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Some key features

• The approach is abstract , devoid of references to probability
• Emphasis is on philosophy , on interpretations

• From cognition: Truth, belief, knowledge, perception
• More specifically: Description, effort, control, preparations
• inference: MaxEnt thm ⊇ projection thm.; exponential fam.
• A pythagorean thm. containing classical and inf.th. versions

• Key tool: Study of conflict situations via games .

Ingarden & Urbanik 1962: “... information seems intu-
itively a much simpler and more elementary notion than
that of probability ... [it] represents a more primary step
of knowledge than that of cognition of probability ...”

Kolmogorov ≈ 1970: “Information theory must preceed
probability theory and not be based on it”
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Modelling, basic elements I

X : state space. x ∈ X : truth instance or state
Y ⊇ X : belief reservoir.y ∈ Y : a belief
Z ⊇ Y : knowledge space or set of potential perceptions

z ∈ Z : a knowledge element or a perception
X ⊗ Y : relation of domination (y � x)

Π : X ⊗ Y → Z : the interaction
W ←→ Y : action space. w ∈W : a control.

·Π defines the world: W =WΠ

· action ≈ control ≈ description
·Good (1952): belief is a tendency to act
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Modelling, basic elements II

A situation (x , y) ∈ X ⊗ Y is a perfect match if y = x and a
certain belief if y ∈ some given non-empty set Ydet . Assume:
∀x : x � x ,Π(x , x) = x (soundness); ∃y∀x : y � x .

Introduce “players”, Nature (chooses x) and Observer (seeks x
but is confined to belief, y).

What do they fight over? Description effort, Φ!
This is a function Φ : X ⊗ Y →]−∞,∞]. Assume that Φ is
calibrated i.e. Φ(x , y) = 0 for situations of certain belief.

Φ (or −Φ) are the score functions of other authors
(Good, Fischer, ..., Dawid, Lauritzen,...).

Key principle Φ satisfies the perfect match principle
(or is proper) if, for fixed x , Φ is minimized under a
perfect match and not otherwise (unless Φ(x , x) =∞).
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Ideal description for a world WΠ

There are worlds without associated proper descriptions but:

Thesis Given the world, there exists at most one proper
description modulo equivalence (Φ1 ≡ Φ2 ∴ ∃c > 0 : Φ1 = cΦ2).

If a proper description exists, there is often a natural choice
among equivalent ones. Amounts to a choice of unit.
Assume that a unique proper description exists corresponding
to such a choice, the ideal description.

Warning Knowing the description, you may not know the world!

Claim
Ideal description
↔fundamental inequality of information theory
↔2.nd law of thermodynamics.
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Elements of information

Full information means that the truth instance is revealed to
Observer, e.g. by an informer. Notation: “x”.
Quantitatively, information is saved effort

Thus, Φ(x , y) = value to Observer of the information “x” in
a situation with belief y .

The unit of description is then also a unit of information.

Entropy H(x)= minimal effort required: H(x) = Φ(x , x).
Divergence D(x , y) is excess description effort:
D(x , y) = Φ(x , y)− H(x).

(Φ, H, D) is an information triple. Basic axioms:
Φ(x , y) = H(x)+D(x , y) (linking identity), D ≥ 0 with equality
iff there is a perfect match (fundamental inequality, FI).
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Relativization, updating
Given an information triple (Φ, H, D), we define updating gain
from prior y0 to posterior y by (modulo ∞−∞ problems):
Ξ(x , y0 ; y) = Φ(x , y0)− Φ(x , y) = D(x , y0)− D(x , y).

Note: The information triple (Φ(x , y), H(x), D(x , y)) is
transformed into the new information triple for updating(
− Ξ(x , y0 ; y),−D(x , y0), D(x , y)

)
.

Also note: With only D given (s.t. FI holds) such updating
triples can be formed (under finiteness conditions). General
results for information triples (with emphasis on MaxEnt) give
results for updating! Leads to models where divergence is
minimized (projection theorems).

Example Updating model in Hilbert space:
Ξ(x , y0 ; y) = ‖x − y0‖2 − ‖x − y‖2 corresponding to triple(
‖x − y‖2 − ‖x − y0‖2, −‖x − y0‖2, ‖x − y‖2

)
.
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Intermezzo: preparations, feasible ones, families...

A preparation is a non-empty subset P of X .

A feasible preparation is either a strict or a slack feasible
preparation and these are finite intersections of basic strict ,
resp. basic slack feasible preparations which, in turn, are
Φ-level , resp. Φ-sublevel sets of the form (b ∈ Y , h ∈ R)

Pb(h) = {x |Φ(x , b) = h} ; Pb(h•) = {x |Φ(x , b) ≤ h} .

Motivation? Later! (– or pretty clear?)
With b = (b1, · · · , bn) and h = (h1, · · · , hn), we put

Pb(h) =
⋂

i≤n Pbi (hi ) ; Pb(h•) =
⋂

i≤n Pbi (h•i ) .

By Pb we denote the preparation family of all strict
preparations of the form Pb(h). We define Pb• similarly.

Illuminating Example: Updating model in Hilbert space ...
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un iver s i ty of copenhagen

the games γ(P) for general P , basic notions
The game γ(P) = γ(Φ,P)∴ Φ objective function, Nature
maximizer, Observer minimizer. Nature strategies: x ’s in P.
Observer strategies: beliefs y � P (∀x ∈ P : y � x).

MaxEnt is value for Nature , MinRisk value for Observer:
Hmax(P) = supx∈P H(x) = supx∈P infy�x Φ(x , y).
Rimin(P) = infy�P Ri(y) = infy�P supx∈P Φ(x , y).
Note: Ri(y) = Ri(y |P).

x∗ ∈ P optimal for Nature ∴ H(x∗) = Hmax(P).
y∗ � P optimal for Observer ∴ Ri(y∗) = Rimin(P).

If Hmax(P) = Rimin(P) is finite, γ(P) is in equilibrium .

Strategies (x∗, y∗) is a Nash equilibrium pair (NE-pair) if
∀x ∈ P∀y � P : Φ(x , y∗) ≤ Φ(x∗, y∗) ≤ Φ(x∗, y) .

y∗ � P is robust for γ(P) if ∃h < ∞∀x ∈ P : Φ(x , y∗) = h,
the level of robustness.
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the games γ(P), general results
The center of P is the set cen(P) = {x∗ ∈ P|x∗ � P}.

Identification Let (x∗, y∗) be strategies with x∗ ∈ cen(P) and
H(x∗) <∞. Then γ(P) is in equilibrium with (x∗, y∗) optimal
strategies iff (x∗, y∗) is a NE-pair. For this, y∗ = x∗ must hold.
Pythagorean inequalities Let (x∗, y∗) be strategies with
y∗ = x∗, x∗ ∈ cen(P), H(x∗) <∞ and assume that
∀x ∈ P : Φ(x , y∗) ≤ Φ(x∗, y∗).
Then γ(P) is in equilibrium with x∗ and y∗ = x∗ as unique
optimal strategies (x∗ is the bioptimal strategy). Furthermore:
∀x ∈ P : H(x) + D(x , y∗) ≤ Hmax(P) and
∀y � P : Rimin(P) + D(x∗, y) ≤ Ri(y |P) .
Robustness Assume that y∗ is robust with level of robustness
h. Put x∗ = y∗ and assume that x∗ ∈ P. Then γ(P) is in equi-
librium with (x∗, y∗) as unique optimal strategies. Furthermore,
∀x ∈ P : H(x) + D(x , y∗) = Hmax(P) .
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main results reformulated

Inspection reveals significance of the previously introduced
basic strict and basic slack feasible preparations. Expressed in
terms of these sets we find that:

The Pythagorean theorem, reformulated Assume that

x∗ ∈ P ⊆ Px∗(h•) with h = H(x∗).

Then x∗ is the MaxEnt strategy, Hmax(P) = h and,

∀x ∈ P : H(x) + D(x , x∗) ≤ h.

(... plus more, bioptimality of x∗ ...).

If P ⊆ Px∗(h), equality holds above.

This as an abstract version of the Pythagorean (in)equality!
To realize this, consider the updating model in Hilbert space
...
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Exponential families

Idea Given a preparation family P, the associated exponential
family E is the set of all “naturally occuring” candidates to
(bi)optimal strategies for one of the preparations P ∈ P.

As preparation families take the families Pb of strict feasible
preparations (not the slack ones as ...) and as “naturally
occuring” candidates we take the robust strategies. Thus:

The exponential family Eb is the set of y∗ ∈ X which are
robust for all preparations in Pb. By robustness theorem:

Theorem Assume that x∗ ∈ Eb. For i ≤ n, put hi = Φ(x∗, bi ).
Then γ(Pb(h)) is in equilibrium and has x∗ as bioptimal stra-
tegy. In particular, x∗ is the MaxEnt strategy for Pb(h).

Example: Updating model in Hilbert space ...
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Limits to information

What can we know?
Full information (“x”) normally not feasible.
partial information “x ∈ P” could be.
So, which are the feasible preparations?
Answer (again!): Level (or sublevel) sets and their finite
intersecions!
This is partly justified by previous results.
For further motivation recall: “Belief is a tendency to act”.
Action through experiments.
Experiments require control.
Control depends on description.

Postulate Belief can be transformed into new objects, controls
by a bijective correspondance y ←→ w between Y and a new
set, the action space W . We write w = ŷ or y = w̌ .
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Exponential families as a set of controls
Controls are technically superfluous but convenient!
Description effort is transformed to Ψ given by
Ψ(x , w) = Φ(x , w̌). Corresponding games: γ(Ψ,P).

Preparation families are then given in terms of controls
w = (w1, · · · , wn):
ΨPw = {ΨPw(h) =

⋂
i≤n

ΨPwi (hi )|h · · · }

where ΨP(w , h) = {x |Ψ(x , w) = h}.

The exponential family for ΨPw in terms of controls is the set
of w∗ ∈W which are robust for all games γ(Ψ,P) with
P ∈ ΨPw. By robustness:

Let x∗ ∈ X , assume w∗ = x̂∗ is in the exponential family
for ΨPw For i ≤ n, put hi = Ψ(x∗, wi ). Then γ

(
Ψ, ΨPw(h)

)
is in equilibrium and has x∗ and w∗ as optimal strategies. In
particular, x∗ is the MaxEnt strategy for ΨPw(h).
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Example: Probabilistic models, discrete case

Truth-, belief- and knowledge instances are x = (xi ), y = (yi )
and z = (zi ) (i ranging over an alfabet A).
x and y are probability distributions, z just a function on A.

Interaction, Π, acts via the local interactor π:(
Π(x , y)

)
i = π(xi , yi ). π is assumed sound , i.e. π(s, t) = s if

t = s.
π is weakly consistent if ∀x∀y :

∑
zi = 1. Strong consistency

requires that z is a probability distribution.
Proposition: Only the πq’s given by πq(s, t) = qs + (1 − q)t
are weakly consistent; strong consistency requires 0 ≤ q ≤ 1.

We require description to be accumulated effort:

Φ(x , y) =
∑

i∈A π(xi , yi )κ(yi )

where κ, the descriptor gives the cost of information.
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accumulated effort, the one and only
Requirements: κ is smooth, κ(1) = 0, κ′(1) = −1. Gives
natural units , nats.

For “any” monotone function on [0, 1], a
linear combination defines a descriptor. The power hierarchy
is defined from t 7→ tq−1 with q = 1 special case, giving
κ1(t) = ln 1

t .

Theorem Given π = π(s, t), there is at most one descriptor
κ which can define a proper accumulated description effort.

If π is consistent, hence one of the πq’s, then there exists a
descriptor which generates a proper description effort iff q > 0
(q = 0 OK as a singular case, though).

If so, the descriptor is the one in the power hierarchy, i.e.
κq(t) = lnq

1
t = tq−1−1

1−q . The associated information triple is
the power triple . The power entropies are the Tsallis entropies ,
and the power divergences are Bregman divergences.
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gross effort, pointwise fundamental inequality
Claim: The unit of information we chose is an overhead ,
connected with experiments/observations. Why?

Introduce gross Φ and gross H by adding the overhead:

gross effort: Φ̃(x , y) =
∑
i∈A

(
π(xi , yi )κ(yi ) + yi

)
= Φ(x , y) + 1 ,

gross entropy: H̃(x) =
∑
i∈A

(
xiκ(xi ) + xi

)
= H(x) + 1 .

Clearly, D̃ = D, and defining the divergence generator by

δ(s, t) =
(
π(s, t)κ(t) + t

)
−

(
sκ(s) + s

)
, one has

D(x , y) =
∑

δ(xi , yi ).

The inequality δ ≥ 0 is the pointwise fundamental inequality
(PFI). Clearly PFI =⇒ FI. Conjecture Converse also true
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sketch of MaxEnt determination for Wq

Consider the world W =Wq, cor. to πq with q > 0.
Fix y ←→ w . Then ΨPw consists of all P for which Ψ(x , w)
is constant over P.

But Ψ(x , w) =
∑(

qxi + (1− q)yi
)
wi so condition is

equivalent to
∑

xiwi being constant over P.
For fixed constants α and β this implies that

∑
xi (α + βwi )

is constant over P.
Now, if α + βw is a control, say w∗,

∑
xiw∗

i is constant over
P, hence Ψ(x , w∗) is constant over P, i.e. w∗ ∈ ΨEw and
robustness applies.
Then, given β, try to adjust α so that α + βw is a control.
Classically, α is the logarithm of the partition function. .
Finally, adjust β (≈ inverse temperature) to desired level ...

Similarly, the updating models are handled ...
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Conclusion

A theory of information freed from a
tie to probability is possible – and
useful. Probabilistic models appear as
important examples.

Than you!
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