Exercise 1

Let $b: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be smooth and let ρ be a probability density on \mathbb{R}^{d} for the probability measure $\mu(d x)=\rho(x) d x$.
i. Show that the following statements are equivalent
a) μ is "infinitesimally invariant" for the dynamics $x^{\prime}(t)=b\left(x_{t}\right)$, i.e.

$$
\int \mathcal{L}_{b} f \mu=0, f \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)
$$

where $\mathcal{L}_{b} f=b \cdot \nabla f$.
b) \mathcal{L}_{b} is antisymmetric w.r.t. $L^{2}(\mu)$
ii. Suppose b is divergence-free. For a quantity $E: \mathbb{R}^{d} \rightarrow \mathbb{R}^{\geq 0}$ such that $\int e^{-E(x)} d x<\infty$ show that with $\rho(x)=\left(\int e^{-E(y)} d y\right)^{-1} e^{-E(x)}, \mu$ is "infinitesimally invariant" iff E is a conserved quantity for the dynamics $x^{\prime}(t)=b\left(x_{t}\right)$.
iii. On a formal level, show that the following non-linearities on \mathbb{T}^{d} are divergence-free in terms of Fourier coefficients $(\hat{u}(k))_{k \in \mathbb{T}^{d}}$ (i.e. as "infinite-dimensional vector-fields") and show that they preserve the respective quantities E.
a) $u: \mathbb{T} \rightarrow \mathbb{R}, b(u)=\partial_{x} u^{n}$, where $n \in \mathbb{N} . E(u)=\|u\|_{L^{2}(\mathbb{T})}^{2}$ (general Burgers non-linearity)
b) $h: \mathbb{T}^{2} \rightarrow \mathbb{R}, b(h)=\left(\partial_{1} h\right)^{2}-\left(\partial_{2} h\right)^{2} . E(h)=\|\nabla h\|_{L^{2}\left(\mathbb{T}^{2}\right)}^{2}$ (cf. Anisotropic KPZ equation)
c) $\omega: \mathbb{T}^{2} \rightarrow \mathbb{R}, b(\omega)=\left(\nabla^{\perp}(-\Delta)^{-\gamma} \omega\right) \cdot \nabla \omega$, where $\gamma \in\left[1, \frac{1}{2}\right] . E(\omega)=\|\omega\|_{L^{2}(\mathbb{T})}^{2}, \bar{E}(\omega)=$ $\left\|(-\Delta)^{-\gamma / 2} \omega\right\|_{L^{2}\left(\mathbb{T}^{2}\right)}^{2}$ (cf. Navier-Stokes/Euler/surface-quasigeostrophic equations)
d) $u: \mathbb{T}^{2} \rightarrow \mathbb{R}, b(u)=\eta \cdot \nabla u$, where is $\eta \in \mathcal{S}^{\prime}\left(\mathbb{T}^{2}, \mathbb{R}^{2}\right)$ is divergence free. $E(u)=\|u\|_{L^{2}(\mathbb{T})}^{2}$ (Stochastic transport term)

Exercise 2

Let μ be the law of white noise on $H^{-1 / 2-}(\mathbb{T})$. We define a Gaussian isonormal process W : $L^{2}(\mathbb{T}$, Leb $) \rightarrow L^{2}(\mu)$ (i.e. $\Omega=H^{-1 / 2-}(\mathbb{T})$) by extending $\tilde{W}: \mathcal{S}(\mathbb{T}) \rightarrow L^{2}(\mu)$

$$
\begin{equation*}
\tilde{W}(f)(u)=u(f) \tag{1}
\end{equation*}
$$

by denseness and isometry to the whole space $L^{2}(\mathbb{T})$. Gaussian analysis (cf. [Nualart, The Malliavin Calculus and related topics, 1995] gives us the following structure on $L^{2}(\mu)$:

- There exist linear maps $W_{n}: L^{2}\left(\mathbb{T}^{n}\right) \rightarrow L^{2}(\mu)$ such that $\mathcal{H}_{n}=W_{n}\left(L^{2}\left(\mathbb{T}^{n}\right)\right)$ yields an orthogonal decomposition

$$
L^{2}(\mu)=\bigoplus_{n \geq 0} \mathcal{H}_{n}
$$

such that for $\varphi=\sum_{n \geq 0} W_{n}\left(\varphi_{n}\right)$ one has

$$
\|\varphi\|_{L^{2}(\mu)}^{2}=\sum_{n \geq 0} n!\left\|\Pi \varphi_{n}\right\|_{L^{2}\left(\mathbb{T}^{n}\right)}^{2}
$$

where $\Pi \varphi_{n}:=\frac{1}{n!} \sum_{\sigma \in \Sigma_{n}} \varphi\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)$ is the symmetrization of φ_{n}.

- Furthermore, denoting the r-contraction
$f \otimes_{r} g\left(r_{1}, \ldots, r_{m+n-2 r}\right)=\int_{\mathbb{T}^{r}} f\left(x_{1}, \ldots, x_{r}, r_{1}, \ldots, r_{m-r}\right) g\left(x_{1}, \ldots, x_{r}, r_{m-r+1}, \ldots, r_{m+n-2 r}\right)$,
for symmetric $f \in L^{2}\left(\mathbb{T}^{m}\right), g \in L^{2}\left(\mathbb{T}^{n}\right)$ we get the multiplication rule

$$
\begin{equation*}
W_{m}(f) W_{n}(g)=\sum_{r=0}^{m \wedge n} r!\binom{m}{r}\binom{n}{r} W_{m+n-2 r}\left(f \otimes_{r} g\right) \tag{2}
\end{equation*}
$$

- Lastly, for a cylinder function $\varphi(u)=\Phi\left(u\left(f_{1}\right), \ldots, u\left(f_{n}\right)\right)$, where (for convenience) $\Phi \in C^{\infty}\left(\mathbb{R}^{d}\right.$, $\mathbb{R}), f_{i} \in C^{\infty}(\mathbb{T})$ one can define the Malliavin derivative

$$
\begin{equation*}
D_{x} \varphi(u)=\sum_{i=1}^{n} \partial_{i} \Phi\left(u\left(f_{1}\right), \ldots, u\left(f_{n}\right)\right) f_{i}(x) \tag{3}
\end{equation*}
$$

which has the following representation:

$$
\begin{equation*}
D_{x} W_{n}\left(\varphi_{n}\right)=n W_{n-1}\left(\varphi_{n}(x, \cdot)\right) \tag{4}
\end{equation*}
$$

i. Check that on cylinder functions (an in the stationary setting) the contribution of a drift $b(u): \mathcal{S} \rightarrow \mathcal{S}$ to the generator of some equation

$$
\partial_{t} u=F(u, \xi)+b(u),
$$

is given by

$$
\mathcal{G} \varphi(u)=\int_{\mathbb{T}} D_{x} \varphi(u) b(u)(x) d x
$$

ii. Using (1) and (2), show that for $b(u)=\partial_{x} u^{2}=2 u \partial_{x} u$ one has

$$
b(u)(x)=2 W_{2}\left(\delta_{x} \otimes \partial \delta_{x} u\right)
$$

iii. Use the rules (2) and (4) to compute the representation of $\left(\mathcal{G} W_{n}\left(\varphi_{n}\right)\right)_{m}$ (given some n and symmetric $\varphi_{n} \in L^{2}\left(\mathbb{T}^{n}\right)$). You should obtain a decomposition

$$
\mathcal{G}=\mathcal{G}_{+}+\mathcal{G}_{-}+\mathcal{G}_{-3},
$$

such that $\mathcal{G}_{+} \mathcal{H}_{n} \subset \mathcal{H}_{n+1}, \mathcal{G}_{-} \mathcal{H}_{n} \subset \mathcal{H}_{n-1}$ and $\mathcal{G}_{-3} \mathcal{H}_{n} \subset \mathcal{H}_{n-3}$. It turns out that

$$
\mathcal{G}_{-3}=0 .
$$

Why is this to be expected?

