MSRI-MPI Leipzig Summer Graduate School 2023

2. Exercise list. Tuesday Week 1

It would be useful/required to implement some of the computations in the following exercises in a computer algebra system. A free alternative easy to use is Singular, which can be downloaded from: https://www.singular.uni-kl.de/ and it can also be used online there. We provide some Brief Notes On Singular to collect the main instructions that you might need. There is also a small introduction in the Lecture Notes of Timo de Wolff. If you feel comfortable with any other software and you have it in your computer, please feel free to use it. We also include a commented example at the end of this list.

Exercise 2.1. Show Corollary 1.19, Part (6) of the lecture: Let $J=\left\langle f_{1}, \ldots, f_{s}\right\rangle \subseteq \mathbb{C}[z]$ (i.e., we are in the univariate case). Then $I(V(J))=J$ if and only if $\operatorname{gcd}\left(f_{1}, \ldots, f_{s}\right)$ is decomposable in linear factors with multiplicity 1.

Exercise 2.2. Show Remark 1.27 of the lecture: Let $f, g \in \mathbb{C}[\boldsymbol{z}]$ and \succ be a monomial ordering. Then it holds:
(1) $\operatorname{deg}(f g ; \succ)=\operatorname{deg}(f ; \succ)+\operatorname{deg}(g ; \succ)$.
(2) If $f+g \neq 0$, then $\operatorname{deg}(f+g ; \succ) \leq \max \{\operatorname{deg}(f ; \succ), \operatorname{deg}(g ; \succ)\}$ with equality if $\operatorname{deg}(f ; \succ) \neq \operatorname{deg}(g ; \succ)$.

Exercise 2.3. Let \succ be the lexicographic monomial ordering. Consider the twisted cubic curve, which is given by $I=\left\langle z_{2}-z_{1}^{2}, z_{3}-z_{1}^{3}\right\rangle$ (see Example 1.2, Part (4)). Prove or disprove that the set $\left\{z_{2}-z_{1}^{2}, z_{3}-z_{1}^{3}\right\}$ is a Gröbner basis for I.

Exercise 2.4. Let $f(x, y)=\left(x^{2}+y^{2}-4\right)\left(x^{2}+y^{2}-1\right)+(x-3 / 2)^{2}+(y-3 / 2)^{2}$. A point $s \in \mathbb{C}^{2}$ is called critical, if all its partial derivatives vanish:

$$
\frac{\partial f}{\partial x}(s)=\frac{\partial f}{\partial y}(s)=0
$$

Compute all critical points of f in \mathbb{C}^{2}. Also decide whether they are local minimal or maximal or saddle points.

Exercise 2.5. Consider the following system of polynomials:

$$
f_{1}:=x^{2}+y+z+1 \quad f_{2}:=y^{2}+x+z+1 \quad f_{3}:=z^{2}+x+y+1
$$

Compute its common zeros. Are there finitely many? If yes: how many zeros are there and how many are distinct? How many of the roots are real?

Exercise 2.6. Let $f \in \mathbb{C}[x, y, z]$ given by:

$$
f=\operatorname{det}\left(\begin{array}{ccc}
1 & x & y \\
x & 1 & z \\
y & z & 1
\end{array}\right)=2 x y z-x^{2}-y^{2}-z^{2}+1
$$

The corresponding variety V thus consists of all points (x, y, z) where the matrix does not have full rank. Show: The variety of f has four real singular points - compute them.

Figure 1. Picture of the real locus of the variety V from Exercise 2.6 with the two components highlighted in yellow and red. (picture created by Bernd Sturmfels).

Bonus question: If we consider $\mathcal{V}(f)_{\mathbb{R}} \subset \mathbb{R}^{3}$ without the four singular points $\boldsymbol{s}_{1}, \boldsymbol{s}_{2}, \boldsymbol{s}_{3}, \boldsymbol{s}_{4}$, then we obtain two connected components in the real locus in \mathbb{R}^{3}. Investigate the defining matrices for the two points

$$
\boldsymbol{v}:=\sum_{i=1}^{4} \frac{1}{4} \boldsymbol{s}_{i} \quad \text { and } \quad \boldsymbol{w}:=\boldsymbol{s}_{1}+\left(s_{1}-\boldsymbol{v}\right) .
$$

There is a specific property of the defining matrix, which distinguishes points in the two (separate) connected components. Try to identify this property via investigating the defining matrices at \boldsymbol{v} and \boldsymbol{w} ?

Exercise 2.7. Consider the following polynomials

$$
f_{1}:=a x+b y \quad f_{2}:=c x+d y
$$

First figure out the answers to the following questions and only then use a CAS to compute the Gröbner bases.

- Which is the output of the computation of a reduced lexicographic Gröbner basis of the ideal generated by f_{1} and f_{2} in the polynomial ring $K(a, b, c, d)[x, y]$? Here K is a field and (a, b, c, d) are parameters.
- Which is the output of the computation of a reduced lexicographic Gröbner basis of the ideal generated by f_{1} and f_{2} in the polynomial ring $K[a, b, c, d, x, y]$ in 6 variables?
- Let t be a new variable and consider the polynomial $p=t x y-1$. Which is the output of the computation of a reduced lexicographic Gröbner basis of the ideal generated by f_{1}, f_{2} and p in the polynomial ring $K(a, b, c, d)[t, x, y]$?
- Let s be a new variable and $q=s(a d-b c)-1$. Which is the output of the computation of a reduced lexicographic Gröbner basis of the ideal generated by f_{1}, f_{2} and q in the polynomial ring $K(a, b, c, d)[s, x, y]$?
Note that you can define a ring with parameters in SINGULAR for example as follows: ring $\mathrm{R}=(0, \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}),(\mathrm{x}, \mathrm{y}), \mathrm{lp}$;

Exercise 2.8. Let $a, b>0$. Consider the following mass-action system $\dot{x}=f(x)$:

$$
\dot{x}_{1}=x_{2}-a x_{1}, \quad \dot{x}_{2}=x_{2}^{2}-b x_{2} x_{1}
$$

MSRI-MPI Leipzig Summer Graduate School 2023

Show that f_{1}, f_{2} are linearly independent (and so there are no linear first integrals). Does the system $f_{1}=f_{2}=0$ have finitely many positive solutions for all values of a and b ?

Exercise 2.9. Consider a mass-action network involving m complexes y_{1}, \ldots, y_{m} and with associated mass-action system $\dot{x}=f(x)$ where $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$. Denote by x^{y} the column vector $\left(x^{y_{1}}, \ldots, x^{y_{m}}\right)^{\top}$. Consider the matrix $M \in \mathbb{R}^{n \times m}$ such that $f(x)=M x^{y}$.

Fix an integer k with $1 \leq k<m$.
(i) Recall that a level 1 invariant is an element of the real span of f_{1}, \ldots, f_{n}. How could we use Gröbner bases to compute the non-trivial level 1 invariants not involving any of the complexes y_{k+1}, \ldots, y_{m} (or decide that none exists)?
Hint: Given a linear ideal (an ideal generated by polynomials of degree one), a (reduced) Gröbner basis is composed again by linear polynomials obtained from the original ones by Gauss triangulation.
(ii) Let $M[k] \in \mathbb{R}^{n \times m-k}$ be the submatrix of M consisting of its last $m-k$ columns. Prove that it is possible to get a nontrivial level 1 invariant not involving any of the complexes y_{k+1}, \ldots, y_{m} via Gauss triangulation of M if and only if $\operatorname{rank}(M[k])<\operatorname{rank}(M)$. How many linearly independent invariants only involving y_{1}, \ldots, y_{k} can be obtained?

Exercise 2.10. We consider a model of signal transmission widely employed by bacteria and extracted from the paper [G. Shinar and M. Feinberg, Structural sources of robustness in biochemical reaction networks, Science 327(5971), 1389-1391, (2010)]. The building blocks of the two-component system are two proteins X and Y, called sensor kinase and response regulator respectively. Both proteins exist in activated X_{p}, Y_{p} and inactivated form X, Y. The signal is transmitted in a cascade way: first X gets activated, and then X activates Y. In particular, we consider the reaction network with the following reactions and reaction rate constants:

- Activation of X is modeled in two steps

$$
\mathrm{X} \underset{\kappa_{2}}{\stackrel{\kappa_{1}}{\rightleftharpoons}} \mathrm{XT} \xrightarrow{\kappa_{3}} \mathrm{X}_{p} .
$$

- X_{p} activates the response regulator Y , while inactivating itself:

$$
\mathrm{X}_{p}+\mathrm{Y} \underset{\kappa_{5}}{\stackrel{\kappa_{4}}{\rightleftharpoons}} \mathrm{X}_{p} \mathrm{Y} \xrightarrow{\kappa_{6}} \mathrm{X}+\mathrm{Y}_{p} .
$$

- The species XT has the capacity to dephosphorylate RR, without being itself altered in the process (it is an enzyme). This is represented with the following reactions:

$$
\mathrm{XT}+\mathrm{Y}_{p} \underset{\kappa_{8}}{\stackrel{\kappa_{7}}{\rightleftharpoons}} \mathrm{XTY}_{p} \xrightarrow{\kappa_{9}} \mathrm{XT}+\mathrm{Y} .
$$

For simplicity, we denote the concentrations of the species as: $x_{1}=[\mathrm{X}], x_{2}=[\mathrm{XT}]$, $x_{3}=\left[\mathrm{X}_{p}\right], x_{4}=[\mathrm{Y}], x_{5}=\left[\mathrm{X}_{p} \mathrm{Y}\right], x_{6}=\left[\mathrm{Y}_{p}\right], x_{7}=\left[\mathrm{XTY}_{p}\right]$.

MSRI-MPI Leipzig Summer Graduate School 2023

(i) Check that associated mass-action system is:

$$
\begin{aligned}
& \dot{x}_{1}=-\kappa_{1} x_{1}+\kappa_{2} x_{2}+\kappa_{6} x_{5} \\
& \dot{x}_{2}=\kappa_{1} x_{1}-\kappa_{2} x_{2}-\kappa_{3} x_{2}-\kappa_{7} x_{2} x_{6}+\kappa_{8} x_{7}+\kappa_{9} x_{7} \\
& \dot{x}_{3}=\kappa_{3} x_{2}-\kappa_{4} x_{3} x_{4}+\kappa_{5} x_{5} \\
& \dot{x}_{4}=-\kappa_{4} x_{3} x_{4}+\kappa_{5} x_{5}+\kappa_{9} x_{7} \\
& \dot{x}_{5}=\kappa_{4} x_{3} x_{4}-\kappa_{5} x_{5}-\kappa_{6} x_{5} \\
& \dot{x}_{6}=\kappa_{6} x_{5}-\kappa_{7} x_{2} x_{6}+\kappa_{8} x_{7} \\
& \dot{x}_{7}=\kappa_{7} x_{2} x_{6}-\kappa_{8} x_{7}-\kappa_{9} x_{7} .
\end{aligned}
$$

(ii) Prove that this system shows Absolute Concentration Robustness in the species Y_{p} (that is, at all positive steady states, the value of x_{6} is the same). You could do this computation by hand or computing a Gröbner basis of the steady state ideal (using a suitable term order) or, in this case, using linear algebra (see Exercise 2.9). Try all these approaches.
(iii) Check that this system has two independent conservation laws (and no more):

$$
\mathrm{X}_{\mathrm{tot}}=x_{1}+x_{2}+x_{3}+x_{5}+x_{7} \quad \mathrm{Y}_{\mathrm{tot}}=x_{4}+x_{5}+x_{6}+x_{7}
$$

How could you check this with a computer?
(iv) Show that the system of steady-state equations and conservation laws admits a positive solution (i.e. there exists a positive steady state given the total amounts) if and only if

$$
\frac{\left(\kappa_{8}+\kappa_{9}\right) \kappa_{3}}{\kappa_{7} \kappa_{9}}<Y_{\text {tot }} .
$$

Show additionally that if this inequality holds, then there is a unique positive steady state for each choice of positive $\mathrm{X}_{\text {tot }}$. Are there other nonnegative steady states in the same stoichiometric compatibility class?

Note: We will develop tools to avoid making all these computations by hand.
Exercise 2.11. In the article of Shinar and Feinberg in Science (2010) cited in Exercise 2.10, an additional signaling network is considered (Example (S60) of the Supporting Online Material):

$$
\begin{aligned}
& \mathrm{XD} \underset{\mathrm{~K}_{2}}{\stackrel{\mathrm{~K}_{1}}{\rightleftharpoons}} \mathrm{X} \underset{\mathrm{~K}_{4}}{\stackrel{\mathrm{~K}_{3}}{\rightleftharpoons}} \mathrm{XT} \xrightarrow{\mathrm{~K}_{5}} \mathrm{X}_{\mathrm{p}} \quad \mathrm{XT}+\mathrm{Y}_{\mathrm{p}} \underset{\mathrm{~K}_{10}}{\stackrel{\mathrm{~K}_{9}}{\rightleftharpoons}} \mathrm{XTY}_{\mathrm{p}} \xrightarrow{\mathrm{~K}_{11}} \mathrm{XT}+\mathrm{Y} \\
& X_{p}+Y \underset{\kappa_{7}}{\stackrel{k_{6}}{\rightleftharpoons}} X_{p} Y \xrightarrow{\kappa_{8}} X+Y_{p} \quad X D+Y_{p} \stackrel{\kappa_{13}}{\stackrel{\kappa_{12}}{\rightleftharpoons}} X_{p} Y_{p} \xrightarrow{\kappa_{14}} X D+Y
\end{aligned}
$$

Compare this network with the network in Exercise 2.10. Is there any form of X acting as an enzyme?

We denote by x_{1}, \ldots, x_{9} the concentrations of the species as follows:

$$
\begin{array}{llll}
x_{1}=[\mathrm{XD}] & x_{2}=[\mathrm{X}] & x_{3}=[\mathrm{XT}] & x_{4}=\left[\mathrm{X}_{p}\right] \\
x_{5}=[\mathrm{Y}] & x_{6}=\left[\mathrm{X}_{p} \mathrm{Y}\right] & x_{7}=\left[\mathrm{Y}_{p}\right] & x_{8}=\left[\mathrm{XTY}_{p}\right]
\end{array} \quad x_{9}=\left[\mathrm{XDY}_{p}\right] .
$$

MSRI-MPI Leipzig Summer Graduate School 2023

(i) Check that the associated mass-action system is

$$
\begin{aligned}
& \dot{x}_{1}=-\kappa_{1} x_{1}+\kappa_{2} x_{2}-\kappa_{12} x_{1} x_{7}+\left(\kappa_{13}+\kappa_{14}\right) x_{9} \\
& \dot{x}_{2}=\kappa_{1} x_{1}-\left(\kappa_{2}+\kappa_{3}\right) x_{2}+\kappa_{4} x_{3}+\kappa_{8} x_{6} \\
& \dot{x}_{3}=\kappa_{3} x_{2}-\left(\kappa_{4}+\kappa_{5}\right) x_{3}-\kappa_{9} x_{3} x_{7}+\left(\kappa_{10}+\kappa_{11}\right) x_{8} \\
& \dot{x}_{4}=\kappa_{5} x_{3}-\kappa_{6} x_{4} x_{5}+\kappa_{7} x_{6} \\
& \dot{x}_{5}=-\kappa_{6} x_{4} x_{5}+\kappa_{7} x_{6}+\kappa_{11} x_{8}+\kappa_{14} x_{9} \\
& \dot{x}_{6}=\kappa_{6} x_{4} x_{5}-\left(\kappa_{7}+\kappa_{8}\right) x_{6} \\
& \dot{x}_{7}=\kappa_{8} x_{6}-\kappa_{9} x_{3} x_{7}+\kappa_{10} x_{8}-\kappa_{12} x_{1} x_{7}+\kappa_{13} x_{9} \\
& \dot{x}_{8}=\kappa_{9} x_{3} x_{7}-\left(\kappa_{10}+\kappa_{11}\right) x_{8} \\
& \dot{x}_{9}=\kappa_{12} x_{1} x_{7}-\left(\kappa_{13}+\kappa_{14}\right) x_{9} .
\end{aligned}
$$

(ii) Show that there are non-trivial conservation laws. If possible, find a basis of conservation laws with nonnegative coefficients.
(iii) Compute a reduced Gröbner basis G of the ideal $\left\langle f_{1}, \ldots, f_{9}\right\rangle$ with respect to the lexicographical order $x_{1}>x_{2}>x_{4}>x_{5}>x_{6}>x_{8}>x_{9}>x_{3}>x_{7}$. Check that G contains a polynomial of the form

$$
a(\kappa) x_{3} x_{7}-b(\kappa) x_{3},
$$

with a, b polynomials in κ of degree 5 with coefficients 0 or 1 . Conclude that the value of x_{7} at any positive steady state does not depend on the total amounts, i.e., the system shows Absolute Concentration Robustness.
(iv) Prove that there is no level 1 invariant only depending on x_{3} and x_{7}.

Exercise 2.12. Let $f=\sum_{i=0}^{d} c_{i} x^{i}$ be a univariate polynomial with real coefficients. Denote by $Z_{+}(f)$ (resp. $\left.Z_{-}(f)\right)$ the number of positive (resp. negative) roots of f counted with multiplicity, and $\sigma(f)$ the number of sign variations of the sequence $\left(c_{0}, c_{1}, \ldots, c_{d}\right)$. Descartes' rule of signs says that $Z_{+}(f) \leq \sigma(f)$ and that the difference $\sigma(f)-Z_{+}(f)$ is even.
(i) Find a polynomial f of degree 2 with $Z_{+}(f)=0$ but such that $\sigma(f)=2$. Find a polynomial g of degree 3 with $Z_{+}(f)=1$ but such that $\sigma(f)=3$.
(ii) Prove the following statements:

- $Z_{-}(f) \leq \sigma(f(-x))$.
- $\sigma(f)+\sigma(f(-x)) \leq n$.
- If all roots of f are real, then $Z_{+}(f)=\sigma(f)$. This is the case if f is the characteristic polynomial of a symmetric matrix.
- If all roots of f in \mathbb{C} have negative real part, then $\sigma(f)=0$.
- The number of non-zero real roots of f is bounded above by $2 m-2$, if m is the number of monomials of f.

Exercise 2.13. Consider the following reaction network corresponding to a two-component system with a hybrid histidine kinase from [Kothamachu, Feliu, Cardelli, Soyer, Unlimited multistability and Boolean logic in microbial signaling, J. R. S. Interface, 12
(2015)]:

$$
\begin{array}{cl}
\mathrm{HK}_{00} \xrightarrow{\mathrm{~K}_{1}} \mathrm{HK}_{\mathrm{p} 0} \xrightarrow{\mathrm{~K}_{2}} \mathrm{HK}_{0 \mathrm{p}} \xrightarrow{\mathrm{~K}_{3}} \mathrm{HK}_{\mathrm{pp}} & \mathrm{HK}_{0 \mathrm{p}}+\mathrm{Htp} \xrightarrow{\mathrm{~K}_{4}} \mathrm{HK}_{00}+\mathrm{Htp}_{\mathrm{p}} \\
\mathrm{Htp}_{\mathrm{p}} \xrightarrow{\mathrm{~K}_{6}} \mathrm{Htp} & \mathrm{HK}_{\mathrm{pp}}+\mathrm{Htp} \xrightarrow{\mathrm{~K}_{5}} \mathrm{HK}_{\mathrm{p} 0}+\mathrm{Htp}_{\mathrm{p}}
\end{array}
$$

Call $x_{1}=\left[\mathrm{HK}_{00}\right], x_{2}=\left[\mathrm{HK}_{p 0}\right], x_{3}=\left[\mathrm{HK}_{0 p}\right], x_{4}=\left[\mathrm{HK}_{p p}\right], x_{5}=[\mathrm{Htp}]$ and $x_{6}=\left[\mathrm{Htp}_{p}\right]$, and consider the following conservation laws:

$$
x_{1}+x_{2}+x_{3}+x_{4}=c_{1}, \quad x_{5}+x_{6}=c_{2}
$$

Let $\dot{x}=f(x)$ be the associated mass-action system.
(i) Compute a reduced Gröbner basis of the ideal generated by $f_{1}, f_{2}, f_{3}, f_{5}, x_{1}+$ $x_{2}+x_{3}+x_{4}-c_{1}$ and $x_{5}+x_{6}-c_{2}$ with respect to the lexicographic term order with $x_{1}>x_{2}>x_{3}>x_{4}>x_{6}>x_{5}$. Does it have the form predicted in the Shape Lemma?
(ii) Is is true that there are at most 3 complex solutions for any choice of complex constants $\kappa_{1}, \ldots, \kappa_{6}, c_{1}, c_{2}$?. Is the mixed volume associated to the supports of the six polynomials in (i) equal to 3 ?
(iii) Is it true that there are at most 3 positive steady states for any choice of reaction rate constants $\kappa=\left(\kappa_{1}, \ldots, \kappa_{6}\right) \in \mathbb{R}_{>0}^{6}$ and $c=\left(c_{1}, c_{2}\right) \in \mathbb{R}_{>0}^{2}$?
(iv) Let $g_{1}=g_{1}\left(x_{5}\right)$ be the first element in the Gröbner basis computed in item (i) depending only on x_{5}. Using Descartes' rule of signs, find necessary inequalities in the coefficients of g_{1} (that is, on (κ, c)) for the system to have 3 positive steady states.
(v) How can you choose values of (κ, c) so that g_{1} has 3 positive solutions? Is this sufficient to ensure that there are three positive steady states for these values?

Exercise 2.14. Consider the following reaction network

$$
X_{2} \underset{\mathrm{~K}_{2}}{\stackrel{\mathrm{~K}_{1}}{\rightleftharpoons}} X_{1}+X_{4} \stackrel{\mathrm{~K}_{4}}{\stackrel{\mathrm{~K}_{3}}{\rightleftharpoons}} X_{3} .
$$

(i) Show that $x_{1}+x_{2}+x_{3}=T_{1}, x_{2}+x_{3}+x_{4}=T_{2}$ are conservation laws, and that the dimension of the stoichiometric subspace is 2 .
(ii) For the associated mass-action system $\dot{x}=f(x)$, find a Gröbner basis of the ideal $\left\langle f_{2}, f_{3}, x_{1}+x_{2}+x_{3}-T_{1}, x_{2}+x_{3}+x_{4}-T_{2}\right\rangle$ with respect to the lexicographic order with $x_{1}>x_{2}>x_{3}>x_{4}$. What is the number of complex solutions for generic choices of the parameters? Are these solutions in the complex torus generically? (Note that the positive steady states in stoichiometric compatibility classes are among these solutions).
(iii) Consider now the family of all polynomial systems with the same support as $f_{2}, f_{3}, x_{1}+x_{2}+x_{3}-T_{1}, x_{2}+x_{3}+x_{4}-T_{2}$. What is the generic number of solutions in the complex torus $\left(\mathbb{C}^{*}\right)^{4}$? (You can either compute a Gröbner basis again by letting all the coefficients be parameters, or you can compute the mixed volume associated with this sparse system - if you have software to compute mixed volumes, try both!).

MSRI-MPI Leipzig Summer Graduate School 2023

Let's analyze the following code in Singular:

```
ring r = (0,k1,k2,k3,k4,k5,k6,C1,C2,C3),(x6, x5, x1, x3, x4,x2),dp;
We define the poly f1 = -k1*x1*x3+k2*x5+k6*x6;
polynomial }\longrightarrow\mathrm{ poly f2 = -k4*x2*x4+k5*x6+k3*x5;
f},\mp@subsup{f}{2}{},\ldots,\mp@subsup{f}{0}{}\downarrow\mathrm{ poly f3 = -k1*x1*x3+(k2+k3)*x5;
poly f4 = -k4*x2*x4+(k5+k6)*x6;
poly f5 = -f3;
poly f6 = -f4; We define }\mp@subsup{x}{6}{}>\mp@subsup{x}{5}{}>\mp@subsup{x}{1}{}>\mp@subsup{x}{3}{}>\mp@subsup{x}{4}{}>\mp@subsup{x}{2}{
poly g1 = x3+x5-C1; }\longleftarrow\mathrm{ the conser- and lexicographic term order
poly g2 = x4+x6-C2;
poly g3 = x1+x2+x5+x6-c3:
ideal i1 = f1,f3,f4; We ask to display
ideal i2=std(i1); , tion
ideal i3 =eliminate(i2,x5**6); and }\mp@subsup{x}{6}{
i3;
```

We define
the ideal
generated by $>_{i 1 ;}^{1 d e}$

The output will display i1 but not i2. The last output shows i3:

All commands end with ;. Usual term orders in Singular are: dp (graded reverse lexicographic) and $1 p$ (lexicographic). An ideal is an ordered sequence of polynomials (understood as generators).

Note that we always need to start defining a ring, for instance, with two variables, characteristic 0 , and two different term orders (these are different rings):
ring $R=0,[x, y], d p ;$ or $r i n g ~ S=0,[x, y], l p ;$
The command ideal i2 = std(i1); computes a Gröbner basis of the ideal i1. To force Singular to compute a reduced GB, use the command: option(redSB);

To substitute values of parameters or variables, use for instance
ideal s =subst(i2, k1, 1, k2, 2, k3, 3, k4, 4, k5, 5, C1, 10, C2, 20, C3, 15);
If an ideal i (as we said, an ordered set of polynomials) has been defined over the ring R, we can consider the ideal is generated by the same polynomials in S by typing ideal is = imap(S,i); .

At some moment you might want to use the command solve of the library solve.lib.

