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Polyhedra

(a) Find the vertices of the following H-polyhedra:
L P={(v,y,2) |z +y<2y+z<4rx+4+2<3 -20—y<3 —y—22<
3,2 — 2 <2}
. P={(z,y) |2 >0,y >0,y—2x<2,x+y <8 x+2y <10,z <4}
(b) How can we identify vertices from the structure of A for P = {z : Ax < b}?

. Prove that a point v in a polytope P C R? cannot be written as a convex combination
two distinct points of P if and only if it is a zero-dimensional face of P, that is,
v=PnN{z:c'z =~} for some c € RY vy e R.

. Let A € R™*4 b € R™. Prove the following versions of Farkas’ Lemma:

(a) The system Ax = b has a nonnegative solution if and only if there is no vector
y satisfying y"A > 0 and y'b < 0.

(b) Prove that there exists a vector x # 0 with x > 0 such that Az = 0 if and only
if there is no vector y satisfying y" A > 0. (Gordan’s theorem (Gordan [1873]).)

. Prove Carathéodory’s theorem: If z € conv(X), then there exist affinely independent
vectors xy, ..., %, € X such that z € conv{xy,...,z,}. (Note: this means any point
in a d-polytope is a convex combination of at most d + 1 vertices.)

Recall @1, ..., z,, are affinely independent if >~ A\;z; =0 and > ;" \; = 0 only for
A; all zero. (There was a slight error in the way this way stated in lecture.)

. Prove the the intersection of two faces of a polytope P is also a face of P.
Let F be a face of P. Prove that the faces of F' are exactly the faces of P contained
in F.

. Show that every subset of vertices of the standard (n — 1)-simplex form a face.

(a) Prove the following facts about the poset of faces of a d-polytope.



i. It is a lattice.
ii. It is graded of rank d + 1.
iii. It is atomic and coatomic.
(b) Which properties hold for the faces of a non-polyhedral convex body?
(¢) Pick two polytopes. Compute the face lattice of their join, product, and direct

suimn.

8. Choose your favorite polytope P = conv{zy,...,z,} C R% Can you write down a
polytope Q = conv{yi,...,y,} C R? so that Q is not an affine transformation of P?

(That is Q # TP +t for some invertible T' € R™? and t € R?
9. Let K CR?and let K°={y € R?:y"z <1, for all z € K} be its polar. Show
(a) K° is closed and convex.
(b) KC L= L°CK°
(¢) K C K*°. If, in addition, If K is closed and convex with 0 € K then K°° = K.
10. Pick your favorite 3-polytope.

(a) What polytope do you get when you apply the affine projection

(b) A projective transformation on R? is a map of the form

Az +0b
W)= Ty

A ¢l
b v
polytope under some projective transformations of R3?

for A € R b,c € R v € R with det [ } # 0. What happens to your

11. Recall, the extension complexity of a polytope P is the minimum number of facets
of a polytope ) which projects onto P. Give an upper bound on the extension

complexity of a polytope with n vertices.
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