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Abstract

It is proved that the state of maximum entropy having observed val-
ues for the n observables, X1, . . . , Xn, is the same state that minimises
the matrix of covariances of any n locally unbiased estimators for n
parameters for the probability distribution of X1, . . . , Xn. We sketch
how to get a similar result in quantum theory, in which X1, . . . , Xn

are (not necessarily commuting) quadratic forms that are bounded rel-
ative to a positive self-adjoint operator H such that exp(−βH) is of
trace-class for some positive β.
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1 The Estimator of Jaynes

Let X be a random variable with sample-space Ω and Borel ring B. What
is the best choice of probability measure µ on Ω such that the mean of X,

E[X] :=

∫

Ω

X(ω)µ(dω) (1)

has a given value? If this value is indeed known, then Jaynes [6] has ar-
gued that if no other information about the probability distribution of X is
known, then the answer is the distribution of maximum entropy among all
distributions giving this mean. The requirement that the entropy is maxi-
mum is motivated by the attempt not to impose any information about the
distribution other than the given mean. Clearly, we cannot find out any-
thing about (Ω, µ,B) from E[X] that is not obtainable from the probability
distribution of X. Let us give Jaynes’s method.

Let us assume that Ω is discrete; let ω 7→ µ(ω) be a probability measure
on Ω, and let ρ(x) = µ{ω : X(ω) = x be the probability distribution of X.
The entropy of ρ is

S(ρ) = −
∑

x ρ(x) log(ρ(x)) We must maximise this under the condition
that the mean of X is known to be x0, and the sum of probabilities is 1. We
use Lagrange’s multipliers λ1, λ2: maximise

Sλ = S(ρ) + λ1

∑

x xρ(x) + λ2

∑

x ρ(x),
subject to no conditions on the values of ρ(x), to get the function ρλ(x).

We then find λ1, λ2 by the equations
∑

x

xρλ(x) = x0

∑

x

ρλ(x) = 1.

We find that
∂Sλ

∂ρ(x)
= − log ρ(x) − 1 + λ1x + λ2 = 0 (2)

for all x. Thus we see that the Jaynes state has an exponential form,

ρ(x) = eλ1x+λ2−1. (3)

We get a similar result, an exponential form for the density function, if there
are N random variables of known means; thus, let X1, · · · ,XN be N linearly
independent random variables of known means. Then the state of maximum
entropy among all states having these means has the form

ρ(x) = exp{λ1X1 + . . . + λNXN + const.}. (4)
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We can also drop the assumption that the variables X1, · · · ,XN have only
discrete values; then we replace the sum,

∑

j by the integral over x, and the
entropy by the differential entropy, to get again the exponential form for the
density. The problem is, in estimation theory we do not know the means;
the best we can do is to measure the value of each of the variables in our
sample, and then take these values as approximations to the means. This
does not give us exactly the answer wanted by Jaynes. However, we now
show that this does give us the best estimate in the sense of R. A. Fisher!

2 Fisher’s Method

Suppose that X is a random variable on a sample space (Ω,X ), and that
the probability density function of X is one of the family {ρλ;λ ∈ R}. We
take a sample of X and use it to estimate the best value for λ. Thus, an
estimator for λ is chosen; it is a function, say f of the value, say x, found for
X. Thus, we would find the parameter λ to be f(x). This, being a function
of a random variable, is a random variable. Fisher suggested [3] that the
best estimators should be first, locally unbiased, and secondly, of minimal

variance. We say that f is unbiased if the average value gives the correct
answer:

Eρλ
[f(X)] = λ. (5)

It is convenient to require a weaker condition, and replace this by its deriva-
tive, to arrive at the condition called locally unbiased:

∫

∂ρλ(x)

∂λ
f(x) dx = Eρλ

[

∂ log ρλ

∂λ
f(X)

]

= 1. (6)

Thus the condition, locally unbiased, may be written as the condition

〈∂λ log ρλ, f〉 = 1. (7)

Here, 〈g, h〉 = Eρλ
[gh] furnishes the real vector space of functions of X with

a scalar product.
Fisher’s second condition is that the variance V of f should be as small

as possible. This will reduce the chance that the measurement of f , taken
to be our estimate of λ, is very far from the correct value. He proved that
V is bounded below by G−1, where G is the variance of L = ∂λ log ρλ. This
has zero mean:

∫

ρλ∂λ log ρλ dx =

∫

∂λρλ dx
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= ∂λ

∫

ρλ dx

= ∂λ 1

= 0.

Fisher called G the information of the family of probabilities {ρλ}; he said
that an estimate is 100 % efficient if V G = 1.

We now prove Fisher’s inequality: consider the pair of random variables
f, L. Since L has zero mean, the off-diagonal elements of the joint covariance
matrix are E[Lf ], which is 1 by the locally unbiased condition, eq.(7). Thus
the covariance matrix C of f, L is

C =

(

V 1
1 G.

)

. (8)

Since C is positive semidefinite, we have that det C ≥ 0, which gives us
Fisher’s inequality V G ≥ 1. In general, for a choice of the family {ρλ}, no
choice of λ will give equality, that is, V G > κ for some κ > 1 will hold for
all λ. An exception is the exponential family, ρλ(x) = Z−1e−x/λ, x ≥ 0,
provided we choose f(x) = x. This is an unbiased estimate, and also gives
V G = 1.

For the proof, note that with this choice,

Z =

∫

∞

0

e−x/λdx = λ, (9)

and

Eλ[f ] = Z−1

∫

∞

0

xe−x/λdx = λ. (10)

Thus, f is unbiased. Also, we note that

E[x2] = λ−1

∫

∞

0

x2e−x/λdx = 2λ2, (11)

from which we find that V = E[x2]− (E[x])2 = λ2. For the Fisher informa-
tion L = ∂λ log ρλ, we find that L = −1/λ + x/λ2. This gives that

G = V[L] = λ−4V[x] = λ−2; (12)

it follows that V G = 1, and the estimate is 100 % efficient. Thus, if we
follow Jaynes in maximising the entropy, subject to requiring that the mean
value is fixed as equal to the measured value, rather than to the exact mean,
we obtain the same answer as by the most efficient Fisher method.
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Fisher stated, and Cramér [2] and Rao [12] later proved, that an inequal-
ity similar to V G ≥ 1 holds if the number of parameters is greater than one.
Thus, let λ ∈ RN be N parameters, and let ρλ be a probability density
on RN , and we measure N random variables X1, · · · ,XN (on some space)
and intend to estimate λ from their measurements xj . We need N functions
f1, · · · , fN of the X1, · · · ,XN , which do not depend on λ, which are locally
unbiased estimators. That is, we require that

Eρλ
[∂j log ρλfk] = δjk (13)

Again, Fisher defines the information of the family of distributions ρλ to be
the N random variables, which are scores: thus

Lj =
∂ log ρλ

∂λj
(14)

and again eq.(13) shows us that E[Ljfk] = δjk; more, that this is the covari-
ance of Lj and fk, since Lj has zero mean. The covariance matrix is

(

V 1
1 G

)

(15)

where Gij = C(LiLj). One can then show [16] that V ≥ G−1 with the
meaning that for N ×N matrices A,B we write A ≥ B iff A−B is positive-
semi-definite. We say, following Fisher, that a method of estimation for
which V G = 1 is 100% efficient.

By the same mathematics as for one variable, the exponential family is
100% efficient. Thus, Jaynes’s method, modified by using the actual values
of the random variables X1, · · · ,XN as their means, gives the same answer
as the Fisher method. More, we can treat the cases in which some of the
variables Xj are equal. For example, we might measure X1 r > 1 times from
independent samples, and take the average of the measurements as the best
approximation for our estimate of the mean. Instead, we introduce r La-
grange parameters for these variables, and find them by the same equations
as if the copies of X1 were different. We then put all copies of X1 to be the
same after the parameters are found. If we measure some Xj more times
than others, then more weight should be given to those random variables
with more accurate information about them. The method just described
does this.

There is no reason why we must choose the variables X1, · · · ,XN to be
independent. For example, we might include the cross-moment E[X1X2] by
choosing X3 = X1X2. This can be evaluated if we measure X1 and X2 from
the same sample. This is not always possible in quantum probability.
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3 Quantum estimation theory

Chentsov argued that a measure of distinguishability of two states of a clas-
sical system should decrease (or stay the same) if both systems are subject
to the same stochastic map. Here, a stochastic map on the Hilbert space
of random variables is linear, positive and maps 1 to 1. For, a stochastic
map increases our uncertainty of the system, making it more difficult to
distinguish the states. He and Morozova proved that the variance is the
unique metric (up to a factor) on the space of random variables with this
property. For quantum estimation, Chentsov required a good measure of
distinguishability to decrease under all completely positive unity-preserving
linear maps, which is the quantum version of stochastic maps. However,
Petz [8] showed that this condition failed to determine the wanted quan-
tum information uniquely up to a factor. Soon afterwards, Petz [9] found
all metrics with the ”Chentsov property”, but had by then committed him-
self to choosing one, the BKM-metric [10, 8]. Grasselli and the author [4]
showed that this metric is the unique (up to a factor) Euclidean metric on
matrix-space, among all metrics with the Chentsov property, such that the
dual vector-bundle of states is torsion-free. We adopt this metric here.

We start with a separable Hilbert space H, and a faithful state given by
the density operator ρ on B(H). Since ρ is positive, we can write ρ = e−H

for some self-adjoint H, which is bounded below. We require that ρβ should
be of trace-class for some β < 1. We consider the neighbourhood of ρ of the
form of density matrices of the form

ρλ = Z−1
λ e−H+λX . (16)

Here, X is a closed positive quadratic form, obeying

1. Dom H
1

2 ⊆ Dom X

2. X ≤ aH + b for some small enough positive a and some real b.

One can then prove that ρλ is of trace-class for all λ ∈ R sufficiently close
to zero. We say that as X runs over this set, we get a neighbourhood of ρ0.
We measure operators of the form H +X1 in the state ρλ, and seek the best
estimate for λX.

This theory is termed non-parametric estimation, as we do not prescribe
the choice of X beyond being Kato-small relative to H.

Note that the choice of ρ−1∂λρ as a version of Fisher information would
not be the best; the fact is, this expression is not hermitian unless the
operators ρ and ∂λρ commute, so cannot be suitable for the information in
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general. Helstrom [5] and Petz and Toth [10] get round this by using the
idea of a logarithmic derivative. Let g be a real or complex scalar product
on the space of N ×N matrices; we say that a matrix L is the g-logarithmic
derivative of the family ρλ of density matrices if for any matrix F , we have

Tr{∂λρλ F} = g(L,F ). (17)

In these terms, we say that an operator F is an unbiased estimator for λ
given the family of density matrices {ρλ}, if

Tr(ρλ F ) = λ. (18)

We say that F is locally unbiased if

Tr(∂λρλ F ) = 1. (19)

We use eq. (17) to get the condition that F is locally unbiased:

g(L,F ) = 1. (20)

This leads to the quantum version of the Fisher inequality:

1 = g(L,F ) ≤ g(L,L)1/2g(F,F )1/2, (21)

by the Schwarz inequality. We define the information to be L and use g(F,F )
as the uncertainty of the estimator F . The Schwarz inequality becomes an
equality only if the two vectors F and L are proportional.

There are many choices of scalar product g that obey the Chentsov prop-
erty. Helstom used g(A,B) = ρλ ((AB + BA)/2), but this violates duality
[4]. This means that the dual connection involved has torsion. However, it
provides the largest value for the quantum Fisher information of a family
of estimators involving a single parameter, and has recently been advocated
by Petz. Originally, Petz and Toth chose the following, the BKM metric,
for scores A and B relative to the density operator ρ:

gρ(A,B) =

∫ 1

0

Tr
[

ραAρ1−αB
]

dα. (22)

This appeared in the theory of Kubo [7] and Mori; it was proved to be
positive-definite by Bogoliubov [1], and is, up to a factor, the only one
satisfying the Chentsov property which is torsion-free [4]. Thus, with this
choice, we see that LB is defined such that

Tr (∂λρλX) =

∫

1

0

Tr
(

ρα
λLBρ1−α

λ

)

dα. (23)
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Petz and Toth [10] gives the form for LB:

LB =

∫

∞

0

(α + ρλ)−1∂λρλ(α + ρλ)−1dα. (24)

We see that if ρ and ∂λρ commute, we can do the α-integration to get the
Fisher information ∂λ log ρλ.

We saw above that an estimator in the quantum case is 100% efficient
only when F is proportional to LB . The exponential family of states is the
family of the form

ρλ(A) = Z−1
λ exp{−H0 + ξ(λ)F}. (25)

For this family we see that for any score A we have

Tr (∂λρλA) = Tr

(
∫

1

0

ρα
λ

∂ξ

∂λ
Fρ1−αAdα

)

, (26)

and this is equal to g(LB , A), which is by definition
∫ 1

0

Tr
(

ραLBρ1−αA
)

dα. (27)

Comparing, we see that the exponential family has LB = ∂λξF on the space
of scores; it is the only family with this property, by the definiteness of the
scalar product. The value of ξ is found by applying the condition that F be
unbiased. This leads to the condition of Jaynes, but with the experimentally
found value of F replacing the true mean.

The above theory can be generalised to the estimation of n parameters
λ = (λ1, · · · , λn) which are used to define a family ρλ of quantum states; we
choose n estimators F = (F1, · · · , Fn) which are locally unbiased:

Tr[∂λi
ρλFj ] = δij . (28)

We use the idea of logarithmic derivative for several variables:

Tr[∂λi
ρλFj ] = g(Li, Fj). (29)

The family F is thus locally unbiased if

g(Li, Fj) = δij . (30)

We adopt the family Li as the Fisher information for the estimator Fi.
Choosing the BKM form for g we get the canonical 2n × 2n covariance
matrix, which is positive-definite:

(

g(Li, Lj) g(Li, Fk)
g(Fℓ, Lj) g(Fℓ, Fk)

)

=

(

Gij I
I V

)

≥ 0, (31)
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where G is the covariance matrix for L1, · · · , Ln, and V that of F1, · · · , Fn.
Petz shows that this is positive-definite only if, as matrices, we have the
matrix inequality

V ≥ G−1. (32)

Petz then shows that equality can only hold when Li and Fi are propor-
tional, for all i; this is the best choice to make for the estimators. The
exponential family, ρβ = Z−1

β exp{
∑

βjFj} has this property, and the values
of βj , j = 1, · · · , n are determined by requiring that the means of Fj should
be the values found for them by one measurement. Thus, this is the unique
distribution with 100% efficiency in quantum estimation theory, almost as
claimed by Jaynes. This result is essentially argued for in [8].

It is not necessary for the variable Fi to commute with the variable Fj ,
i 6= j. We assume that each measurement is made on a sample that is
independent of all the other samples. We can choose to observe the same
variable, say F1, a number of times, say n1 times; we will generally get
a slightly different result each time. The best estimate will treat all the
variables Fj , j = 1, · · · , n1 as different, until the end, when we know all the
parameters; then we put them all equal to F1.

4 Non-parametric quantum estimation

In a quantum theory based on a C∗-algebra of infinite dimension there are
many pairs of mixed states whose relative entropy is infinite. The trace
norm, however, allows two states of small difference in norm to have infinite
relative entropy; even so, two such states could not be close to each other
in a physical sense. We follow the idea of Pistone and Sempi, and introduce
an Orlitz norm, for quantum mechanics in an infinite-dimensional Hilbert
space.

We are concerned with measuring some observables, and finding, from
the values found, an estimate for the state. We assume that one of the
observables to be measured, call it H, is bounded below, and that e−H is
of trace-class. By rescaling H with a positive multiple, we see that there
is no loss in generality in assuming as well that e−βH is also of trace-class
for some β < 1. We define the Cramér class of the state ρ0 = e−H/Tr e−H

as follows. Let X be a closed symmetric form that is small relative to H.
Then for small enough λ the operator exp{−H − λX} is positive and of
trace class. The states, call them {ρλX}, obtained from all such X and
λ make up the quantum analogue of a neighbourhood of ρ0. We shall call
this the first neighbourhood. As in the classical case, in which we have the
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Cramér class, one can prove that ρλX is holomorphic in λ for fixed X, in
the neighbourhood of λ = 0. We now define an Orlicz norm on the set of
H-small enough quadratic forms which makes it into a convex subset of a
real Banach space. We assume that Tr e−H = 1.

The quantum version of the Young function coshx − 1 used by Pistone
and Sempi is, we claimed in [13, 15], the function

Y (X) =
1

2
Tr[exp(−H + X) + exp(−H − X)] − 1. (33)

This is a function on a neighbourhood of zero in the real vector space of
H-bounded forms, and is convex, even, vanishes at X = 0, and is positive
elsewhere, including possibly being infinite. We define the corresponding
Orlicz norm to be

‖X‖Y := inf

{

r > 0 : Y

(

X

r

)

< 1

}

. (34)

This is finite for all X which define an element of the first neighbourhood,
which is therefore flat, because it has the −1 affine structure: we can define
the convex sum of two forms X1 and X2 as λX1 + (1− λ)X2 to get another
H-small form. Its real linear extension is a Banach space.

We choose any point ρ1 in the first neighbourhood of ρ0, and define the
first neighbourhood of ρ1, and the corresponding Orlicz norm for all X in
the neighbourhood of ρ1. On the overlap of the two ’hoods we have defined
two norms. We prove in [16] that these topologies are the same: the two
Orlicz norms are equivalent. We thus can extend yet again, to define the
topology of the set of all states that are linked to ρH by a finite number of
steps. This set is called the Cramér class of ρ0. We show that the Cramér
class is convex: any element in it, say σ, can be formally regarded as equal to
Z−1

X exp{−H −X ′} for some X ′. Indeed, X ′ is equal to the sum of the steps
X1, · · · taken to reach σ from ρH . This X ′ turns out to be the same whatever
was the path from ρH to σ. Thus, the Cramér class is a convex subset of
a flat Banach manifold; it is not trivial, however. The coordinates of a
neighbourhood are limited to sufficiently small values. For example, in the
first neighbourhood of ρH , X must be small enough so that exp{−H − X}
is of trace class, as well as being such that H + X is self-adjoint. Thus,
X = −H is too large.

In quantum nonparametric estimation, we start at one state, say ρ, and
measure the values of n bilinear forms H + X1, · · · ,Xn. We seek the best
estimate of ρ in the quantum Cramér class of the known state ρH . We write

ρλ = Z−1
λX exp{−H − λX} (35)
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for our estimate of the state, where X is H-bounded. We now give details
of the case when we observe one form, X1 = F . More, we assume that λ
is sufficiently small, so that ρλX lies in the first neighbourhood of ρH . The
Fisher information L of the family ρλ, using the BKM metric, can be defined
as

LλX =

∫

∞

0

(α + ρλX)−1∂λρλX(α + ρλX)−1dα. (36)

We fix X for now, and consider an estimator, F , for the value of λ. We
measure F , say once, and take the value as the experimental mean of F .
We consider the family of states ρλ. F is, as usual, said to be unbiased
if Eρλ

[F ] = λ, and locally unbiased if ∂λEρλ
[F ] = 1. The idea of the

logarithmic derivative also works for this family if we use the BKM metric.
Thus, we put

∂λTr [ρλF ] = 1 = g(L,F ), (37)

where g(L,F ) =
∫

1

0
ρα

λLρ1−α
λ F dα is the BKM scalar product. One can prove

that this is well-defined for any X which is H-bounded, provided that λ is
small enough. This would not hold if X is unbounded, if we had chosen for
example the metric advocated by Helstrom [5]. Again, we get the analogue
of the Fisher inequality, g(F,F )g(L,L) ≥ 1. We get equality if and only if L
and F are proportional. Thus, the distribution ρλ must be exponential. We
then get the value of λ, by requiring that the estimate must be unbiased.

In a similar way, we may deal with n observables. Again, the exponential
family gives the best estimate, verifying Jaynes’s answer, provided that we
use the actual values of the estimators instead of their true means to find
the values of the parameters.

This method needs adjusting if the state is outside the first neigh-
bournood of the state ρ0.
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