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Why Study Human Metabolism?

« Metabolic diseases (obesity, diabetics) are major sources of morbidity
and mortality.

« Many common disorders (such as neurodegenerative disorders and
cancer) exhibits significant metabolic alterations

 Metabolic enzymes and their regulators are gradually becoming viable
drug targets

* In born errors of metabolism cause acute symptoms and even death in
early age

* In-vivo studies of tissue-specific metabolic functions are limited in
scope

« Because its there..



"
Previous computational studies

of Human Metabolism

 Dynamic modeling of individual pathways
 Detailed description of the genes, reactions, enzymes
* No connections between pathways

« Specific cell-types and organelles

Red blood cell : Brumen M, Heinrich R, 1984, Schuster R, Holzhlitter

HG, 1995, Wiback et al. 2002
Mitochondria: Vo et al. 2004

- It all changed in 2007...




Recon 1: A human metabolic network
Duarte et al. PNAS, 104(6):1777-82 (2007)

Global Metabolic Map :
Comprehensively represents 2,712 metabolites
known reactions in human cells 3,311 reactions

7 compartments

1,496 genes total

-~ Genome an notation-based
reconstruction
1,134 genes

=a Gap filling and literature-
il based reconstruction

362 genes
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Reconstruction Timeline

Annotation-based reconstruction

+ 1,134 genes

(- 731 automated mapped genes)

Gap filling and literature-based
reconstruction

+ 362 genes
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Our work on modeling Human
Metabolism — topics covered today:

m 1. A method for integrating expression data for
generating tissue specific metabolic descriptions

m 2. Biomarker identification in Inborn Errors of
Metabolism

m 3. A generic method for the construction of

tissue-specific models and its application to
build and test a liver model



1. Tissue-specific modeling [T. Shlomi, M.
Cabili, M. Herggard, B. Palsson, & E. Ruppin;
Nat. Biotech. 2008]

m CBM: Predict metabolic reaction rates under steady-state constraints:
Mass balance: equal metabolite production and consumption rates
Thermodynamic: irreversibility of reactions
Enzymatic capacity: bounds on enzyme rates

m Requires a specification of the growth media and (in the FBA-like
variants) of an objective function that should be maximized, both
which are unknown re. specific human tissues!?

Growth medium
nutrients
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Modeling human tissue metabolism via

CBM is hence problematic
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Unknown uptake and secretion reactions of
each cell-type




[T. Shilomi, M. Cabili, M. Herggard, B. Palsson, &
E. Ruppin; Nat. Biotech. 2008]

m Develop a general approach for predicting tissue-specific metabolic
states

m Provide the first large-scale description of the metabolism of various
human tissues

m Our solution is based on model integration with tissue-specific gene
and protein expression data

m Motivated by the assertion that highly expressed genes are expected
to carry metabolic flux and vice versa
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Enzyme expression level vs.
metabolic flux level

m Changes in gene expression levels significantly
correlate, but not absolutely, with changes in measured
and predicted fluxes

Schuster, et al, 2002, Famili, et al. 2003, Daran-Lapujade et al.
2004, Bilu, et al. 2006

m Gene expression lead to the characterization of different
tissue-specific metabolic functions
Levine et al. 2006, Yanai et al.2005, Son et al. 2005

Thus, metabolic reactions can be transcriptionally
(expression) regulated and/or post-transcriptionally
regulated
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Our Method

Gene expression data Protein measurements data

1
Highly and Lowly Human Metabolic

expressed gene sets Model (Duarte et. al)

2
Optimization method:
Maximize consistency with expression data
Use Mixed Integer Linear Programming (MILP)

3

Tissue Specific Tissue Specific Tissue Specific
Genes Reactions Metabolites
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Network Integration with Tissue-
Specific Expression Data

m Gene’s flux activitv states -reflect the ahsencel/existence of non-
zero flux thro 4 out of D reactions were |code
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Validating the Method in
Predicting Yeast Metabolism

Expression data under Flux Balance Analysis (FBA)
various media growth maximization
Biomass
> <2 —
Uptake
rates
& © @0
Comparison with FBA Comparison with measured fluxes
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(Daran-Lapujade
et al’ 04)
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Applying the Method to the Human
model

m Employing the model of Duarte et al.

m Gene and protein expression from GeneNote (shmueli et al. 2003 ) and
HPRD (Mishra et al. 2006)

m 10 tissues:

brain, heart, kidney, liver, lung, pancreas, prostate, spleen, skeletal
muscle and thymus.

m The activity state of 644 genes was uniquely determined in at least
one tissue, with an average of 408 genes per tissue (our method
provides confidence estimates on the predicted gene activities).
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Post-transcriptional Requlation
of Metabolic Genes

20% of the metabolic genes are predicted to be post-
transcriptionally regulated across tissues

average of genes post-transcriptionally and
180 (15.4%) post-transcriptionally down-regulated in each tissue
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Large Scale Validation
Large-Scale Mining of Tissue-Specificity Data

- Tissue-specificity of genes, reactions, and metabolites is significantly
correlated with all data sources

- Tissue specificity of post-transcriptional up regulated elements is
significantly high

- Tissue specificity of post-transcriptional down regulated elements is
significantly low
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Comparison with Pathway
Enrichment-Based Methods

Gene activity can also be predicted based on the membership of a gene in a
pathway whose other genes are highly expressed

State-of-the-art pathway enrichment methods (ErmineJ Lee et al. 2005
and GSEA Subramanian et al. 2005) provide lower recall

The classical partition of the network to metabolic pathways is problematic
as many of the pathways are only partially activated across tissues
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Metabolic Disease-Causing Genes

m Many disease genes (OMIM) are predicted to be post-transcriptional
up- regulated specmcally In tlssues affected by the disease
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IMET — Integrative Metabolic Expression Tool
(Hadas Tzur, N. Yehudal, E.R, Tomer Shlomi)

m A web server for integrating context-specific expression data with a
metabolic network model:

http://www.cs.technion.ac.il/~tomersh/tools

m Supports integration with the human network as well as various
microbes (S. cerevisiae, E. coli ,etc)

m Input: Expression levels of metabolic genes
m  Output: Network visualization (Cytoscape) of predicted flux activity
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IMET

Visualizing Metabolic flux prediction

&, Cytoscape Desktop (Session Name: MIMP_C1_NBT_VIZ.cys)
File Edit View Select Layout Plugins Help
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IMET
What can iMET do for you?
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2. A method for predicting metabolic

biomarkers

(T Shlomi, M. Cabili & E. Ruppin, MSB 2009)

In-born errors of metabolism are commonly diagnosed via biofluid
metabolomics, identifying metabolites with altered concentrations

m Perform systematic biomarker prediction for all known genetic
metabolic disorders via a genome-scale model

Biofluids

Tissue

Metabolite exchange interval
I

Uptake 0 Secretion
V2 : I_I reduced
I (high confidence)
V1 — | elevated
(high confidence)
| |
V4 | - 1. reduced
Ve : '_L| elevated
V5,V7 unchanged

)
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Validating predicted biomarkers

[ |
acid metabolism

The predictions are significantly correlated with the known

biomarkers (p-value=4-10-13) — precision = 0.76, recall = 0.56
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Predicting biomarkers for an array of In-
born errors of metabolism

m  The concentration of 223 metabolites is predicted to change as a result of
176 possible dysfunctional enzymes

m A high fraction of the disorders (42%) are predicted to have very few
biomarker changes (less than 6)

m  Many of the disorders (45%) have a unique set of biomarker alterations -
these predictions may be used for the unique diagnosis of metabolic

disorders via hiofluids metabolomics
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Interim Summary (1,2)

A general computational method for predicting metabolic behavior
based on gene expression data

Does not require an objective function definition
Does not require data on metabolite uptake rates

Characterize tissue-specific metabolic behavior of 10 human
tissues, showing the significant role of post-transcriptional
regulation.

Predict tissue-specificity of disease genes
Predict tissue-specific metabolite exchange with biofluids

Predict metabolic biomarkers (changes in metabolite concentrations)
for known inborn errors of metabolism

)
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All the credit Is due to our Met-Lab
members:

m Tomer Benyamini, Ori Folger, Livhat
Jerby, Adi Shabi, Hadas Tzur, Naor
Yehudal, Keren Yizchak, Raphy Zarecky.

m To my close collaborator and friend,
Tomer Shlomi.
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Thank you!
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