Let's get $\mathbb{R e a l}$ Exercise session part 4

Chiara Meroni

June 2023

1. Compute the sequence of moments of
(i) the cube $[-1,1]^{3} \subset \mathbb{R}^{3}$;
(ii) the disc $\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leq 1\right\}$.
2. Explore the new type of Stokes constraints in section 4 of the paper ${ }^{1}$ by Matteo Tacchi, Jean Bernard Lasserre, and Didier Henrion on Stokes, Gibbs, and Volume Computation of Semi-Algebraic Sets.
3. What is GloptiPoly 3?
4. Let $S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid 1-x^{4}-y^{4}-z^{2}-2 x y z \geq 0\right\}$, displayed in Figure 1. Approximate the volume of S using the methods discussed in class. Write down the semidefinite program (with and without Stokes constraints) and solve it for low degrees.

Figure 1: The set S from Exercise 4

[^0]5. What is the relation between primal and dual linear programs? What is the relation between primal and dual semidefinite programs? How does this translate into geometry? Explore the book ${ }^{2}$ edited by Grigoriy Blekherman, Pablo A. Parrilo, and Rekha R. Thomas on Semidefinite Optimization and Convex Algebraic Geometry. See Chapter 5.

6 . What are other methods to compute the volume of a semialgebraic set? In the paper ${ }^{3}$ by Pierre Lairez, Marc Mezzarobba, and Mohab Safey El Din on Computing the Volume of Compact Semi-Algebraic Sets, the authors develop a method which is based on periods, Picard-Fuchs differential equation, and differential algebra more in general.

[^1]
[^0]: ${ }^{1}$ https://doi.org/10.1007/s00454-022-00462-0

[^1]: ${ }^{2}$ https://doi.org/10.1137/1.9781611972290
 ${ }^{3}$ https://doi.org/10.1145/3326229.3326262

