Chow Lectures 2023

Preparatory Lectures - Sofía Garzón Mora
October 18, 2023

1 Exercises: Volume forms in convex geometry

1.1 Lorentzian Polynomials

Exercise 1. Construct as many Lorentzian polynomials in three variables as you can.
Exercise 2. The Lorentzian polynomials in 3 variables of degree 3 with support in the monomials $x_{1} x_{2} x_{3}$ and $x_{i}^{2} x_{j}$ for $1 \leq i, j \leq 3$ form a convex set in the seven dimensional vector space of such polynomials. Describe this set.

The goal of the following exercises is now to prove the following theorem:
Theorem 1.1 (Brändén, Huh). The volume polynomial vol_{K} is a Lorentzian polynomial for any collection of convex bodies $K=\left(K_{1}, \ldots, K_{n}\right)$ in \mathbb{R}^{d}.

For that we need the following results:
Proposition 1.2. The following are equivalent for any $w \in \mathbb{R}^{n}$ satisfying $f(w)>0$:

1. The Hessian of $f^{1 / d}$ is negative semidefinite at w.
2. The Hessian of $\log f$ is negative semidefinite at w.
3. The Hessian of f has exactly one positive eigenvalue at w.

And:
Theorem 1.3. (Special case of Brunn-Minkowski Theorem) Let $K=\left(K_{1}, \ldots, K_{n}\right)$ be a collection of convex bodies. For any convex bodies C_{3}, \ldots, C_{d} in \mathbb{R}^{d}, the function

$$
w \mapsto \mathrm{~V}\left(\sum_{i=1}^{n} w_{i} K_{i}, \sum_{i=1}^{n} w_{i} K_{i}, C_{3}, \ldots, C_{d}\right)^{1 / 2}
$$

is concave on $\mathbb{R}_{>0}^{n}$.
Exercise 3 . For any convex bodies $C_{0}, C_{1}, \ldots, C_{d}$ in \mathbb{R}^{d}, the mixed volume $V\left(C_{1}, C_{2}, \ldots, C_{d}\right)$ is symmetric in its arguments. Prove that it satisfies the relation

$$
V\left(C_{0}+C_{1}, C_{2}, \ldots, C_{d}\right)=V\left(C_{0}, C_{2}, \ldots, C_{d}\right)+V\left(C_{1}, C_{2}, \ldots, C_{d}\right) .
$$

Exercise 4. Compute the polynomial $\operatorname{vol}(\lambda A+\mu B)$, where $\lambda, \mu \in \mathbb{R}_{>0}, A$ is an $a \times c$ rectangle and B is a $b \times d$ rectangle, and deduce the mixed volumes explicitly. Do the same for your favorite pair (triple) of polygons.
Exercise 5. Show that for $\alpha \in \Delta_{n}^{d-2}$,

$$
\left(\frac{2!}{d!} \partial^{\alpha} \operatorname{vol}_{K}(w)\right)^{1 / 2}=\mathrm{V}(\sum_{i=1}^{n} w_{i} K_{i}, \sum_{i=1}^{n} w_{i} K_{i}, \underbrace{K_{1}, \ldots, K_{1}}_{\alpha_{1}}, \ldots, \underbrace{K_{n}, \ldots, K_{n}}_{\alpha_{n}})^{1 / 2}
$$

Exercise 6. Prove Theorem 1.1. (Hint: Assume by continuity of the volume functional, that every convex body in K is d-dimensional. We only need to show that $\partial^{\alpha} \mathrm{vol}_{K}$ is Lorentzian for every $\alpha \in \Delta_{n}^{d-2}$.)

Exercise 7. (AF Inequality) Prove that if $f=\sum_{\alpha \in \Delta_{n}^{d}} \frac{c_{\alpha}}{\alpha!} w^{\alpha}$ is a Lorentzian polynomial, then

$$
c_{\alpha}^{2} \geq c_{\alpha+e_{i}-e_{j}} c_{\alpha-e_{i}+e_{j}}
$$

for any $i, j=1, \ldots, n, \alpha \in \Delta_{n}^{d}$.

1.2 Lorentzian Polynomials on cones

Exercise 8. Compute the lineality space L_{f} and the associated simplicial complex Δ_{f} for $f=$ $4 w_{1}^{2}+4 w_{1} w_{2}+w_{2}^{2}$. Is this pair (Δ_{f}, L_{f}) hereditary? Understand the definition of the associated cone \mathcal{K}_{f} and, optionally, try to compute it for this example.

Exercise 9. Let \mathcal{K}_{P} be the set of all simple polytopes that have the same normal fan as P. Prove that \mathcal{K}_{P} is an open convex cone in \mathbb{R}^{n}.

Now, the goal of the following exercises is to prove a second main result:
Theorem 1.4 (Brändén, Leake). (Alexandrov-Fenchel Inequalities) Let $K_{1}, K_{2}, \ldots, K_{n}$ be convex bodies in \mathbb{R}^{n}. Then,

$$
V\left(K_{1}, K_{2}, \ldots, K_{n}\right)^{2} \geq V\left(K_{1}, K_{1}, K_{3}, \ldots, K_{n}\right) V\left(K_{2}, K_{2}, K_{3}, \ldots, K_{n}\right) .
$$

For this, we need the following:
Lemma 1.5. Let $\mathcal{K} \neq \emptyset$ be an open convex cone in \mathbb{R}^{n}, let $(x, y) \mapsto \mathrm{P}(x, y)$ a symmetric bilinear form on \mathbb{R}^{n} such that $\mathrm{P}(v, v)>0$ for all $v \in \mathcal{K}$. The following are equivalent:
(AF) $\mathrm{P}(v, w)^{2} \geq \mathrm{P}(v, v) \mathrm{P}(w, w)$ for all $v, w \in \mathcal{K}$.
(AF2) $\mathrm{P}(v, x)^{2} \geq P(v, v) P(x, x)$ for all $v \in \mathcal{K}, x \in \mathbb{R}^{n}$.
(H) P has exactly one positive eigenvalue.

Exercise 10. Argue that we may replace the condition (HR) in the definition of a \mathcal{K}-Lorentzian polynomial by
(AF) For all $v_{1}, \ldots, v_{d} \in \mathcal{K}$,

$$
\left(\partial_{v_{1}} \partial_{v_{2}} \partial_{v_{3}} \cdots \partial_{v_{d}} f\right)^{2} \geq\left(\partial_{v_{1}} \partial_{v_{1}} \partial_{v_{3}} \cdots \partial_{v_{d}} f\right)\left(\partial_{v_{2}} \partial_{v_{2}} \partial_{v_{3}} \cdots \partial_{v_{d}} f\right)
$$

Exercise 11. Give an example of an hereditary Lorentzian polynomial.
Exercise 12. Compute L_{P} for your favorite simple polytope P. (Or compute it for the cube if you really cannot decide amongst your favorites). Compute $\tau \Delta_{P}$ and the link $\mathrm{lk}_{\Delta_{P}}(v)$ where v is a vertex.

Exercise 13. If P is a simple polytope, prove that $\left(\Delta_{P}, L_{P}\right)$ is hereditary and if time allows, that $\mathcal{K}_{P} \subseteq \mathcal{K}_{\mathrm{vol}_{P}}$.

We also need the following strong result:
Theorem 1.6 (Brändén, Leake). If P is a simple polytope, vol $_{P}$ is hereditary Lorentzian.
An idea of the proof of this theorem is as follows: By Exercise 11, $\mathcal{K}_{\mathrm{vol}_{P}}$ is not empty. If we let P_{i} the facet of P with normal ρ_{i}, then $\partial_{i} \operatorname{vol}_{P}(w)=\operatorname{vol}_{P_{i}}\left(\left(\left(w_{j}-w_{i} \cos \left(\theta_{i j}\right)\right) / \sin \left(\theta_{i j}\right)\right)_{j}\right)$ where $\theta_{i j}$ is the angle between ρ_{i} and ρ_{j}. Then we need to see that vol_{P} has at most one positive eigenvalue for $d=2$. By performing suitable edge subdivisions, vol $_{P} \sim f$ for some polynomial f such that $\Delta_{f}=\Delta_{Q}$, where Q is a triangle. Since vol_{Q} is hereditary Lorentzian, so is vol_{P}.

Exercise 14. Prove Theorem 1.4. (Hint: By an approximation argument, reduce to the case of simple polytopes. Use Theorem 1.6 and Exercise 10).

