
1 Roots

Given an odd positive integer N we want to test if N is a perfect power. If so,
we’d like to write N = nk for k maximal.

1. design and implement an algorithm to compute the k-th root of N , k odd.
Compare the runtime(s) of

• using reals (bisection, Newton, ??)

• p-adically, p odd

• 2-adically

Compare the costs (complexity) of finding the root (assuming it exists) to
the cost of verifying the root.

2. the same for k = 2, in particular, the 2-adic version. You can get some
inspiration from Oscar/examples/PerfectPower.jl.

3. Lenstra and Bernstein suggest the following algorithm:

• for all prime powers pl up to log2(N)

• use the function above to compute the pl-root by iterated p-th roots
(or garbage if the root does not exist)

• collect all those roots in some array A, append A by N

• compute a coprime basis C for A

• the gcd of the valuations of N at the elements of C should be the
exponent.

The coprime basis can be computed in linear time (Berstein, see source for
refrences) In julia/ Oscar: coprime base will work, in Magma: CoprimeBase

2 Multiplicative Dependencies

See Hecke/examples/MultDep.jl and Hecke/examples/pAdicConj.jl for hints
In julia/ Oscar you can use C = Hecke.qAdicConj(k, p) to intialize the com-
plection(s) above all primes above p. conjugates(a, C) will then get the vector
of q-adics. Note, this can only handle “easy” primes - but its optimised for speed.
The generic case is currently (again) under development.

In Magma, at the user-level, you probably have to create the order, split
the prime and then use Completion to get the completion at each prime. In
comparison to above, Completion can handle the generic situation. At least
internally, a more optimised, but restricted function is used.

Use this and the logarithms to find multiplicative dependencies between
units. To get units: in julia/ Oscar: define a field then compute the maximal
order follwed by the unit group (using e.g. maximal order, unit group), in
Magma, you’ll need MaximalOrder, UnitGroup.

1



In either case, you get an abstract unit group back (as some form of abelian
group). As the group is mostly ininite, you cannot just ask for random elements.
In julia/ Oscar s.th. like sum(rand(-100:100)*g for g = gens(U)) should
work, in Magma &+ [Random([-100..100])*g : g in Generators(U)]. To
get a unit then use the second return value: the map.

For larger exponents, you’ll need to use unit group fac elem in julia. Now
you should not ask for the conjugates, but directly for the logarithms conjugates log.

3 Linear Algebra

1. Given A ∈ Gl(n,Z) find the inverse by p-adic lifting. (This is not the
fastest method, but fun to try)

2. Given an integral square matrix A, find the (pseudo) inverse using p-adic
lifting and rational reconstruction. rational reconstruction, RationalReconstruction

3. Given integral matrices A and b, solve Ax = b, maybe start with the case
of unique solutions.

4. Lets do determinants! Let A be integral and square

• for a random b, solve Ax = b. Write x = s/d for an integral vector s
and d > 0 s.th. the content of s and d are coprime (write in lowest
terms).

• Then d is the index of the module generated by A inside the module
generated by A and b.

• d divides the determinant, but in general, d is smaller

• what is the relationship between A, d and detA?

• to continue: 2-options: compute detA modulo p for some additional
p and then detA using CRT or

• interpret detA as the index of the module generated by A in Zn, use
the vector s above to get a basis for 〈A, b〉 and iterate.

Generically for random matrices, the 1st d above is the determinant -
possibly up to a small factor. For bad matrices d = n

√
detA.

5. Now repeat, over a number field

6. Now repeat, for polynomial matrices

4 Factoring

1. Use lll to implement the rational reconstruction: given M > 0 and
r mod M write r = a/b mod M , ie. br = a mod M and a, b small.

2



2. Given some ideal A in some (maximal) order and r in the same order, try
to find a small representative.

3. use factor mod pk to implement your own version of Zassenhaus factoring
or the van Hoeij one. Compare or try the power sums as well as the
logarithmic derivatives

4. FixK = Q[t]/f for f monic, integral and irreducible. Let p be a prime s.th.
f is square-free modulo p and that f has a root a ∈ Z so f(a) = 0 mod p

• P = 〈p, α− a〉 is a prime ideal of degree 1 over p

• H = (hi,j) s.th. h1,1 = p, hi,i = 1, hi,1 = ai mod p and 0 otherwise
is a HNF-basis matrix for P .

• Now, if b ∈ Z s.th f(b) = 0 mod pk is a lift of a, then this construction
will give the HNF basis of P k “for free”. Compare this to actually
computing basis matrix(Pk̂).

• generalise this for primes of degree > 1

• Let P and Q be prime ideals / powers of prime ideals of degree 1,
use CRT to write down the HNF basis for PQ.

5. Compare the different factoring algorithms by runtime. Zassenhaus and
van Hoeij are in Hecke/src/NumField/NfAbs/PolyFact.jl, Trager’s method
is in Hecke/src/NumField/NfAbs/Elem.jl. Careful with the overhead
due to compiling.

6. In order to multiply polynomials/ power series over Qq, Kronnecker-segmentation
can be used. The idea is to map a polynomial over Qq to a single poly-
nomial over Z such that the product over Qq can be obtained from the
product over Z. This allows to leverage the FFT-techniques easily. Try
this. A slightly more complicated version for polynomials over power se-
ries over q-adics is in Hecke/src/Misc/Series.jl in mymul ks. In Magma
this would work too, but needs to be in the kernel. The Magma-language
is not fast enough.

5 Galois Theory

In julia/ Oscar this is implemented in Oscar/experimental/GaloisGrp/GaloisGrp.jl,
in Magma in package/Ring/Galois I think. But methods(galois group) or
GaloisGroup:Maximal; should be of help.

1. Let k be any number field (of Galois group size< 20, say.) Use galois group,

fixed field, (maximal )subgroups, or GaloisGroup, GaloisSubfield,

Subgroups to find algebraic descriptions of subfields of the splitting field

2. (Magma only) find some solvable polynomial of degree> 4 and use SolveByRadical
to see why we can, but should not

3



3. Let C be the Galois-Ctx of either Oscar or Magma. Then it is possible
to obtain the roots of the underlying polynomial to any desired precision.
Use this to write a simple procedure to map a (potential) block system to
a subfield.

4. given block systems and their subfields, find block systems for the com-
positum and the intersection

5. Use multivariate polynomials (or sl-polys) and the Galois-infrastructure
to work in the splitting field of the underlying polynomial: each f ∈ Z[x]
defines, via evaluation at the roots, an element in the splitting field. You’ll
need

• Oscar.GaloisGrp.upper bound

• Oscar.GaloisGrp.isinteger

fixed field and GaloisSubfield are implemented in this fashion. The
hard part is to find suitable polynomials to evaluate. In Oscar/experimental/GaloisGrp/Qt.jl

is also a block-system-to-subfield implementation for function fields using
this technique.

4


