Let's get $\mathbb{R e a l}$ Exercise session part 3

Chiara Meroni

June 2023

1. Prove that a univariate polynomial $f \in \mathbb{R}[x]$ of even degree is nonnegative on \mathbb{R} if and only if it is a sum of squares.
2. Prove Pólya-Szegö Theorem: A univariate polynomial $f \in \mathbb{R}[x]$ is nonnegative on $[0, \infty)$ if and only if it can be written as

$$
f(x)=\sigma_{1}(x)+x \sigma_{2}(x)
$$

where σ_{i} is a sum of squares and $\operatorname{deg} \sigma_{1}, \operatorname{deg}\left(x \sigma_{2}\right) \leq \operatorname{deg} f$. [Hint: start with irreducible polynomials of low degrees, and then generalize.]
(i) Apply Pólya-Szegö Theorem to prove that the polynomial

$$
f(x)=4 x^{7}+22 x^{6}+6 x^{5}-17 x^{4}+19 x^{3}+2 x^{2}-4 x+3
$$

is nonnegative on $[0, \infty)$. [Hint: some software might help...]

Figure 1: The graph of $f(x)$ from Exercise 2(i).
3. The Motzkin polynomial, step by step. Prove the following statements, for $f(x, y, z)=z^{6}-3 x^{2} y^{2} z^{2}+x^{2} y^{4}+x^{4} y^{2}$:
(i) Using the arithmetic-geometric mean inequality $\frac{a+b+c}{3}-\sqrt{a b c} \geq 0$, prove that $f(x, y, x) \geq 0$.
(ii) If $f=\sum f_{i}^{2}$, then no f_{i} could contain certain monomials. Make this precise, and find a contradiction. [For a more geometric/polyhedral proof, check out Theorem 7.2.1 of Thorsten Theobald's draft ${ }^{1}$ on Real Algebraic Geometry and Optimization.]
4. Prove that the Motzkin polynomial from Exercise 3 can be written as a sum of squares of rational functions. [Hint: $\left(x^{2}+y^{2}\right)^{2} \cdot f$ looks like a sum of squares. Can a software help? Mathematica? Julia? Macaulay2?]
5. Consider the polynomial
$f(x, y)=x^{8} y^{2}+3 x^{6} y^{4}-3 x^{6} y^{2}+3 x^{4} y^{6}-6 x^{4} y^{4}+x^{4}+x^{2} y^{8}-3 x^{2} y^{6}+2 x^{2} y^{2}+y^{4}$.
Write the associated matrix A such that $f=m^{T} A m$, where m is the vector of monomials, up to degree $\operatorname{deg} f$.
(i) Is A positive semidefinite?
(ii) Find a sum of squares decomposition of f.
6. Go back to Exercise 10 of the first exercise sheet, and denote by f the generator of the ideal I. Is $f-1$ a sum of squares?
7. Prove that the following two definitions/interpretations of a spectrahedron S are equivalent:
(i) S is the intersection of the cone of positive semidefinite martices with a linear (affine) space;
(ii) There exist some symmetric matrices A_{0}, \ldots, A_{n} such that

$$
S=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid \sum_{i=1}^{n} x_{i} A_{i}+A_{0} \succcurlyeq 0\right\} .
$$

8. Properties of spectrahedra. Prove that
(i) a polytope is a spectrahedron;
(ii) a spectrahedron is a basic closed semialgebraic convex set;
(iii) the cylinder $\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2} \leq 1,-1 \leq z \leq 1\right\}$ is a spectrahedron;
(iv) the projection of a spectrahedron is not necessarily a spectrahedron. [Hint: use the previous points.]
[^0]
[^0]: ${ }^{1}$ https://www.math.uni-frankfurt.de/~theobald/ragopt/main.pdf

