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Scoring rules

X a random variable, values in X.

» A scoring rule S = S(x, Q) measures the loss You suffer if You
quote a distribution @ over X to represent uncertainty about
X, and then observe X = x.

» If You believe X ~ P, Your expected score, if you quote Q, is

S(P, Q) = EXNP{S(X, Q)}



S is proper (w.r.t. suitable class P of distributions over X') if, for
P, Q € P, the expected score S(P, Q) is minimised in Q at
Q@ = P, and strictly proper if S(P, Q) > S(P, P) for Q # P.

When S is proper, honesty is the best policy: If You believe
X ~ P, You minimise Your expected score by quoting Q = P.

» H(P) := S(P, P) is the (generalised) entropy of P

» d(P, Q) :=S(P, Q) — H(P) is the discrepancy/divergence
between P and Q@

S is proper iff d(P, Q) > 0.

Locally, d(P, P + dP) defines a Riemannian metric on the set P of
distributions over X—decision geometry.
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Log score

» q(-) the density of Q w.r.t. underlying measure p
> S(X7 Q) =—1In q(X)
» H(P)=— [du(y)p(y)Inp(y) is the Shannon entropy of P

» d(P,Q) = [du(y)p(y)In{p(y)/a(y)} is the Kullback-Leibler
discrepancy K(P, Q).
So S is strictly proper.

Decision metric = Fisher information metric.

NOTE: The log score has form S(x, Q) = &{x, q(x)}.
When #(X) > 2 it is essentially the only such “strictly local”
proper scoring rule.
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Statistical inference

>

>
>

[ID observations (xi,...,xn) from Qp: empirical distribution
Pp.

The minimum discrepancy estimate minimises d(Pp, Qp).
Since d(Pn, Qp) = S(Pn, Qg) — H(Pn), we can instead
minimise the total empirical score

N S(Py, Qp) = ZS Xt, Qp).-

This yields the unbiased estimating equation
N

Z s(x¢,0) =0

t=1
(where s(x,0) := 0S5(x, Qp)/00).
Often we only know gp(-) up to a multiplier Z(0) that is hard

to compute.
Computation of s(x, ) typically requires Z(8).

6
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Hyvarinen scoring rule
X =Rk V:=(0/0x), A =31, 0%/(0x)?

A+/q(x)

S(x,Q) = Alng(x) + 5 [V In g(x)P? = o

On integrating by parts, and requiring boundary terms to vanish,

S(P.@) =5 [du(x)(VInq(x) ~ 2V In p(x), ¥ In g(x)).
So
HP) = =5 [du() 1V inp(x)?
dP.Q) = 5 [du(x) ¥ Inp(x) — Ving(x)*

» Local: 5(x, Q) depends only on behaviour of g(-) in
neighborhood of realised point x

» Homogeneous: Only need qg(-) up to scale-factor
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Generalization

Carries over to a general Riemannian manifold X

p, q — densities with respect to natural volume measure
V +— natural gradient
A — Laplace-Beltrami operator

(-,-), | - |? — metric inner product

vV v.v. v .Y

integration by parts — Stokes's theorem

When X is itself the parameter-space of a statistical model
endowed with the Fisher information metric, the associated
decision metric over the space of prior distributions is that arising
as a limiting form of Kullback-Leibler predictive loss (Komaki,
Sweeting).

Works even for improper priors!



Local scoring rules

What other proper scoring rules are local and/or homogeneous?

A scoring rule S(x, Q) is local of order m if depends on the density
q(-) of Q only through its its value and those of its first m
derivatives at the realized value x of X:

S(x,Q) =5 (x,4(x),d'(x),- -, g™ (x)) .

The log score is local of order 0. It is not homogeneous
The Hyvérinen scoring rule is local of order 2. It is homogeneous.

In sequel, X =R, s is a function of (x, qo, g1, .-, qm),
sk := 0s5/0qk, Sk(x, Q) := sk (X, q(x),q'(x), ..., q(m)(x)).
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Variational analysis

We develop conditions on s under which, at Q = P, S(P, Q) is
stationary under arbitrary infinitesimal variations dq(-) of q(-) —
weak propriety. This yields:

0= /dx {i p(X)sk{x, p(x), P'(x), .-, ™ (x) 1) (x) + Apéq(X)}
k=0

(Ap = Lagrange multiplier for normalisation constraint).
Integrate k'th term by parts k times, assume boundary terms
vanish:

k
0= /dxaq(x)[ (1* T (a00Skx Q) + Ao

So we want
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Operator algebra

Introduce linear differential operators
0 0
D=+ G175
Ox = 0q;

(corresponds to total derivative d/dx); and

L= (-1)*"'D* q00/0qx
k>0

If f is of order m then Df is of order m+ 1 and Lf is (potentially)
of order 2m.

Sufficient condition for weak propriety is

Ls = ).
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Characterisation

Re-express s as a function of (x, {o, ¢1,...,¢m) where generating
functions Q(z) 1= 2220 qk 25/ k!, L(z) := 322k 2¥/ k! satisfy
L(z) = In Q(2).

Then S(x, Q) = s{x, ¢(x),¢'(x),...,¢M(x)}, with £(x) := log q(x).

Note: S is homogeneous iff Js/0¢y = 0.
In terms of the (¢y),
0

0
D = 7+Zép+17
ox 2P,

0
L = -1 k+1e7€o Dkefo i
2 o0,

We want to solve Ls = ).
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Key Theorem

Theorem
(L+%)a-1=o.

Corollary
If Ls = )\, then s is of the form
s(x, 4oy lm) = =Moo+ h(x, 01, ..., 4m)
where Lh = 0.
Proof.

In this case
0:<L+3%0)(s—)\):(L—i—a%))s:)\+8s/<%o. O
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Homogeneous case

From Key Theorem, any solution of Ls = 0 is homogeneous.
Confine attention to this case.

Theorem
Ls =0 iffs = (L — 1)f for some homogeneous f.

Proof.
Restricted to act on homogeneous functions, L2 = L: so L and
1 — L are complementary projections. O

Corollary (Main result)

A homogeneous weakly proper local scoring rule arises iff
s=(L-1)f
for some homogeneous f.

Theorem

In this case s must be of even order.
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Propriety
Write ¢ = qof (homogeneous of degree 1). Then s = A¢ with

A= (L—1)gy"x =gt > (-1)*T1D*9 /01
k>0

Integrating by parts and ignoring boundary terms yields

5o(P, Q) = = [dx 3 pulx)nlx. q)
k
with ¢ = (qo, 91, --.) = (q(x), ¢'(x), .. .), which gives
So(P.P) = — [dx6(x.p),
b(P.Q) = [dx[6(x.p) —{6(x.q) + (P — @)Vo(x. D}].

So long as ¢(x, q) is, for each x, a [strictly] convex function of g,
do(P, Q) will be [strictly] positive (P # Q). Metric is given by:

g(0) = /dX S bikao dok

j=1k=1
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Transformation of the data

Let k : X — X be a (differentiable, invertible) transformation.
If X has distribution @ over X’ with Lebesgue density g(-), then
the induced distribution @ for X := f(X) has density

q(X) = q(x)/K'(x) over X. We can define operators D, L for X
exactly as D, L for X.

Theorem

L is a scalar operator, i.e., if f(x,q) transforms as a scalar:
(f(x,q) = f(x, q)), then so does Lf (Lf = Lf).

Corollary

If s = (L —1)f defines a scoring rule S over X, ands = (L — 1)f
defines a scoring rule S over X, then S(x, Q) = S(x, Q) (i.e., the
scoring rule determined by scalar f is the same, no matter how the
data are expressed).

Need deeper understanding!
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Second order scoring rules

The general proper local scoring rule of order 2 has the form

where ¢(x, qo, g1) is 1-homogeneous and convex in (qo, g1), and
evaluations are at go = q(x), q1 = ¢'(x).

» Entropy: H(P) = — [dx ¢(x, p)

> Metric: g(0) = [dx py(x)(0?F /Ou?) ir?

where F = F(x, u) = ¢(x, 1, u) and evaluations are at
u = ph(x)/po(x).

For ¢ = q?/2q0 (F = u?/2) we recover the Hyvirinen rule.
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Discrete case

Now let X be a discrete outcome space, A the set of positive real
vectors a = (ax :x € X)and P={pec A: > pc =1} the set
of strictly positive probability distributions on X.

If S is a scoring rule, we can extend its domain to X x A by
defining
S(x,@) == S(x, a/a) (1)

where a; =" . Then S is 0-homogeneous in .

Theorem
0-homogeneous S is proper if and only if it is the gradient of a
concave 1-homogeneous function H : A — R,

S(x, @) = [VH(a)lx.

Then H(a) = 3", axS(x, &) (so H(p) = S(p, p) is the generalised
entropy of the distribution p).
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Locality

We describe locality in terms of an undirected graph G. We write
x ~ y if x =y or there is an edge between x and y, and require
that S(x, g) depend on g only through (q, : y ~ x).

Let C be the set of cliques of G. For C € C, let Hc : A — R be a
1-homogeneous and concave function depending only on

ac = (aj:j € C). This generates a proper scoring rule Sc(x, q),
which will depend on g only through g, and be non-zero only for
x € C. In particular it is local.

Since S¢ is a 0-homogeneous function of q., it can be computed

without knowledge of the normalising constant of q: at worst, we
might need to compute 3 ;cc ;.
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Extension
It follows that any scoring rule of the form

S(X,Q):—)\lan—FZSC(X,Q) (2)
cecC

with A > 0 and each S¢ having the form described above, will be
both proper and local. When A =0, S(x, g) can be computed
without knowledge of the normalising constant of q.

Conjecture

Any local proper scoring rule must have the form of equation (2).

Counterexample

= 1—2—3
5(17q):5(27q (1—CI1—CI2)2
53,9) = (1-gs)

= Q
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