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Abstract

We introduce equity forward variance term-structure models and de-
rive the respective HJM-type arbitrage conditions. We then discuss finite-
dimensional Markovian representations of the infinite-dimensional fixed
time-to-maturity forward variance swap curve and analyse examples of
such variance curve functionals.

The results are then applied to show that the speed of mean-reversion
in standard stochastic volatility models must be kept constant when the
model is recalibrated (a finding similar to Filipovic’s [13] observation for
interest-rate models). We also show that some standard implied volatility
term-structure functionals can lead to arbitrage when refitted on a regular
basis.

1 Introduction and Presentation of Results

Standard financial equity market models model exclusively the price process of
the stock prices. The prices of liquid derivatives, like plain vanilla calls, are
only used to calibrate the parameters of the model. A more natural approach
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would be to model the evolution of stock price and some liquid instruments
simultaneously.

Various approaches, such as those by Cont [7], Härdle [16], or Haffner [17],
take on the problem by modeling the stochastic evolution of implied volatility
surfaces (and therefore European call prices) according to certain stylized facts
or statistical observations. The price processes obtained from these models,
however, are not guaranteed to remain martingales.

In this article, we consider variance swaps as liquid derivatives and derive
conditions such that the joint market of stock price and variance swap prices
is free of arbitrage. Such models can then be used to price exotic options and
allow the computation of hedges with respect to stock and variance swaps in a
consistent way.

Variance Swap Market Models

For the world’s equity stock indices, a fairly liquid market of variance swaps
has evolved in recent years. Given an index S, such a variance swap exchanges
the payment of realized variance of the log-returns against a previously agreed
strike price. The (zero mean) annualized realized variance for the period [0, T ]
with business days 0 = t0 < . . . < tn = T is usually defined as

Vn(T ) :=
d

n

∑

i=1,...,n

(
log

Sti

Sti−1

)2

,

but contracts may vary. The constant d denotes the number of trading days per
year. A standard result (eg Protter [24], p. 66) gives that

〈log S〉T = lim
m↑∞

∑
ti∈τm

(
log

Sti

Sti−1

)2

where the limit is taken over refining subdivisions τm = (0 = tm0 < · · · < tmm =
T ), that is limm↑∞ supi=1,...,m |ti − ti−1| = 0. We can focus without loss of
generality on variance swaps with a zero strike price.

We will assume in this article that the realized variance paid by a variance
swap is the realized quadratic variation of the logarithm of the index price, i.e.
Vn(T ) ≡ 〈log ST 〉. We also assume that the stock price process is continuous.1

Our starting point for this article will be that variance swaps are liquidly traded
for all maturities.

Problem Given today’s variance swap prices V0(T ) for all maturities T ∈
[0,∞), we want to model the price processes V (T ) = (Vt(T ))t∈[0,∞) (with Vt(T ) =
VT (T ) for t > T ) such that the joint market with all variance swaps and the

1If we also assume that we know all call prices for all strikes, Neuberger [22] has shown that
the price of a variance swap can be computed from the market data. See also Demeterfi et
al. [9] for a good overview on this approach. However, as discussed in Buehler [6], we usually
only have a discrete number of traded options on the market.
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index price itself is free of arbitrage.

Apart from the additional presence of the stock price, this resembles closely
the situation in interest rate theory where the aim is to construct arbitrage-free
price processes of zero bonds (see Heath et al. [18]). We carry this similarity
further and introduce the forward variance of the log-returns of S as

vt(T ) := ∂T Vt(T ) .

We then have a HJM-type result, namely that (under the assumptions of the
next section) v must be a martingale and therefore has no drift. This observation
helps to solve the above problem, but we note that seen as a function in T , the
values of the process v are infinite-dimensional curves.

Variance Curve Functionals

Such an infinite-dimensional object is both hard to handle in applications and
also unrealistic: In fact, only a finitely many variance swap maturities are
traded. Hence, at time t = 0, we actually want to interpolate the market
prices of variance swaps by a finite-dimensionally parameterized non-negative
functional G:

V0(T ) =
∫ T

0

G(Z0; x) dx

where Z0 ∈ Rm is some parameter vector.2 Now assume that we can find a
finite-dimensional diffusion process Z such that

vt(T ) = G(Zt; T − t) (1)

interpolates the observed market prices well. We then call G a variance curve
functional and Z its parameter process.

Note that G represents the curve in terms of fixed time-to-maturity x := T−t
rather than in maturity T . Such a Musiela-representation [21] is advantageous
for two reasons: First, the characteristics of a fixed time-to-maturity swap are
more stable than those of fixed maturity swaps and therefore easier to assess
statistically. Secondly, and more importantly, the above representation properly
describes ςt := vt(t) as a predicable and integrable process. We can hence use
it to define the associated stock price process

St := Et

(∫ ·

0

√
ςs dBs

)
(2)

if (1) is used to define a variance curve (the symbol E denotes the Dolean-Dade-
exponential and B some standard Brownian motion).

2In practise, one such functional G is given implicitly if Neuberger’s [22] method to compute
variance swap prices is applied: The volatilities of the underlying vanilla prices are usually
given by an interpolation of the implied volatilities.
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Writing the diffusion Z as dZt = µ(t;Zt) dt + σ(t;Zt) dWt, the task at hand
is to assess whether G and Z are consistent in the sense that vt given by (1) is a
non-negative martingale. Some basic calculus shows (theorem 2.1) that (G,Z)
are consistent if and essentially only if

∂xG(Zt;x) = µ(t;Zt) ∂zG(Zt; x) +
1
2
σ2(t; Zt) ∂zzG(Zt;x) . (3)

We also show that if the forward variance process is then defined by (1), the
associated index price process with instantaneous variance ςt = vt(t) is indeed a
local martingale and the market with the index price process (2) and the price
processes of all variance swaps is free of arbitrage.

Problem Find realistic functionals G and, for a given G, a consistent diffusion
process Z such that (3) holds.

We will present a few such curve functionals in section 3. One example is
the functional

G(z; x) = z2 + (z1 − z2)e−z3x (z1, z2, z3) ∈ R+3
.

This functional is a first non-trivial representant from the class of exponential-
polynomial models which have been discussed by Filipovic [13] for interest rates.
Similar to him, we find that in general the coefficients in the exponentials (ie, z3

above) must be constant if the curve is to produce arbitrage-free variance swap
prices.

We also find that none of three investigated standard implied volatility term-
structure functionals such as “square root in time” can be used as a variance
curve functional.

We then combine those results and apply them to the standard market prac-
tise of recalibration of various models. Taking Heston’s popular model [19] as
an example, we show that mean-reversion must be kept constant during the life
of an exotic to ensure that its price process is a local martingale in the real
world of the institution (where it is the result of frequent recalibration).

We also show that the abovementioned implied volatility term-structure
functionals we cannot consistently recalibrated to the market.

Structure of the article

We will start in the next section by introducing the main assumptions and then
continue with the build-up of the variance swap term-structure, the definition
of the forward variance curve and the derivation of the corresponding HJM-type
conditions. An application of Hilbert space calculus shows how we can simplify
matters when we switch from a parameterization in fixed maturity T to fixed
time-to-maturity x.

In the third section, we will then present some examples. The fourth section
will review the impact of our findings on the practise of daily re-calibration.

We conclude in section five.
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2 Variance Curve Models

We want to discuss variance curve models, where we model the stock price
process and the full term structure of variance swaps, or rather the forward
variance curve.

2.1 The Model Framework

We will model a continuous positive index price process S which pays no div-
idends in a market where the prevailing interest rates are zero. We want to
model it as a local martingale on a stochastic base W = (Ω,F∞,P,F) with an
n-dimensional Brownian motion W = (W i)i=1,...,n and which creates the fil-
tration F. Following Revuz/Yor [25] chapter IV.2 we denote by H2 the space
of all square-integrable martingales, L2 the space of all predicable processes ϕ

such that E[
∫ T

0
ϕ2

s ds] < ∞ and H loc and Lloc the respective local spaces. The
symbol P denotes the previsible σ-algebra on Ω× [0,∞) and B(V ) is the Borel-
σ-algebra of a topological space V . We will use the symbols x ∨ y := max(x, y)
and x ∧ y := min(x, y).

The financial contract which pay out 〈log S〉T at T is called a (zero mean)
variance swap. We denote the price of such a contract at time t by Vt(T ) with
Vt(T ) = VT (T ) for t > T .

Definition 2.1 (Variance Swap model) We call the pair (S, V ) with V = (V (T ))T∈[0,∞)

a Variance Swap Model (on (P,F)) if

1. The price process S is a positive continuous local martingale,

2. for each T < ∞, the process V (T ) is a non-negative martingale with
V0(T ) < ∞ and VT (T ) = 〈log S〉T .

The above conditions that all tradables are local martingales on (P,G) are gen-
erally equivalent to “No Free Lunch with Vanishing Risk” as shown by Delbaen
/ Schachermayer [8].

Let (S, V ) a variance swap model. Since S is a positive local martingale, we
can write it as

St = Et(X) with X ∈ H loc

(without loss of generalization we set S0 = 1). Because the filtration F is
generated by W we find some non-negative short variance process ς ∈ H loc and
a “driving” Brownian motion B adapted to F such that

Xt =
∫ t

0

√
ςs dBs .

Then we have by construction

〈log S〉t = 〈X〉t =
∫ t

0

ςs ds .
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Since the price processes V (T ) are given as

Vt(T ) = E
[ 〈log S〉T

∣∣Ft

]
= E

[ ∫ T

0

ςs ds
∣∣Ft

]
(4)

we obtain E
[
X2

T

]
= E [ 〈X〉T ] = V0(T ) < ∞ and therefore

Proposition 2.1 X is a square-integrable martingale up to each T .

The martingales Vt(T ) := E[
∫ T

0
ςs ds|Ft] admit a representation

Vt(T ) = V0(T ) +
∫ t

0

bs(T ) dWs b(T ) ∈ Lloc .

and are absolutely continuous in T (since Fubini applies) with derivative

vt(T ) := ∂T Vt(T ) = E
[
ςT

∣∣Ft

]
. (5)

We call v(T ) the (fixed maturity) forward variance (compare the similarity with
the forward rate in interest rate modelling). With (5), we have also shown:

Proposition 2.2 (HJM condition for Forward Variance Curves I) If (S, V ) is
a variance swap model, then the process vt(T ) := ∂T Vt(T ) is a martingale and
can be written as

vt(T ) = v0(T ) +
∫ t

0

βs(T ) dWs (6)

with β(T ) := ∂T b(T ) ∈ Lloc.

The fact that β(T ) = ∂T b(T ) follows from the uniqueness of the representation
of a local martingale on F with respect to W .

Now consider that v is given and that we want to use these processes to
define a variance swap model:

Definition 2.2 (Variance Curve Model) We call v = (v(T ))T∈[0,∞) a Variance
Curve Model (on W) if for all T < ∞:

1. v(T ) is a non-negative continuous martingale with representation

dvt(T ) = βt(T ) dWt

for some β(T ) ∈ Lloc and

2. V0(T ) :=
∫ T

0
v0(x) dx exists and is finite.

For any such model and a real-valued Brownian motion B, the associated stock
price process is then defined as the local martingale

St := Et

(∫ ·

0

√
ςt dBt

)

and (S, V ) is a variance swap model.
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Proof – First of all note that ςt := vt(t) is well-defined since it is continuous in
both t and T . Moreover, E[

∫ T

0
ςs ds] =

∫ T

0
E[ςt(t)]dt =

∫ T

0
E[ς0(t)]dt = V0(T ) < ∞,

i.e.
√

ς ∈ L2. Hence, S is a local martingale.
It remains to show that Vt(T ) :=

∫ T

0
vt(s) ds is a martingale. The process

V (T ) is clearly adapted. Moreover, E[VT (T )] = E[
∫ T

0
vT (x) dx] =

∫ T

0
E[vT (x)] dx =

V0(T ) < ∞, so V (T ) is indeed a martingale. ¤

We have seen that a variance curve model like an HJM interest-rate model is
full determined by specifying the “initial curve” v0, the “volatility structure” β
and the “correlation structure” B.

Remark 2.1 Dupire [12] has used a similar result as proposition 2.2 and applied
it to a representation of the forward variance as an exponential, i.e.

vt(T ) = v0(T )E
(∫ t

0

β∗s (T ) dWs

)
(7)

See also corollary 2.1 in the case of finite-dimensional representations.

2.1.1 Fixed time-to-maturity

In the above definition 2.2, we need vt(t) to define the associated stock price
process. In the current setting, this object is defined across the maturities T .
Let us consider therefore:

Definition 2.3 We call
v̂t(x) := vt(t + x)

the fixed time-to-maturity forward variance, and V̂t(x) :=
∫ x

0
v̂t(s) ds the fixed

time-to-maturity variance swap.

Remark 2.2 Even though such a fixed time-to-maturity parameterization for
HJM-models has been introduced by Musiela [21], it is more common in interest-
rate theory to deal with fixed maturity objects because the maturities of underly-
ing market instruments are typically fixed points in time (such as LIBOR rates
and Swaps).3

A variance curve, in contrast, is more naturally seen as a fixed time-to-
maturity object, in particular given that the short end of the curve is the instan-
taneous variance of the log-price of the stock.

Note that above definition is valid for each fixed t and almost all ω. To
define a proper process v̂, we have to impose some additional regularity on v:

3In a typical LIBOR rate model, the short rate is not modelled.
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Proposition 2.3 (HJM condition for Forward Variance Curves II) Let (S, v) be
a variance curve model. Assume that v0 is differentiable in T , that β in (6) is
B[R]×P-measurable and almost surely differentiable in T with

√∫ ∞

0

∂T βt(x)2 dx ∈ Lloc . (8)

Then, ∂T vt(T ) is given as

∂T vt(T ) = ∂T v0(T ) +
∫ t

0

∂T βs(T ) dWs , (9)

(see Protter [24] p. 208) and the fixed time-to-maturity forward variance v̂(x)
has the form

v̂t(x) = v̂0(x) +
∫ t

0

∂xv̂s(x) ds +
∫ t

0

β̂s(x) dWs (10)

where β̂t(x) := βt(t + x).

Proof – With the assumptions above, we have

v̂t(x) = vt(t + x)

(6)
= v0(t + x) +

∫ t

0

∂T βs(u + x) dWu

v0,βu∈C1

= v0(x) +
∫ t

0

∂T v0(s + x) ds

+
∫ T

0

{
βu(u + x) +

∫ t

u

∂T βu(s + x) ds

}
dWu

(8)
= v0(x) +

∫ t

0

{
∂T v0(s + x) +

∫ s

0

∂T βu(s + x) dWu

}
ds

+
∫ T

0

βu(u + x) dWu

(9)
= v0(x) +

∫ t

0

∂T vs(s + x) ds +
∫ T

0

βu(u + x) dWu

= v̂0(x) +
∫ t

0

∂T v̂s(x) ds +
∫ T

0

β̂u(x) dWu ,

as claimed. Note that (8) basically ensures that
∫ s

0
∂T βu(T ) dWu is a local mar-

tingale. ¤

From (10) it is natural to extend the framework to model v̂ as a martingale
with values in an Hilbert space. Details will be carried out in section 2.3.

For practical implementations, however, it is more suitable to represent v
and v̂ via finite-dimensional diffusion processes.
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2.2 Consistent Variance Curve Functionals

Consider the situation in the reality of a trading floor: We do not actually see
an infinite number of variance swap prices (V0(T ))T∈[0,∞) in the market. Rather
a discrete set of swap prices will be interpolated by some functional, which is
parameterized by a finite-dimensional parameter vector.

Definition 2.4 (Variance Curve Functional) A Variance Curve Functional with
parameter space Z ∈ Rm is a non-negative C2,1-function4 G : (z;x) ∈ Z×R+

0 →
R+

0 such that
∫ T

0
G(z; x) dx < ∞ for all (z, T ).

Given a functional G, we now have to find a process Z = (Zt)t∈[0,∞) of param-
eters such that

v̂t(x) := G(Zt;x) , x ≥ 0 ,

forms a variance curve model. To avoid arbitrage, we face a situation similar
to the “consistency problem” described by Björk and Christensen [3]: Given G,
can we find a process Z such that v is a martingale?

Definition 2.5 (Consistent Parameter Process) A Consistent Parameter Pro-
cess for (G,Z) is a continuous diffusion process Z, such that for all Z0 ∈ Z we
have Zt ∈ Z and the process

vt(T ) := G(Zt;T − t) , t ≤ T ,

is a martingale. In this case, v is a variance curve model and we call Z and G
consistent.

Remark 2.3 Note that
ςt = G(Zt; 0)

is the instantaneous variance of an associated stock price process of the variance
curve model given by (G, Z). Here,

√
ς ∈ L2 by construction. In this sense,

(G, Z) defines a variance swap model.

Naturally, we now have to ask whether a given curve functional G is con-
sistent at all and if so, whether we can specify a particular consistent process.
Let

dZt = µ(t; Zt) dt + σ(t;Zt) dWt . (11)

We will want to chose (µ, σ) such that a unique solution exists. For example,
local Lipschitz-continuity is sufficient.

Notation Let Ξ = Ξ(Z) be the set of processes Z with coefficients (µ, σ) such
that Z is a unique strong solution of (11) for all Z0 ∈ Z and does not explode
in finite time. We also write (µ, σ) ∈ Ξ and denote by Ξh the subset of time-
homogeneous (µ, σ).

4Differentiability relates to the relative interior of Z.
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The following theorem is just a simple application of Ito’s formula (compare
also proposition 3.1.1 in [13]).

Theorem 2.1 (HJM condition for Variance Curve Functionals) A process Z ∈
Ξ is consistent with (G,Z) if and only if

∂xG(Zt; x) = µ(t; Zt) ∂zG(Zt; x) + 1
2σ2(t;Zt) ∂zzG(Zt; x)

Zt ∈ Z

}
(12)

holds P ⊗ λ|[0,∞)-as for all Z0 ∈ Z. Here, we understand as usual µ∂zGt =∑
j µj ∂zj Gt and σ2 ∂zzG =

∑
i,j σiσj ∂zizj G.

Proof – First assume Z is consistent with G. Then, (12) holds P ⊗ λ|[0,∞)-as
by application of Ito’s formula to since vt(T ) := G(Zt;T − t) is a martingale.

Now assume Z is such that (12) holds. Then vt(T ) := G(Zt; T − t) for t ≤ T
is a local martingale by Ito’s formula. Moreover, we have vT (T ) = G(ZT ; 0),
hence vt(T ) = E

[
G(ZT ; 0)

∣∣Ft

]
and v must be a martingale. ¤

Now note that (12) is an equation in (Zt, x) which holds P ⊗ λ|[0,∞) almost
surely. However, Zt might have a much smaller support than Z.

Definition 2.6 We will call a process Z ∈ Ξ essentially diffuse if there exists
a state space D ⊂ Rm such that for almost all s ≥ 0, zs ∈ D and all t > s:

1. The support of Zt started in Zs = zs is D.

2. We have λm ¿ P[Zt ∈ ·|Zs = zs] on D.

We denote by Ξ∗ the subset of such processes in Ξ.

This definition excludes singular unconnected points to which the process would
have to jump to (such as [0, 1]∪{2} ⊂ R+) and state spaces where one component
is constant or time-dependent, for example supp(Zt) = R+×{αt} ⊂ R2. It also
excludes “branching processes” which change their direction in certain reflection
points or absorbing states.

Corollary 2.1 (HJM condition as PDE) An essentially diffuse process Z ∈
Ξ∗ is consistent with G if and only if D = Z and

∂xG(z; x) = µ(t; z) ∂zG(z;x) +
1
2
σ2(t; z) ∂zzG(z; x) (13)

holds λm+2-as on D × R+
0 × R+

0 .

Proof – Fix s ≥ 0 and zs ∈ Z. Since Z is essentially diffuse, let P[Zt ∈ ·|Zs =
zs] = pt + ot where pt ≈ λm|D and ot ⊥ λm. Let ψt be the strictly positive
density of pt wrt to λm|D. Then, for any appropriate F ,

EP⊗λ

[
F (t; Zt)

∣∣ Zs = zs

]
=

∫

R+

∫

D
F (t, z)P[Zt ∈ dz|Zs = zs] dt

≥
∫

R+

∫

Rm

F (t, z)1z∈D ψt(z) dz dt

10



Hence, if (12) holds P⊗ λ-as then (13) holds λm+1-as on D × R+. The reverse
assertion follows since Zt takes only values in D. ¤

A curve functional is of the form G(z; x) = E
[
G(Zt+x; 0)

∣∣ Zt = z
]
. This rep-

resentation is independent of t, and the process Z can indeed often assumed
to be homogeneous: For example, if (µ, σ) are locally Lipschitz, then let U
be the set of t ≥ 0 such that equation (13) is satisfied in (z, t, x) for almost
all (z, x) ∈ Z × R+

0 . Fix some u ∈ U . Then, the homogeneous coefficients
(µ(u, ·), σ(u, ·)) are also Lipschitz and the SDE in t,

dZu
t = µ(u; Zu

t ) dt + σ(u; Zu
t ) dWt Zu

0 = Z0 (14)

admits a strong solution for all Z0 ∈ Z and is time-homogeneous. By definition,
Zu is also consistent with G.

If G itself is a positive transformation of some other function g, we can
translate corollary 2.1 accordingly:

Corollary 2.2 Let H be a positive smooth function and G(z; x) := H(g(z; x))
such that G is a variance curve functional. With the conditions of corollary 2.1,
Z is consistent with G if and only if

H ′(g)∂xg = µH ′(g)∂zg +
1
2
σ2

{
H ′′(g)(∂zg)2 + H ′(g)∂zzg

}
(15)

on D × R+ and
∫ T

0
G(z; x) dx < ∞ for all T < ∞. In particular,

• In case H(g) := exp(g), then (15) reduces to

∂xg = µ∂zg +
1
2
σ2

{
(∂zg)2 + ∂zzg

}
. (16)

• For H(g) := 1
2g2, we get

g∂xg = µ g∂zg +
1
2
σ2

{
(∂zg)2 + g∂zzg

}
.

Equation (16) is the relevant condition if we want to deal with exponential
models such as (7).

Remark 2.4 (Hedging with Variance Swaps) We have built our variance curve
model on a stochastic space where the measure P was fixed and a martingale
measure. In general, of course, this measure does not need to be unique. How-
ever, if the process S = (X, v(T )T∈[0,∞)) is extremal on its own filtration, the
model becomes complete and we can hedge arbitrary exotic payoffs with finitely
many variance swaps and the stock. Whether S is extremal on its filtration es-
sentially depends on invertibility of its volatility matrix in an appropriate sense
(see Karatzas/Shreve [20] chapter 6.7).
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Remark 2.5 A consistent variance curve model will typically have remaining
free parameters. In practical applications, the prices of European options on
the underlying stock can be used to calibrate these parameters, such that the
resulting model fits both the variance swap and the vanilla option market.

2.3 Infinite-Dimensional Models

As promised in the end of section 2.1.1, we now show how to apply the framework
of Hilbert space stochastic calculus to variance curves in infinite dimensions. In
particular, we will construct a Hilbert space H+ such that a result similar to
proposition 2.3 can be derived under the alternative assumption that the vari-
ance curves are martingales with elements in H+ (proposition 2.5). Moreover,
we will show how the results of the previous sections translate into this setting.

We first recall the main facts on stochastic calculus in Hilbert spaces. The
reader is referred to Filipovic [13] or DaPrato/Zabzyk [23] for more details: To
allow application of the results in [13], we will need a convenient Hilbert space
in which our variance curve processes will take their values.

Define as in [13] p. 75ff a norm for absolutely continuous functions h via

||h||2H := |h(0)|2 +
∫ T

0

|h′(s)|2 w(s) ds

for some non-decreasing weighting function w. We will use w(s) := eαs for
α > 0. Then,

H :=
{

h(x) =
∫ x

0

h′(s) ds
∣∣∣ ||h||H < ∞

}
.

is a separable Hilbert space (theorem 5.1.1 in [13]) with scalar product

< h, g >T = h(0)g(0) +
∫ T

0

h′(s)g′(s)w(s) ds

Note that by definition h ∈ H has a continuous version with finite limit limx→∞ h(x)
(see [13] p. 77). Accordingly, h is bounded. The space H satisfies

• (H1) The functions h ∈ H are continuous and h(x) is a continuous linear
functional.

• (H2) The semigroup S(t) of right-shifts given by (S(t)h)(x) := h(t + x) is
strongly continuous in H with infinitesimal generator A such that Ah = h′.

Also see theorem 5.1.1 in [13] and remark 5.1.1 (with regards to the fact that we
do not require that w−1/3 ∈ L1(R+)). As a consequence,

∫ ·
0
h(y) dy is continuous

linear functional on H, see lemma 4.3.1 in [13]. Hence,

Proposition 2.4 We have || ∫ x

0
h(y) dy||H ≤ xu(x) for some constant u which

depends only on x.

12



We will consider positive functions in H as models for the (forward) variance
curve. Hence, let

H+ := { h ∈ H : h ≥ 0 λ-almost surely } .

Armed with this Hilbert space, we will now briefly recall how we can define a
Brownian motion integrands such that the resulting martingales take values in
our Hilbert space H.

Let U be a second Hilbert space, for example the canonical Hilbert space
of sequences `2 as in Filipovic [13] p. 14). Let (W i)i=1,... be the countable
sequence of independent standard Brownian motions defined on W. We fix an
orthonormal basis (gi)i=1,... of an extended space (see Da Prato/Zabzyk [23] p.
96) such that

∞∑

i=1

giW
i
t

defines what we call U -valued cylindrical Brownian motion (with respect to
an operator Q which guarantees that W exists; see [13] p.14). We will abuse
notation by also writing W for this process.

Note since we want to integrate over W such that the result are elements of
the Hilbert space H, the integrands must be linear operators ϕ : U → H. We
introduce the operator norm

||ϕ||2L0
2(H) :=

∞∑

i=1

||ϕ(gi)||2H

and define L0
2(H) as the space of those operators for which this norm is finite.

Now denote by L2
T (H) the space of (equivalence classes of) predictable processes

φ with values φt ∈ L0
2(H) such that

||φ||2L2
T (H) := E

[ ∫ T

0

||φt||2L0
2(J)

]

is finite. Using the usual approximation via simple integrands we can then define
the integral ∫ t

0

φs dWs

such that the intuitive relation
∫ t

0

φs dWs
P←−

∞∑

i=1

φs(gi)W i
t

holds (see [13] proposition 2.2.1 p. 17). Such an integral defines a square-
integrable martingale with respect to ||M ||2H2

T (H)
:= E[||MT ||2H ], if φ ∈ L2

T (H).

13



As usual, we can then extend the space via localization: If we consider
the space Lloc

T (H) of predictable processes φ with values in L0
2(H) such that

only P[
∫ T

0
||φt||2L0

2(H)
] < 1 holds, then we obtain the space Hloc

T (H) of local

martingales. We will omit the notion of T if a process is in Hloc
T for all T and

define H1 as the space of all martingales. A subscript“+” on H will denote
non-negative processes.

More generally, we call a pair (h, g) of predictable processes integrable if

P

[ ∫ T

0

(
||hs||H + ||gs||2L0

2(H)

)
ds < ∞

]
(17)

In that case, Mt :=
∫ t

0
hs ds +

∫ t

0
gs dWs is a semimartingale. This condition

resembles (C2) of Filipovic [13] p. 59. We will also assume (C1), that is the
initial curves are always elements of H+.

Remark 2.6 In this setting it is also true that if the tradables are local mar-
tingales then the market is free of arbitrage in the strong sense that it does not
admit a “free lunch with vanishing risk”.

2.3.1 Variance Curve Processes in Infinite Dimensions

After we have now clarified the setting, we will limit our attention to forward
variance curve processes v which take values in H+. To this end, assume that
W supports countably many independent Brownian motions W = (W i)i=1,....
The relatively unhandy assumptions in proposition 2.3 can then be replaced by:

Assumption 1 We assume that v ∈ Hloc
+ .

Since v is a local martingale, we have in particular

dvt(T ) = bt(T ) dWt

where W is the U -valued Brownian motion introduced above. Let as before
v̂t(x) := vt(t + x). Then, we obtain:

Proposition 2.5 For all vt ∈ Hloc
+ , we also have v̂t ∈ Hloc

+ with

dv̂t(x) = ∂xv̂t(x) dt + b̂t(x) dWt (18)

where b̂t(x) := bt(t + x).

Proof – Recall that S(u)vt(·) = vt(u + ·). Then,

v̂t(x) = vt(t + x)

= v0(t + x) +
∫ t

0

bs(t + x) dWs

14



= S(t)v̂0(x) +
∫ t

0

S(t− s)bs(s + x) dWs

= S(t)v̂0(x) +
∫ t

0

S(t− s)b̂t(s) dWs .

Using Filipovic [13] p. 24 we find that v̂t(x) is then a mild solution to the linear
equation

dv̂t = Av̂t dt + b̂t dWt (19)

where A is the infinitesimal operator of S. Since Av̂t = ∂xv̂t (see section 2.3)
this shows in particular that (∂xv̂, b̂) is integrable. ¤

The additional assumption 1 above turns out to be relatively strong:

Lemma 2.1 Assumption 1 implies that proposition 2.3 holds.

Proof – We first have to prove that V is a martingale for any v ∈ Hloc
+ .

To this end, note that the process V̄ (T ) is adapted by construction. Due
to proposition 2.4, we have that ||Vt(T )||H ≤ Tu(T ) < ∞, hence ||V (T )||2H2

T
=

E[||VT (T )||2H ] < ∞, even if v is only a local martingale. The martingale property
then follows because v(T ) is a martingale for all T .

As for proposition 2.1, it follows then that X is a square-integrable martin-
gale and S is therefore a local martingale. ¤

A simple application of Ito’s lemma also yields a similar statement as theo-
rem 2.1 for the case of functionals which take values in H+.

Proposition 2.6 Any function G with values in H+ which admits a parameter
process such that (12) holds is a consistent variance curve Functional, i.e.

vt(T ) = G(Zt; T − t) .

The Hilbert space approach is more suitable if we are to model the variance
curve as an infinite-dimensional object, since it is not anymore necessary to
impose additional constraints on β. These are well embedded in condition (H2)
on H (compare p. 59 in [13]), which also ensures that v̂t(0) is properly defined.

3 Examples of Variance Curve Models

In this section we present some examples. We will discuss variance curve models
which can be reduced to standard stochastic volatility models and will show that
various standard implied volatility term structure schemes are not consistent in
the sense developed above.
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3.1 Exponential-Polynomial Variance Curve Models

The family of Exponential-Polynomial Curve Funtional is parameterized by z =
(z1, . . . , zm; zm+1, . . . , zd) ∈ R+m × Rd−m and given as

G(z;x) =
m∑

i=1

pi(z;x)e−zix (20)

where pi are polynomials of the form pi(x) =
∑N

j=0 aij(z)xj with coefficents
a such that pi > 0 λd-as, also compare Filipovic [13]. We assume that any
parameter process has Zi

t 6= Zj
t for i 6= j, since otherwise we can just rewrite

(20) accordingly. Also note that
∫ T

0
G(z;x) dx < ∞ for all T < ∞.

Lemma 3.1 The coordinates Z1, . . . , Zm of any consistent parameter process Z
are constant.

Proof – We have

∂xG = −zi

m∑

i=1

pi(z;x)e−zix +
m∑

i=1

∂xpi(z; x)e−zix

∂zj G = −pi(z; x)xe−zix1j≤m +
m∑

i=1

∂zj pi(z; x)e−zix (21)

∂2
zjzj

G =
(
pi(z; x)x2e−zix − 2∂zj pi(z;x)xe−zix

)
1j≤m +

m∑

i=1

∂2
zjzj

pi(z; x)e−zix

We ignore the mixed terms ∂2
zjzk

G, since we can already see that ∂2
zjzj

G with
j ≤ m are the only terms in (13) which involve polynomials of degree gradpi +2
as factors in front of the exponentials e−zix. Since we choose the zi distinct,
and because neither µ nor σ depends on x, this implies that σ2

i = 0 for i ≤ m.
In other words, the states zi for i ≤ m cannot be random.

Next, we use (21) and find with the same reasoning (now applied to the poly-
nomials of degree gradpi+1) that µi = 0 for i ≤ m, so Zi must be a constant. ¤

We will now present two particular exponential-polynomial curve functionals.
In the light of lemma 3.1, we will keep the exponentials constant but investigate
the possible dynamics of the remaining parameters.

Example 1 (Linearly Mean-Reverting Variance Curve Models) The Functional

G(z;x) := z2 + (z1 − z2)e−κx .

with z ∈ R+ × R+ is consistent with Z if µ1(t; z) = κ(z2 − z1) and µ2(t; z) = 0
(that is, Z2 must be a martingale). The volatility parameters can be freely
specified, as long as Z1 and Z2 remain non-negative.

We call such a model a linearly mean-reverting variance curve model.
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A popular parametrization is σ2 = 0 and σ1(t; z1) = ν
√

z1 for some ν > 0, which
has been introduced by Heston [19]. (Z1 is then the square of the short-volatility
of the associated stock price process). More generally, we can set σ1(t; z1) = νzα

1

for some constant α ≥ 1
2 . See Andersen/Piterbarg [1] for some more details on

such models.
This example also shows the reason why we allow for inhomogeneous pro-

cesses: The volatility process of Z can well be specified with some term-structure,
e.g. to take into account seasonal effects like lower volatility over different trad-
ing periods.

Proof – Corollary 2.1 implies that we have to match

−κ(z1 − z2)e−κx != µ1(t; z)e−κx + µ2(t; z)(1− e−κx)

Since the left hand side has no term constant in x, we must have µ2(t; z) = 0
(i.e. Z2 is martingale), and then µ1(t; z) = κ(z2 − z1). ¤

The next model is a generalization of the above. We will omit the proof
which works similar as above.

Example 2 (Double Mean-Reverting Variance Curve Models) Let c, κ > 0 con-
stant and let z = (z1, z2, z3) ∈ R+3. The Curve Functional

G(z;x) :=

{
z3 + (z1 − z3)e−κx + (z2 − z3)κ e−cx−e−κx

κ−c (κ 6= c)

z3 + (z1 − z3 − κx(z2 − z3)) e−κx (κ = c)
(22)

is consistent with any parameter process Z such that

dZ1
t = κ(Z2

t − Z1
t ) dt + σ1(Zt) dWt

dZ2
t = c(Z3

t − Z2
t ) dt + σ2(Zt) dWt

dZ3
t = σ3(Zt) dWt

and is called a double mean-reverting variance curve model.

This turns out to be a flexible and applicable model: At the time of writing,
the variance functional (22) fits the variance swap market of major indices well,
so this kind of double mean-reverting models is a good candidate for a variance
curve model. Such a model has recently been successfully implemented to price
and hedge options on variance and related products. Higher order models with
similar structure can also be considered.

3.2 Exponential Curve Models

As in (20), let (pi)i=1,...,m be polynomials and let

g(z; x) =
m∑

i=1

p1(z; x)e−zix
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with (z1, . . . , zm) ∈ R+m. Set

G(z; x) := exp(g(z; x)) . (23)

Using corollary 2.2, we find similar to the above results (also compare theorems
3.6.1 and 3.6.2 from Filipovic [13] p.52ff):

Lemma 3.2 For each consistent parameter process Z for G, the coordinates
Z1, . . . , Zm are constant. Moreover, there must be at least one pair i 6= j such
that Zi = 2Zj, otherwise Z is entirely constant.

Example 3 (Exponential Mean-Reverting Models) Let

g(z;x) = z2 + (z1 − z2)e−κx +
z3

4κ
(1− e−2κx)

with z1, z2, z3 ∈ R+.
Then, σ3 ≡ 0.
Under the assumption that µ1(t; z) = κ(z2−z1) is a mean-reverting term, we

further find that 0 ≤ µ2(t; z) ≤ 1
2z3 for all z, so that σ1(t; z) =

√
z3 − µ2(t; z),

σ2(t; z) = σ1(t; z)−
√

z3 − 2µ2(t; z) and µ3(t; z) = −µ2(t; z).

In the case µ2 = 0, this yields σ2 = 0 and then σ1(t; z) =
√

z3, which is the
exponential Ornstein-Uhlenbeck stochastic volatility model discussed in depth
by Fouque et al in [15].

3.3 Black & Scholes

The most trivial example of a variance curve functional is a constant function,
i.e.Z = R+ and

G(z; x) := z1 . (24)

This is the Black&Scholes variance curve in the sense that the prices of variance
swaps are linear.

To satisfy (13) it is clear that µ1(t; z1) must vanish. The volatility function
σ1(t; z1) must be chosen such that Z1

t ≥ 0. In other words, Z1
t must be a positive

martingale. An example is the log-normal model, Zt := Z0 E(
∫ t

0
w(s) dW 1

s ),
where σ1(t; z) = z1w(t).

The next idea would be to set G to a fixed function,

G(z; x) := γ(x) .

However, it follows from (13) that this implies γ(x) ≡ α > 0 is constant.
In reality, we will always employ some term-structure interpolation through

observed implied volatilities in order to obtain a time-dependent Black&Scholes
volatility function. A natural question is if we can use such methods to model
the variance curve. It becomes even more important if we take into account the
problem of recalibration in section 3.4 below.
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3.3.1 Popular Volatility Term-structure Interpolation methods

In several texts, it is supposed to interpolate implied volatility by a “square root
in time” or a logarithmic rule ln(1+x) (the latter has for example been proposed
by Haffner p. 87 in [17]). The implied volatility at maturity x is defined as

Σ(z;x) = z1 + z2w(x)

where w is for example

w1(x) := ln(1 + x) (25)
w2(x) :=

√
ε + x (26)

w3(x) := 1/
√

ε + x (27)

Hence, we may well test such an interpolation scheme proposed for a volatil-
ity surface to be used for a variance curve. In particular, if Σ(z; x) is the
implied volatility interpolation for maturity x with some parameter z ∈ Z, then
Σ(z;x)2x is the overall implied variance, i.e. the price of a variance swap with
maturity x.

In our previous notation,

G(z; x) := ∂x

(
Σ(z; x)2x

)
= Σ(z;x)2 + 2Σ(z;x)Σ′(z; x)x

in case Σ(z; x) = z1 + z2w(x), that gives

G(z; x) = (z2
1 + 2z1z2w(x) + z2

2w2(x)) + 2(z1 + z2w(x))z2w
′(x)x

= z2
1 + 2z1z2(w(x) + w′(x)x) + z2

2(w2(x) + 2w(x)w′(x)x) (28)

We have to show:

∂xG
!= µ(t; z) ∂zG +

1
2

σ2(t; z) ∂zzG (29)

We obtain

∂xG = 2z1z2 {2w′(x) + w′′(x)x}
+2z2

2

{
2w′(x)w(x) + w′(x)2x + w′′(x)w(x)x

}

∂z1G = 2z1 + 2z2 {w(x) + w′(x)x}
∂z2G = 2z1 {w(x) + w′(x)x}+ 2z2

{
w2(x) + 2w(x)w′(x)x

}

∂z1z1G = 2
∂z2z2G = 2

{
w2(x) + 2w(x)w′(x)x

}

∂z1z2G = 2 {w(x) + w′(x)x} .

We now show for w1 that z2 = 0 and µ1 = 0, i.e. that the functional degenerates
to the pure Black&Scholes case (24) if it is consistent. First, we compute the
derivatives

w1(x) = ln(1 + x) , w′1(x) =
1

1 + x
and w′′1 (x) = − 1

(1 + x)2
.
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We therefore have

∂xG = 2z1z2

{
2

1 + x
− x

(1 + x)2

}
+ 2z2

2

{
2

ln(1 + x)
1 + x

+
x− x ln(1 + x)

(1 + x)2

}
.

Now note that none of the terms ∂zi
G or ∂2

zizj
contains terms in 1

(1+x)2 . Hence,
to satisfy (29), for all x ≥ 0, we must have

0 != −2z1z2x + 2z2
2(x− x ln(1 + x)) . (30)

Assume z2 6= 0. Then, (30) implies z1 = z2(1− ln(1+x)), which is not possible.
Hence z2 = 0 and the curve G reduces to the Black&Scholes case.
A similar computation for w2 and w3 shows the same result, i.e.

Conclusion 3.1 None of the proposed interpolation schemes (25)-(27), if ap-
plied to variance interpolation, yields a consistent variance curve model except
if reduced to the constant Black&Scholes case (24).

3.3.2 Link to Stochastic Implied Volatility

Now consider the stochastic implied volatility model as proposed by Haffner [17]
chapter 6 p. 116 equations (6.2)-(6.6). At any time t, the implied volatility for
time-to-maturity x and relative log-strike k in his model is given by

Σ(z;x, k) := z1 + z2 ln(1 + x)+

(z3k (1 + %3 ln(1 + x)) + z4k
2 (1 + %4 ln(1 + x))

where %3, %4 ∈ R are constants. Hence, if Z is a consistent parameter process,
the implied volatility at time t given a spot of St and parameters Zt for cash
strike K and maturity T = t + x is given by Σ (Zt; T − t, ln K/St).

With the results of the previous section, we then see that this model should
not degenerate to the case z3 = z4 = 0, because then we obtain Σ(z̃; x, k) =
z̃1 + z̃2 ln(1 + x) which is only consistent if z̃2 = 0.

In general, since every stochastic implied volatility model is naturally also
a variance curve model, we note that we can use theorem 2.1 as a necessary
condition to ensure that the resulting variance swap processes are martingales.

3.4 Recalibration of Stochastic Volatility Models

Another important consequence of the observations in section 3.1 is that daily
recalibration of pricing models is subject to the same arbitrage conditions as
developed above:

We will assume that an institution had pricing model M in place, which is
parameterized by some parameter z ∈ Z and which then allows to compute
prices of arbitrary claims on S.
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As a guiding example, we will use Heston’s model: Let W̃ = (Ω̃, F̃∞, P̃, F̃)
be the standard Wiener space with two-dimensional Brownian motion W̃ =
(W̃ 1, W̃ 2). Then define

dṽτ := κ(m− ṽτ ) dt + ν
√

ṽτ dW̃ 1
τ ṽ0 = v0 (31)

dX̃τ :=
√

ṽτ d(ρW̃ 1
τ +

√
1− ρ2W̃ 2

τ ) X̃0 = 0 (32)

with z = (S0, v0;κ,m, ν, ρ) ∈ Z = R+4 × (−1,+1) such that S̃ = S0 E(X̃) is a
martingale.

We now consider this as a model with parameters z ∈ Z. It is clear that
inside the model in model time τ only the states Sτ and vτ change while the
remaining four parameter are assumed to be constant. (We have used the time-
index τ to underline the fact that τ denotes model time.)

On this space, we denote by θ the shift-operator as in Revuz/Yor [25] p. 35.
Let H be a payoff dependent on the path of S̃, i.e. a measurable and integrable
map

H : C[0,∞) → R .

Given a continuous non-random function (Yu)u∈[0,t] with Yt = S̃0 we can nonethe-
less define

H ◦ θY
t (S̃) := H(Y 1 [0,t) + S̃ ◦ θ−t1 [t,∞) ) .

This formalizes the idea of “gluing” Y in front of S̃ to account for the unavail-
able information before τ = 0.

Now assume that we are trading in a market with continuous stock price
process S and a constant cash bond of 1. Besides the stock S, we assume that
at any time t, prices of various reference instruments such as European option
prices are publicly quoted. We use their prices Pt = (P i

t )i=1,...,Nt to calibrate
our pricing model, i.e. we run an algorithm

Ψ : Pt 7→ Zt ∈ Z

which uniquely determines some model parameters Zt. We use these parameters
to value our exotic option positions (the term “exotic” here means that there
is no publicly available market price for the product). We denote by H the set
of payoffs of those exotic structures. At any time t the price of such an exotic
option H ∈ H is then given by

πt[H] := ẼZt

[
H ◦ θS

t (S̃)
]

(note that past fixings etc are encoded in the θS shift). It is apparent that
this procedure yields a new meta-model M by means of successive recalibration
which is given by the price processes of the exotics in the book of the institution
and the stock price itself

M = (S;π(H)H∈H) .
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Clearly, there are two categories of arbitrage in such a meta-model: The first,
which we want to call static arbitrage, is arbitrage within the underlying pricing
model M itself (such as violations of European call price relations etc). The
second, we call it dynamic arbitrage, relates to the meta-model:

Under which conditions do the price processes in M generate arbitrage?
In the light of our variance curve models, it is clear that the implied variance

curve functional of the meta-model must be consistent. This is a necessary
condition for any meta-model and can therefore be applied under the assumption
of continuity of the price process S and the parameter process Z. It follows:

Proposition 3.1 The Heston meta-model is not free of dynamic arbitrage if
the speed κ of mean-reversion in Zt is not kept constant.

Proposition 3.2 An meta-model which uses Black&Scholes’ pricing model
with one of the term-structure interpolation of section 3.3.1 admits dynamic
arbitrage if the initially calibrated term-structure is recalibrated.

Given the findings above, a more convenient term-structure interpolation
for implied volatility scheme is given by the “mean-reverting” curves intro-
duced above. These curves can be recalibrated more safely (if the exponential
parameters are kept constant) and provide a good fit to real data.

4 Conclusions

We have developed a framework for variance curve market models, both in
infinite dimensions and in finite-dimensional representations. We have derived
necessary and sufficient conditions to ensure that a variance curve functional
is consistent with some parameter process and applied the results to various
examples which are used in practise. We have shown that mean-reversion in
the analyzed models must be kept constant and that various implied-volatility
term-structure functionals must be used with great care before used in daily
recalibration. A specific variance curve functional, namely the “Double mean-
reverting model”, has been proposed as an application.

Further directions of research can be the introduction of jumps on one hand
side, and an application of more recent results to absence of arbitrage in infinite
dimensions.
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