Exercise 1

Let μ be the law of white noise on $H^{-1/2-}(\mathbb{T})$. We define a Gaussian isonormal process W: $L^2(\mathbb{T}, \text{Leb}) \to L^2(\mu)$ (i.e. $\Omega = H^{-1/2-}(\mathbb{T})$) by extending $\tilde{W} : \mathcal{S}(\mathbb{T}) \to L^2(\mu)$

$$\tilde{W}(f)(u) = u(f) \tag{1}$$

by denseness and isometry to the whole space $L^2(\mathbb{T})$. Gaussian analysis (cf. [Nualart, The Malliavin Calculus and related topics, 1995] gives us the following structure on $L^2(\mu)$:

• There exist linear maps $W_n: L^2(\mathbb{T}^n) \to L^2(\mu)$ such that $\mathcal{H}_n = W_n(L^2(\mathbb{T}^n))$ yields an orthogonal decomposition

$$L^2(\mu) = \bigoplus_{n>0} \mathcal{H}_n \,,$$

such that for $\varphi = \sum_{n>0} W_n(\varphi_n)$ one has

$$\|\varphi\|_{L^2(\mu)}^2 = \sum_{n>0} n! \|\Pi\varphi_n\|_{L^2(\mathbb{T}^n)}^2,$$

where $\Pi \varphi_n := \frac{1}{n!} \sum_{\sigma \in \Sigma_n} \varphi(x_{\sigma(1)}, \dots, x_{\sigma(n)})$ is the symmetrization of φ_n .

• Furthermore, denoting the r-contraction

$$f \otimes_r g(r_1, \dots, r_{m+n-2r}) = \int_{\mathbb{T}^r} f(x_1, \dots, x_r, r_1, \dots, r_{m-r}) g(x_1, \dots, x_r, r_{m-r+1}, \dots, r_{m+n-2r}),$$

for symmetric $f \in L^2(\mathbb{T}^m)$, $g \in L^2(\mathbb{T}^n)$ we get the multiplication rule

$$W_m(f)W_n(g) = \sum_{r=0}^{m \wedge n} r! \binom{m}{r} \binom{n}{r} W_{m+n-2r}(f \otimes_r g).$$
 (2)

• Lastly, for a cylinder function $\varphi(u) = \Phi(u(f_1), ..., u(f_n))$, where (for convenience) $\Phi \in C^{\infty}(\mathbb{R}^d, \mathbb{R})$, $f_i \in C^{\infty}(\mathbb{T})$ one can define the Malliavin derivative

$$D_x \varphi(u) = \sum_{i=1}^n \partial_i \Phi(u(f_1), \dots, u(f_n)) f_i(x).$$
(3)

which has the following representation:

$$D_x W_n(\varphi_n) = n W_{n-1}(\varphi_n(x,\cdot)). \tag{4}$$

i. Check that on cylinder functions the contribution of a drift $b(u): \mathcal{S} \to \mathcal{S}$ to the generator of some equation

$$\partial_t u = F(u, \xi) + b(u),$$

is given by

$$\mathcal{G}\varphi(u) = \int_{\mathbb{T}} D_x \varphi(u) b(u)(x) dx.$$

ii. Using (1) and (2), show that (under stationarity) for $b(u) = \partial_x u^2 = 2u\partial_x u$ one has

$$b(u)(x) = 2W_2(\delta_x \otimes \partial \delta_x u)$$

iii. Use the rules (2) and (4) to compute the representation of $(\mathcal{G}W_n(\varphi_n))_m$ (given some n and symmetric $\varphi_n \in L^2(\mathbb{T}^n)$). You should obtain a decomposition

$$\mathcal{G} = \mathcal{G}_+ + \mathcal{G}_- + \mathcal{G}_{-3},$$

such that $\mathcal{G}_+\mathcal{H}_n\subset\mathcal{H}_{n+1}, \mathcal{G}_-\mathcal{H}_n\subset\mathcal{H}_{n-1}$ and $\mathcal{G}_{-3}\mathcal{H}_n\subset\mathcal{H}_{n-3}$. It turns out that

$$\mathcal{G}_{-3} = 0$$
 .

Why is this to be expected?

Exercise 2

To estimate \mathcal{G}_{\pm} in terms of $\mathcal{L}_0, \mathcal{N},$ the following estimate is very useful:

Let $C \ge 0, \alpha > 1/2$ and $k \in \mathbb{Z}$ be such that $k^2 + C > 0$. Show that

$$\sum_{p+q=k} \left(\frac{1}{p^2+q^2+C}\right)^a = \sum_{p} \left(\frac{1}{p^2+(k-p)^2+C}\right)^a \lesssim \left(\frac{1}{k^2+C}\right)^{a-1/2}.$$