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Non-polyhedral Convex Sets

. Consider the union of the unit disk in R? centered at the origin and the convex hull
of {(-1,1),(—1,-1),(0,—1),(0,1)}. Is this a basic semialgebraic set?

. Spectrahedra are always closed. What about projected spectrahedra?
. Is the intersection of two spectrahedra a spectrahedron?

. Every face of a spectrahedron is an exposed face.

Given a point z in a spectrahedron, denote by F'(x) the unique face that contains x
in its relative interior. Let S = {z € R": A(z) = Ag + A1z1 + -+ + Az, = 0} be a
spectrahedron.

Theorem 1 For T the affine hull of F(Z) is
af f(F(z)) ={x € R" : null(A(z) C null(A(x))}
where null(X) is the null space of the matriz X and
F(z) =aff(F(z))NS.
(a) Assume T = 0 and assume that A(x) is in the form,

_ [+ A(z) B(x)"
Alw) = B(z)  C(x)

where C(z) is k x k and A(z), B(z), and C(z) are matrices with linear entries

in z, i.e. no constant terms. Further assume Ay > 0. Prove that af f(F(z)) =
{r eR":C(z) =0,B(x) = 0}.

(b) Define the vector a such that a; = Tr(C;). Prove that
F(0)={zxe€S:a'z =0}
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(¢) Why can we make the assumptions in part (a) without loss of generality?

5. Show that p(z,y) = 1 — 2* — y* is not a real zero polynomial at the origin.

6. Prove that the PSD cone is Terracini convex. Note: there was a mistake in the
video lecture when defining the normal cone of a convex cone C. It is defined as

Ne(z) ={l e C°:l(z) = 0}.
Toward Research

1. Compute the projection body of 3-elliptope,

{(z,y,2): = 0}.
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What can we say about the projection body of the elliptope in the general?
2. Define the “f-vector” of zonoids/spectrahedra/general convex bodies.

3. A simplicial polytope is one where every proper face is a simplex. Consider in the
non-polyhedral setting a closed pointed convex cone for which every proper face is
Terracini convex. We say such convex cones are boundary Terracini convex. Classify
all boundary Terracini convex cones. (Some examples can be found in the paper on
Terracini convexity)

4. What is Oscar? https://oscar.computeralgebra.de
Write an Oscar package for your favorite non-polyhedral convex body.

5. Skim through the table of contents in Ziegler’s book Lectures on Polytopes and pick
a chapter or section title. How can properties/statements/theorems/questions in this
section be restated or asked for non-polyhedral convex bodies.


https://oscar.computeralgebra.de
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