Let's get $\mathbb{R e a l}$ Exercise session part 1

Chiara Meroni

June 2023

1. Let (R, \leq) be an ordered field. Then, the following properties hold:
(i) $-1<0$;
(ii) for $x \in R$ exactly one of the following holds: $x<0, x=0, x>0$;
(iii) R is a field of characteristic zero.
2. Prove (using only the definition) that \mathbb{Q} and \mathbb{R} with the usual ordering are ordered fields. Prove (using only the definition) that \mathbb{C} cannot be ordered.
3. Prove that the ring $\mathbb{R}[x]$ admits (many? How many?) orderings. [Hint: choose where to put x. For instance, it might be >0, but smaller then any other positive element...]
4. Ler (R, \leq) be an ordered field and $P=\{x \in R \mid x \geq 0\}$. Prove that P is a proper cone satisfying

$$
P \cup(-P)=R .
$$

Conversely, given a proper cone P of R satisfying $P \cup(-P)=R$, prove that there exists an ordering of R for which P is the positive cone. Therefore, there is a one-to-one correspondence between orderings of a field and its proper cones.
5. Prove that a real closed field has a unique ordering.
6. Prove that every real closed field contains \mathbb{Z} and \mathbb{Q}.
7. Explore Chapter 3.1 of the book Real Algebraic Geometry by Bochnak, Coste, and Roy for examples of real algebraic varieties with interesting features.
8. Prove that the ideal $I=\left\langle x^{2}+y^{2}\right\rangle \subset \mathbb{R}[x, y]$ is not a real ideal.
9. Let $I=\left\langle x^{2}-2 x-2\right\rangle \subset \mathbb{R}[x]$. Write a certificate, in the Real Nullstellensatz fashion, for $\mathcal{V}_{\mathbb{R}}(I)=\emptyset$.
10. Let $I=\left\langle 81 x^{4}+108 x^{2} y^{2}-32 x^{2}-8 x y^{4}+8 x y^{2}-4 x+4 y^{8}-8 y^{6}+44 y^{4}-\right.$ $\left.28 y^{2}+6\right\rangle$. Describe the real variety $\mathcal{V}_{\mathbb{R}}(I)$ using the Nullstellensatz: does it have real points? [Hint: Figure 1.]

Figure 1: Two curves from the hint of Exercise 10.

