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4. Exercise list. Thursday Week 1

In this exercise list, you will work with problems on injectivity and its relation to
multistationarity. Recall that the main theorem of injectivity says as follows.

Theorem. (Injectivity) Let N ∈ Rp×r of rank s, B ∈ Rn×r, and S ⊆ Rn a vector
subspace. For κ ∈ Rr

>0, define the function fκ(x) = N diag(κ)xB. The following are
equivalent:

(inj) fκ is injective with respect to S for all κ ∈ Rr
>0 (that is, fκ(x) 6= fκ(y) for all

x 6= y such that x− y ∈ S.
(lin) The linear map with matrix N diag(µ)B> diag(λ) is injective on S for all µ ∈

Rr
>0 and λ ∈ Rn

>0.
(jac) The Jacobian of fκ(x) is injective on S for all x ∈ Rn

>0 and κ ∈ Rr
>0.

If S has dimension s, then let W ∈ R(n−s)×n be a matrix whose rows form a basis
of S⊥. Consider the matrix Mµ,λ whose bottom n − s rows is W and upper s rows is
N ′ diag(µ)B> diag(λ), with N ′ ∈ Rs×r of full rank such that ker(N) = ker(N ′). Then
any of the above is equivalent to

(det) det(Mµ,λ) is a nonzero polynomial in λ, µ with all coefficients of the same sign.

In the application to reaction networks, N is the stoichiometric matrix, so p = n,
B the reactant matrix, S = im(N) and W is a matrix of conservation laws. If (inj)
holds, then we say that the network is injective. In this case, the network is not
multistationary.

Exercise 4.1. Use (det) to determine whether the following networks are injective:

(a)

2X1 +X2
κ1−−⇀↽−−
κ2

3X1

0

X2

X1κ3

κ4

κ5
(b)

2X1 +X2
κ1−−⇀↽−−
κ2

3X1

0

X2

X1κ3

κ4

κ5

(d) 2X1 +X2
κ1−−→ 3X1 X1 + 2X2

κ2−−→ 3X2
(c)

2X1 +X2
κ1−−→ 3X1

X1 + 2X2
κ2−−→ 3X2

0

X2

X1κ3

κ4

κ5

Conclude when possible whether the network admits multistationarity and whether
there are positive steady states (by working with the steady state equations). Note
that not all networks have conservation laws and that you can reuse computations as
the networks share some similarities.

Exercise 4.2. We have discussed in the lecture, that if a network is injective, then it is
not multistationary. However, the converse is not true as this exercise shows. Consider
the following mass-action network

0
κ1−−⇀↽−−
κ2

X1
κ3−−⇀↽−−
κ4

2X1.

Show that this network is neither multistationary nor injective.
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Exercise 4.3. Decide whether the following networks are injective (the computations
probably require the use of software).

• The network of Exercise 1.2:

S1 + E
κ1−−⇀↽−−
κ2

Y1 S2 + Y1
κ3−−⇀↽−−
κ4

Y2
κ5−−→ P + E, P

κ6−−→ S1,

• An extended network of two-substrate catalysis:

E + S1
κ1−−⇀↽−−
κ2

Y1 E + S2
κ3−−⇀↽−−
κ4

Y2

S2 + Y1
κ5−−⇀↽−−
κ6

Y3
κ7−−⇀↽−−
κ8

S1 + Y2 Y3
κ9−−⇀↽−−
κ10

E + P.

• The one-site and two-site phosphorylation cycles from Exercise 3.6. In the latter
case, use the monomial parametrization and the injectivity test for monomial
maps to show that the two-site phosphorylation cycle admits multistationarity.

Exercise 4.4. In the setting of the injectivity theorem, we saw in class (inj) ⇒ (lin),
and you will show now the reverse implication. We guide you through it.

(i) Show that for any x, y ∈ Rn
>0, the sign of xB−yB agrees with the sign of B>z for

some z ∈ Rn with the same sign vector as x− y. (Hint: use that the logarithm
is a strictly increasing function and that ln(xB) = B> ln(x). Here ln is taken
componentwise.)

(ii) Encode the sign equalities in (i) as multiplication by a diagonal matrix with
positive entries, to conclude that if (inj) fails, then (lin) fails as well.

Exercise 4.5. In this exercise you will prove (lin)⇔ (jac) from the injectivity theorem.
Let fκ(x) = N diag(κ)xB be as in the theorem.

(i) Show that Jfκ(x) = N diag(µ)B> diag(x−1) with µ = diag(κ)xB and where x−1

is defined componentwise.
(ii) Show that the following two sets of matrices are equal:

{Mµ,λ : µ ∈ Rr
>0, λ ∈ Rn

>0} = {Jfκ(x) : κ ∈ Rr
>0, x ∈ Rn

>0}.
Conclude (lin) ⇔ (jac).

Exercise 4.6. In this exercise you will show that the injectivity theorems specialize to
some classical results of algebra.

(i) Consider a linear map f(x) = Nx from Rr to Rp, with N ∈ Rp×r. Use the
equivalence between (inj) and (lin) to show that if ker(N) = {0}, then f(x) = y
has at most one solution for all y ∈ Rp.

(ii) Let f(x) = asx
s+ · · ·+a1x+a0 be a polynomial of degree s in one variable. Use

the equivalence between (inj) and (jac) to show that if ai ≥ 0 for all i > 0, then
f(x) has at most one positive root (this result is a special case of the Descartes
rule of signs.

Exercise 4.7. Show that the polynomial f = (x − 1)3 verifies that f ′(1) = 0 and yet
f is injective on R>0. Is this contradicting the injectivity theorem?

Remark for those knowing complex functions: the fact that f ′(1) = 0 implies that f
is not injective in any open neighborhood of 1 in C.
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Exercise 4.8. Describe the set of injective mass-action networks with one species and
arbitrary (but finite) number of reactions.

Exercise 4.9. Let C ∈ Rd×n of rank d, and V be its rowspan. Recall that a circuit of
V is a nonzero vector v ∈ V with minimal support. For a subset I ⊆ {1, . . . , n}, we let
CI denote the submatrix of C consisting of the columns of C with indices in I.

A non-trivial result on circuits states the following. For a set J ⊆ {1, . . . , n} of
cardinality d − 1 such that the columns of CJ are linearly independent, define the
vector rJ ∈ Rn as

(rJ)k =

{
(−1)µ(k,J) det

(
C{k}∪J

)
if k /∈ J

0 if k ∈ J,

for k = 1, . . . , n, where µ(k, J) is the number of indices in J that are strictly less than
k. Then the vectors rJ are circuits, and furthermore, any other circuit is a multiple of
rJ for some set J .

(i) Use the previous result to find all the circuits of the rowspan V of the following
matrix:

C =

(
1 3 1 2
0 0 4 3

)
.

Which are the orthants O of R4 for which V ∩ O 6= ∅? Equivalently, which are
the possible sign vectors of the elements in V ? And which are the sign vectors
of the elements in ker(C)?

(ii) How many circuits (up to constant) has the rowspan of a matrix C of size d×n
with d ≤ n, if all maximal minors of C are nonzero (C is called uniform in this
case).

Exercise 4.10. Two sign vectors σ, σ′ ∈ {0,+1,−1}n are said to be orthogonal if either
for all i ∈ {1, . . . , n} it holds that σi · σ′i = 0 or there exist i, j such that σi · σ′i = 1
and σj · σ′j = −1. A general theorem in the framework of oriented matroids says that
a vector σ′ ∈ {1, 0,−1}n is the sign vector of an element in the kernel of a matrix C if
and only if σ′ is orthogonal to the sign vectors of all the circuits in the rowspan V of C
(and therefore, to the sign vector of any element in V ).

Use the previous theorem to prove the following result: There exists a positive vector
in the kernel of a matrix C if and only if the sign vectors of all circuits of the rowspan
of C have a positive and a negative entry. How can we test this property?
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