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Outline:


 
Context-dependent Biomass Flux Balance Analysis (CB-FBA)


 

Predicting flux distributions by accounting for growth-associated demand 
for biomass production in a context-dependent manner



 
RobustKnock: Predicting Metabolic Engineering Knockout 
Strategies for Chemical Production


 

Improving OptKnock by accounting for alternative pathways



 
Predicting Metabolic Gene-Nutrient Interactions (GNIs) in yeast


 

Predicting constraints on nutrient availability in the growth media based 
on enzyme essentiality data



 
Predicting Enzyme Sub-cellular Localization


 

Predicting enzymes’ sub-cellular localization based on partial localization 
data for a subset of the enzymes in the network
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NOT PUBLISHED YET

Metabolic Flux Balance Analysis with Context-dependant Biomass. 
T. Benyamini, O. Folger, E. Ruppin, T. Shlomi, 
RECOMB, Systems Biology, 2009 (to appear)
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Predicting Metabolic Engineering Knockout Strategies for Chemical 
Production: Accounting for Competing Pathways. 
N. Tepper, T. Shlomi (Submitted)
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Metabolic Network-based Analysis of Yeast Gene-Nutrient Interactions. 
I. Diamant, Y. Eldar, O. Rokhlenko, E. Ruppin, T. Shlomi. 
Molecular BioSystems, DOI: 10.1039, 2009 
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Gene-Nutrient Interactions



 

Under which growth media G1 is essential?



 

A GNI represents a constraint on the presence/absence of a nutrient in the 
growth media under which a gene is essential



 

A weak (vs. strong) GNI reflects a non-strict constraint

M2 M6

M7M3 M8

G1

Biomass

M1

M4

M5

M5

M1

M5
M5

G3

G2M1

M1 M2 M3 M4

G1

G2

G3

Negative GNIPositive GNI

Diamant, et al., Molecular Biosystems, 2009

Weak Positive GNI
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Predicting Gene-Nutrient Interactions


 

Identified via a bi-level optimization problem


 

Transformed into Mixed-Integer Linear Programming (MILP)

Diamant, et al., Molecular Biosystems, 2009
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Gene-Nutrient Interactions in Yeast
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GNI-based ‘Reverse Prediction’ of 
Growth Media Composition


 

What is the natural growth environment of a pathogen within a host 
organism? 



 

Suppose we have in-vivo data on bacterial gene knockout 
essentiality 



 

Can we use the measured pattern of gene essentiality to predict 
constraints on the in-vivo growth environment of the bacteria?



 

Unfortunately, we don’t have enough data of this kind. However…

Diamant, et al., Molecular Biosystems, 2009
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GNI-based ‘Reverse Prediction’ of 
Growth Media Composition


 

In simulations, GNI-based analysis provide accurate predictions of 
growth media composition based on gene essentiality data

Diamant, et al., Molecular Biosystems, 2009
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Predicting enzymes’ sub-cellular localization based on partial 
localization data for a subset of the enzymes in the network

Network-based Prediction of Metabolic Enzymes’ Subcellular Localization. 
S. Mintz, A. Aharoni, E. Ruppin, T. Shlomi.
Bioinformatics, 25(12): 247-252, 2009 (ISMB’09)



Derecting Protein Subcellular Localization



 

Green fluorescent protein (GFP) tagging



 

Electron microscopy



 

Subcellular fractionation + detection 

Experimental Methods:

Limitations:



 

Costly



 

Time-consuming

Wormit et.al, Plant Cell, 2006

Mintz, et al., ISMB & Bioinformatics, 2009

Computational Methods:


 

Sequence motifs 


 

Amino acid composition


 

Homology


 

PPI data



 

Low number of compartments



 

Performance varies across different 

organisms and compartments



 

Relatively low availability of PPI networks

Limitations:



Research Objective

Predict metabolic enzymes’ subcellular localization, based on:



 
The organism’s metabolic network



 
Prior knowledge regarding localization of a subset of the 
enzymes



 
Parsimonious assumption of minimal number of cross- 
membrane metabolite transports between compartments

Mintz, et al., ISMB & Bioinformatics, 2009



E2E1
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Minimal Metabolic Transport Assumption

Mintz, et al., ISMB & Bioinformatics, 2009



E1 E2

Cytoplasm

Compartment A

Compartment B

M1 M5M3

M4 M6

M1

M2 M6

M5M3

Minimal Metabolic Transport Assumption

Mintz, et al., ISMB & Bioinformatics, 2009



E1 E2

Cytoplasm

Compartment A

M1

M2 M6

M3

M4

M1 M3

Compartment B

M6

M5

M5M3

M5



 

Transport reactions depend 
on transporter proteins, 
imposing energetic cost or 
requiring the maintenance 
of a membrane potential

Minimal Metabolic Transport Assumption



 

Minimize transport 
reactions

Mintz, et al., ISMB & Bioinformatics, 2009



E1 E2

Cytoplasm

Compartment A

M1

M2 M6

M5M3

M4

M1

Compartment B

M6



 

Match known localization 
data



 

Assume minimal number 
of metabolite cross- 
membrane transports

Minimal Metabolic Transport Assumption

Mintz, et al., ISMB & Bioinformatics, 2009



Initial Compartmentalized  Network

Metabolic Network Prior Localization Data

+

Mixed Integer Linear Programming OptimizationFor each 
non- 
localized 
reaction

Localization 
scores 
table:

CBM method 
for predicting 
localization:

Input:

Optimization process:

Output (prediction):

Mintz, et al., ISMB & Bioinformatics, 2009



Example

Initial compartmentalized network:

Localized reaction
Non-localized 
reactionTransport/exchange 
reaction

Cytoplasm

M1

M2

M6 M7 M8 M9

M3 M4

Compartment A

M5

M11

Compartment B

M1

M2

M6 M7 M8 M9

M3 M4

M11

M1

M2

M6 M7 M8 M9

M3 M4 M5

M11

R1

R1

R1
R2

R3

R3

R3

R4

R5

R5

R5

R6

R7

R7

R7

R8
M10

Localized reactions – R2, R4, R6, R8

Non-localized reactions – R1, R3, R5, 
R7



Example – Flux Distribution

Initial compartmentalized network:
Localized reaction
Non-localized 
reactionTransport/exchange 
reaction

Cytoplasm

M1

M2

M6 M7 M8 M9

M3 M4

Compartment A

M5

M11

Compartment B

M1

M2

M6 M7 M8 M9

M3 M4

M11

M1

M2

M6 M7 M8 M9

M3 M4 M5

M11

R1

R1

R1
R2

R3

R3

R3

R4

R5

R5

R5

R6

R7

R7

R7

R8
M10

Activated reaction
Non-activated reaction



Example – Results

Initial compartmentalized network:
Localized reaction
Non-localized 
reactionTransport/exchange 
reaction

Cytoplasm

M1

M2

M6 M7 M8 M9

M3 M4

Compartment A

M5

M11

Compartment B

M1

M2

M6 M7 M8 M9

M3 M4

M11

M1

M2

M6 M7 M8 M9

M3 M4 M5

M11

R1

R1

R1
R2

R3

R3

R3

R4

R5

R5

R5

R6

R7

R7

R7

M10

Activated reaction
Non-activated reaction

R8

Predictions:
• R1, R5 - Compartment A
• R7        - Cytoplasm
• R3        - Compartment B ?



Validating Predictions via Metabolic 
Network of S. cerevisiae 



 
Genome-scale, fully compartmentalized metabolic network model 
of  (Duarte et al, 2004)



 
1062 metabolites, 1149 reactions, 7 compartments



 
To evaluate our method:
1. Remove existing localization data
2. Cross validation test- random localized vs. non-localized sets
3. Apply our method
4. Compute - accuracy (compared to experimental data)

- coverage (portion of predictions with single predicted 
compartment)

Mintz, et al., ISMB & Bioinformatics, 2009



Comparison to Pathway 
Enrichment-Based Method



 
Localization is determined based on the assignment of enzymes in 
pre-determined biochemical pathways



 
For each pathway compute a set of hyper-geometric p-values 
reflecting the pathway’s enrichment for all compartments, 
respectively



 
Prediction based on compartment yielding the lowest p-value in the 
corresponding pathway

Mintz, et al., ISMB & Bioinformatics, 2009



Accuracy and coverage for various fractions of localized 

reactions:

Results



 

Robust accuracy



 

Moderate coverage decline
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