d + 1 vertices.) Recall x_1, \ldots, x_m are affinely independent if $\sum_{i=1}^m \lambda_i x_i = 0$ and $\sum_{i=1}^m \lambda_i = 0$ only for λ_i all zero. (There was a slight error in the way this way stated in lecture.)
- 5. Prove the intersection of two faces of a polytope P is also a face of P. Let F be a face of P. Prove that the faces of F are exactly the faces of P contained in F.
- 6. Show that every subset of vertices of the standard (n-1)-simplex form a face.
- 7. (a) Prove the following facts about the poset of faces of a *d*-polytope.

- i. It is a lattice.
- ii. It is graded of rank d + 1.
- iii. It is atomic and coatomic.
- (b) Which properties hold for the faces of a non-polyhedral convex body?
- (c) Pick two polytopes. Compute the face lattice of their join, product, and direct sum.
- 8. Choose your favorite polytope $P = \operatorname{conv}\{x_1, \ldots, x_n\} \subset \mathbb{R}^d$. Can you write down a polytope $Q = \operatorname{conv}\{y_1, \ldots, y_n\} \subset \mathbb{R}^d$ so that Q is not an affine transformation of P? (That is $Q \neq TP + t$ for some invertible $T \in \mathbb{R}^{d \times d}$ and $t \in \mathbb{R}^d$
- 9. Let $K \subset \mathbb{R}^d$ and let $K^\circ = \{y \in \mathbb{R}^d : y^{\top}x \leq 1, \text{ for all } x \in K\}$ be its polar. Show
 - (a) K° is closed and convex.
 - (b) $K \subset L \Rightarrow L^{\circ} \subset K^{\circ}$
 - (c) $K \subseteq K^{\circ\circ}$. If, in addition, If K is closed and convex with $0 \in K$ then $K^{\circ\circ} = K$.

10. Pick your favorite 3-polytope.

(a) What polytope do you get when you apply the affine projection

$$\pi(x) = \begin{bmatrix} \sqrt{3} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 & \sqrt{\frac{3}{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} x + \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

(b) A projective transformation on \mathbb{R}^d is a map of the form

$$\phi(x) = \frac{Ax+b}{c^{\top}x+\gamma}$$

for $A \in \mathbb{R}^{d \times d}$, $b, c \in \mathbb{R}^{d}$, $\gamma \in \mathbb{R}$ with det $\begin{bmatrix} A & c^{\top} \\ b & \gamma \end{bmatrix} \neq 0$. What happens to your polytope under some projective transformations of \mathbb{R}^{3} ?

11. Recall, the extension complexity of a polytope P is the minimum number of facets of a polytope Q which projects onto P. Give an upper bound on the extension complexity of a polytope with n vertices.

References

- [1] Alexander Barvinok. A course in convexity, volume 54. American Mathematical Soc., 2002.
- [2] Grigoriy Blekherman, Pablo A. Parrilo, and Rekha R. Thomas, editors. Semidefinite optimization and convex algebraic geometry, volume 13 of MOS-SIAM Series on Optimization. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA; Mathematical Optimization Society, Philadelphia, PA, 2013.
- [3] Venkat Chandrasekaran and James Saunderson. Terracini Convexity, 2020. arXiv preprint: arxiv.org/abs/2010.00805.
- [4] Richard J. Gardner. *Geometric tomography*, volume 58 of *Encyclopedia of Mathematics* and its Applications. Cambridge University Press, New York, second edition, 2006.
- [5] Pierre Lairez, Marc Mezzarobba, and Mohab Safey El Din. Computing the volume of compact semi-algebraic sets. In *Proceedings of the 2019 on International Symposium* on Symbolic and Algebraic Computation, ISSAC '19, page 259–266, New York, NY, USA, 2019. Association for Computing Machinery.
- [6] Daniel Plaumann, Rainer Sinn, and Jannik Lennart Wesner. Families of faces and the normal cycle of a convex semi-algebraic set, 2021.
- [7] Motakuri Ramana and A. J. Goldman. Some geometric results in semidefinite programming. J. Global Optim., 7(1):33–50, 1995.
- [8] Kristian Ranestad and Bernd Sturmfels. The convex hull of a variety. In Petter Brändén, Mikael Passare, and Mihai Putinar, editors, Notions of Positivity and the Geometry of Polynomials, pages 331–344. Springer Verlag, Basel, 2011.
- [9] Kristian Ranestad and Bernd Sturmfels. On the convex hull of a space curve. Advances in Geometry, 12(1):157–178, 2012.
- [10] Philipp Rostalski and Bernd Sturmfels. Dualities in convex algebraic geometry. Rendiconti di Mathematica, 30:285–327, 2010.
- [11] Raman Sanyal, Frank Sottile, and Bernd Sturmfels. Orbitopes. Mathematika, 57(2):275–314, 2011.
- [12] Rolf Schneider. Convex Bodies: The Brunn-Minkowski Theory. Encyclopedia of Mathematics and its Applications. Cambridge University Press, 2014.
- [13] Rainer Sinn. Algebraic Boundaries of Convex Semi-Algebraic Sets. PhD thesis, Universität Konstanz, Konstanz, 2014.
- [14] Rainer Sinn. Algebraic boundaries of convex semi-algebraic sets. Research in the Mathematical Sciences, 2(1):3, 2015.