Let's get $\mathbb{R e a l}$ Exercise session part 2

Chiara Meroni

June 2023

1. Prove that semialgebraic sets are closed under the following operations:
(i) union, intersection, complement;
(ii) interior, closure, boundary;
(iii) Minkowski sum, product;
(iv) taking connected components.
2. Prove that every semialgebraic set is the projection of an algebraic set.
3. Prove the following statements:
(i) A semialgebraic subset of \mathbb{R} is a finite union of points and intervals;
(ii) The set $S=\left\{(x, y) \in \mathbb{R}^{2} \mid y=\cos (x)\right\}$ is not semialgebraic.

Figure 1: The set S_{1} from Exercises 4 and 7.
4. Prove that the sets

$$
\begin{aligned}
& S_{1}=\left\{(x, y) \in \mathbb{R}^{2} \mid y \leq x(x-1)(x+1), x \leq 0\right. \\
& \quad \text { or }-1 \leq x \leq 0,-1 \leq y \leq 0\}, \\
& S_{2}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x \leq 0 \text { or } y \leq 0 \text { or } z \leq 0\right\},
\end{aligned}
$$

are not basic semialgebraic. See Figure 1.
5. Explore some software! Check out QEPCAD. Can we do quantifier elimination in Mathematica? How?
6. Consider the problem of the "complex product" of a segment and a square (example due to George E. Collins). Consider in $\mathbb{R}^{2} \simeq \mathbb{C}$ the segment $C_{1}=[0,2] \times\{i\}$ and the square $C_{2}=[2,4] \times[-i, i]$. Write a formula and then compute (Exercise 5 might help!) a quantifier-free one for $C=\left\{a \cdot b \mid a \in C_{1}, b \in C_{2}\right\}$, where \cdot denotes the product between complex numbers.

Figure 2: The sets C_{1} (red) and C_{2} (orange) from Exercise 6.
7. Write the cylindrical decomposition of the semialgebraic set S_{1} from Exercise 4, Figure 1, with respect to both x and y.
8. Explore some software, part 2! Try to compute the cylindrical algebraic decomposition of some semialgebraic set. Start with a few polynomials of low degree in few variables. Increase the numbers and try to get a sense of how far one can push the computation.

