Chow Lectures 2023 Preparatory Lectures - Sofía Garzón Mora

October 18, 2023

1 Exercises: Volume forms in convex geometry

1.1 Lorentzian Polynomials

- Exercise 1. Construct as many Lorentzian polynomials in three variables as you can.
- Exercise 2. The Lorentzian polynomials in 3 variables of degree 3 with support in the monomials $x_1x_2x_3$ and $x_i^2x_j$ for $1 \le i, j \le 3$ form a convex set in the seven dimensional vector space of such polynomials. Describe this set.

The goal of the following exercises is now to prove the following theorem:

Theorem 1.1 (Brändén, Huh). The volume polynomial vol_K is a Lorentzian polynomial for any collection of convex bodies $K = (K_1, ..., K_n)$ in \mathbb{R}^d .

For that we need the following results:

Proposition 1.2. The following are equivalent for any $w \in \mathbb{R}^n$ satisfying f(w) > 0:

- 1. The Hessian of $f^{1/d}$ is negative semidefinite at w.
- 2. The Hessian of $\log f$ is negative semidefinite at w.
- 3. The Hessian of f has exactly one positive eigenvalue at w.

And:

Theorem 1.3. (Special case of Brunn-Minkowski Theorem) Let $K = (K_1, ..., K_n)$ be a collection of convex bodies. For any convex bodies $C_3, ..., C_d$ in \mathbb{R}^d , the function

$$w \mapsto V\left(\sum_{i=1}^{n} w_i K_i, \sum_{i=1}^{n} w_i K_i, C_3, ..., C_d\right)^{1/2}$$

is concave on $\mathbb{R}^n_{>0}$.

Exercise 3. For any convex bodies $C_0, C_1, ..., C_d$ in \mathbb{R}^d , the mixed volume $V(C_1, C_2, ..., C_d)$ is symmetric in its arguments. Prove that it satisfies the relation

$$V(C_0 + C_1, C_2, ..., C_d) = V(C_0, C_2, ..., C_d) + V(C_1, C_2, ..., C_d).$$

- Exercise 4. Compute the polynomial $\operatorname{vol}(\lambda A + \mu B)$, where $\lambda, \mu \in \mathbb{R}_{>0}$, A is an $a \times c$ rectangle and B is a $b \times d$ rectangle, and deduce the mixed volumes explicitly.

 Do the same for your favorite pair (triple) of polygons.
- Exercise 5. Show that for $\alpha \in \Delta_n^{d-2}$,

$$\left(\frac{2!}{d!}\partial^{\alpha}\operatorname{vol}_{K}(w)\right)^{1/2} = \operatorname{V}\left(\sum_{i=1}^{n} w_{i}K_{i}, \sum_{i=1}^{n} w_{i}K_{i}, \underbrace{K_{1}, ..., K_{1}}_{\alpha_{1}}, ..., \underbrace{K_{n}, ..., K_{n}}_{\alpha_{n}}\right)^{1/2}.$$

- Exercise 6. Prove Theorem 1.1. (Hint: Assume by continuity of the volume functional, that every convex body in K is d-dimensional. We only need to show that $\partial^{\alpha} \operatorname{vol}_{K}$ is Lorentzian for every $\alpha \in \Delta_{n}^{d-2}$.)
- Exercise 7. (AF Inequality) Prove that if $f = \sum_{\alpha \in \Delta_n^d} \frac{c_\alpha}{\alpha!} w^{\alpha}$ is a Lorentzian polynomial, then

$$c_{\alpha}^2 \ge c_{\alpha + e_i - e_j} c_{\alpha - e_i + e_j}$$

for any $i, j = 1, ..., n, \alpha \in \Delta_n^d$.

1.2 Lorentzian Polynomials on cones

- Exercise 8. Compute the lineality space L_f and the associated simplicial complex Δ_f for $f = 4w_1^2 + 4w_1w_2 + w_2^2$. Is this pair (Δ_f, L_f) hereditary? Understand the definition of the associated cone \mathcal{K}_f and, optionally, try to compute it for this example.
- Exercise 9. Let \mathcal{K}_P be the set of all simple polytopes that have the same normal fan as P. Prove that \mathcal{K}_P is an open convex cone in \mathbb{R}^n .

Now, the goal of the following exercises is to prove a second main result:

Theorem 1.4 (Brändén, Leake). (Alexandrov-Fenchel Inequalities) Let $K_1, K_2, ..., K_n$ be convex bodies in \mathbb{R}^n . Then,

$$V(K_1, K_2, ..., K_n)^2 \ge V(K_1, K_1, K_3, ..., K_n)V(K_2, K_2, K_3, ..., K_n).$$

For this, we need the following:

Lemma 1.5. Let $K \neq \emptyset$ be an open convex cone in \mathbb{R}^n , let $(x,y) \mapsto P(x,y)$ a symmetric bilinear form on \mathbb{R}^n such that P(v,v) > 0 for all $v \in K$. The following are equivalent:

- $(AF) P(v, w)^2 \ge P(v, v) P(w, w) \text{ for all } v, w \in \mathcal{K}.$
- (AF2) $P(v,x)^2 \ge P(v,v)P(x,x)$ for all $v \in \mathcal{K}, x \in \mathbb{R}^n$.
 - (H) P has exactly one positive eigenvalue.
- Exercise 10. Argue that we may replace the condition (HR) in the definition of a K-Lorentzian polynomial by
 - (AF) For all $v_1, ..., v_d \in \mathcal{K}$,

$$(\partial_{v_1}\partial_{v_2}\partial_{v_3}\cdots\partial_{v_d}f)^2 \ge (\partial_{v_1}\partial_{v_1}\partial_{v_3}\cdots\partial_{v_d}f)(\partial_{v_2}\partial_{v_2}\partial_{v_3}\cdots\partial_{v_d}f)$$

- Exercise 11. Give an example of an hereditary Lorentzian polynomial.
- Exercise 12. Compute L_P for your favorite simple polytope P. (Or compute it for the cube if you really cannot decide amongst your favorites). Compute $\tau \Delta_P$ and the link $lk_{\Delta_P}(v)$ where v is a vertex.
- Exercise 13. If P is a simple polytope, prove that (Δ_P, L_P) is hereditary and if time allows, that $\mathcal{K}_P \subseteq \mathcal{K}_{\text{vol}_P}$.

We also need the following strong result:

Theorem 1.6 (Brändén, Leake). If P is a simple polytope, vol_P is hereditary Lorentzian.

An idea of the proof of this theorem is as follows: By Exercise 11, $\mathcal{K}_{\operatorname{vol}_P}$ is not empty. If we let P_i the facet of P with normal ρ_i , then $\partial_i \operatorname{vol}_P(w) = \operatorname{vol}_P(((w_j - w_i \cos(\theta_{ij})) / \sin(\theta_{ij}))_j)$ where θ_{ij} is the angle between ρ_i and ρ_j . Then we need to see that vol_P has at most one positive eigenvalue for d=2. By performing suitable edge subdivisions, $\operatorname{vol}_P \sim f$ for some polynomial f such that $\Delta_f = \Delta_Q$, where Q is a triangle. Since vol_Q is hereditary Lorentzian, so is vol_P .

Exercise 14. Prove Theorem 1.4. (Hint: By an approximation argument, reduce to the case of simple polytopes. Use Theorem 1.6 and Exercise 10).