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Scoring rules

X a random variable, values in X .

I A scoring rule S = S(x ,Q) measures the loss You suffer if You
quote a distribution Q over X to represent uncertainty about
X , and then observe X = x .

I If You believe X ∼ P, Your expected score, if you quote Q, is

S(P,Q) := EX∼P{S(X ,Q)}.
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S is proper (w.r.t. suitable class P of distributions over X ) if, for
P,Q ∈ P, the expected score S(P,Q) is minimised in Q at
Q = P, and strictly proper if S(P,Q) > S(P,P) for Q 6= P.

When S is proper, honesty is the best policy: If You believe
X ∼ P, You minimise Your expected score by quoting Q = P.

I H(P) := S(P,P) is the (generalised) entropy of P

I d(P,Q) := S(P,Q)− H(P) is the discrepancy/divergence
between P and Q

S is proper iff d(P,Q) ≥ 0.

Locally, d(P,P + dP) defines a Riemannian metric on the set P of
distributions over X—decision geometry.
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Log score

I q(·) the density of Q w.r.t. underlying measure µ

I S(x ,Q) = − ln q(x)

I H(P) = −
∫
dµ(y)p(y) ln p(y) is the Shannon entropy of P

I d(P,Q) =
∫
dµ(y)p(y) ln{p(y)/q(y)} is the Kullback-Leibler

discrepancy K (P,Q).

So S is strictly proper.

Decision metric = Fisher information metric.

NOTE: The log score has form S(x ,Q) = ξ{x , q(x)}.
When #(X ) > 2 it is essentially the only such “strictly local”
proper scoring rule.
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Statistical inference
I IID observations (x1, . . . , xN) from Qθ: empirical distribution

PN .
I The minimum discrepancy estimate minimises d(PN ,Qθ).
I Since d(PN ,Qθ) = S(PN ,Qθ)− H(PN), we can instead

minimise the total empirical score

N S(PN ,Qθ) =
N∑

t=1
S(xt ,Qθ).

I This yields the unbiased estimating equation
N∑

t=1
s(xt , θ) = 0

(where s(x , θ) := ∂S(x ,Qθ)/∂θ).
I Often we only know qθ(·) up to a multiplier Z (θ) that is hard

to compute.
I Computation of s(x , θ) typically requires Z (θ).
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Hyvärinen scoring rule
X = Rk , ∇ := (∂/∂x j), ∆ =

∑k
j=1 ∂

2/(∂x j)2

S(x ,Q) = ∆ ln q(x) +
1
2 |∇ ln q(x)|2 =

∆
√
q(x)√
q(x)

On integrating by parts, and requiring boundary terms to vanish,

S(P,Q) =
1
2

∫
dµ(x)〈∇ ln q(x)− 2∇ ln p(x),∇ ln q(x)〉.

So

H(P) = −1
2

∫
dµ(x) |∇ ln p(x)|2

d(P,Q) =
1
2

∫
dµ(x) |∇ ln p(x)−∇ ln q(x)|2 ≥ 0

I Local: S(x ,Q) depends only on behaviour of q(·) in
neighborhood of realised point x

I Homogeneous: Only need q(·) up to scale-factor
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Generalization
Carries over to a general Riemannian manifold X :

I p, q 7→ densities with respect to natural volume measure
I ∇ 7→ natural gradient
I ∆ 7→ Laplace-Beltrami operator
I 〈 · , · 〉, | · |2 7→ metric inner product
I integration by parts 7→ Stokes’s theorem

When X is itself the parameter-space of a statistical model
endowed with the Fisher information metric, the associated
decision metric over the space of prior distributions is that arising
as a limiting form of Kullback-Leibler predictive loss (Komaki,
Sweeting).

Works even for improper priors!
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Local scoring rules

What other proper scoring rules are local and/or homogeneous?

A scoring rule S(x ,Q) is local of order m if depends on the density
q(·) of Q only through its its value and those of its first m
derivatives at the realized value x of X :

S(x ,Q) = s
(
x , q(x), q′(x), . . . , q(m)(x)

)
.

The log score is local of order 0. It is not homogeneous

The Hyvärinen scoring rule is local of order 2. It is homogeneous.

In sequel, X = R, s is a function of (x , q0, q1, . . . , qm),
sk := ∂s/∂qk , Sk(x ,Q) := sk

(
x , q(x), q′(x), . . . , q(m)(x)

)
.
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Variational analysis
We develop conditions on s under which, at Q = P, S(P,Q) is
stationary under arbitrary infinitesimal variations δq(·) of q(·) —
weak propriety. This yields:

0 ≡
∫
dx
{ m∑

k=0
p(x)sk{x , p(x), p′(x), . . . , p(m)(x)}δq(k)(x) + λPδq(x)

}

(λP = Lagrange multiplier for normalisation constraint).
Integrate k’th term by parts k times, assume boundary terms
vanish:

0 ≡
∫
dx δq(x)

[ m∑
k=0

(−1)k dk

dxk {q(x)Sk(x ,Q)}+ λQ

]
.

So we want
m∑

k=0
(−1)k+1 dk

dxk {q(x)Sk(x ,Q)} ≡ λQ.
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Operator algebra
Introduce linear differential operators

D :=
∂

∂x +
∑
j≥0

qj+1
∂

∂qj

(corresponds to total derivative d/dx); and

L :=
∑
k≥0

(−1)k+1Dk q0 ∂/∂qk

If f is of order m then Df is of order m + 1 and Lf is (potentially)
of order 2m.

Sufficient condition for weak propriety is

Ls ≡ λ.
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Characterisation
Re-express s as a function of (x , `0, `1, . . . , `m) where generating
functions Q(z) :=

∑∞
k=0 qk zk/k!, L(z) :=

∑∞
k=0 `k zk/k! satisfy

L(z) = lnQ(z).

Then S(x ,Q) = s{x , `(x), `′(x), . . . , `m(x)}, with `(x) := log q(x).

Note: S is homogeneous iff ∂s/∂`0 = 0.

In terms of the (`k),

D =
∂

∂x +
∑
p≥0

`p+1
∂

∂`p

L =
∑
k≥0

(−1)k+1e−`0Dke`0 ∂

∂`k
.

We want to solve Ls ≡ λ.
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Key Theorem

Theorem(
L + ∂

∂`0

)
(1− L) = 0.

Corollary
If Ls ≡ λ, then s is of the form

s(x , `0, . . . , `m) = −λ`0 + h(x , `1, . . . , `m)

where Lh = 0.

Proof.
In this case
0 =

(
L + ∂

∂`0

)
(s − λ) =

(
L + ∂

∂`0

)
s = λ+ ∂s/∂`0.
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Homogeneous case
From Key Theorem, any solution of Ls = 0 is homogeneous.
Confine attention to this case.

Theorem
Ls = 0 iff s = (L− 1)f for some homogeneous f .

Proof.
Restricted to act on homogeneous functions, L2 = L: so L and
1− L are complementary projections.

Corollary (Main result)
A homogeneous weakly proper local scoring rule arises iff

s = (L− 1)f

for some homogeneous f .

Theorem
In this case s must be of even order.
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Propriety
Write φ = q0f (homogeneous of degree 1). Then s = Λφ with

Λ := (L− 1)q−1
0 × = q−1

0
∑
k≥0

(−1)k+1Dk∂/∂`k

Integrating by parts and ignoring boundary terms yields

S0(P,Q) = −
∫
dx
∑

k
pk(x)φk(x ,q)

with q = (q0, q1, . . .) = (q(x), q′(x), . . .), which gives

S0(P,P) = −
∫
dx φ(x ,p),

d0(P,Q) =

∫
dx [φ(x ,p) − {φ(x ,q) + (p − q)∇φ(x ,q)}] .

So long as φ(x ,q) is, for each x , a [strictly] convex function of q,
d0(P,Q) will be [strictly] positive (P 6= Q). Metric is given by:

g(θ) =

∫
dx

m∑
j=1

m∑
k=1

φjk q̇θ,j q̇θ,k
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Transformation of the data
Let k : X → X be a (differentiable, invertible) transformation.
If X has distribution Q over X with Lebesgue density q(·), then
the induced distribution Q for X := f (X ) has density
q(x) = q(x)/k ′(x) over X . We can define operators D, L for X
exactly as D, L for X .

Theorem
L is a scalar operator, i.e., if f (x ,q) transforms as a scalar:
(f (x ,q) = f (x ,q)), then so does Lf (Lf = Lf ).

Corollary
If s = (L− 1)f defines a scoring rule S over X , and s = (L− 1)f
defines a scoring rule S over X , then S(x ,Q) = S(x ,Q) ( i.e., the
scoring rule determined by scalar f is the same, no matter how the
data are expressed).

Need deeper understanding!
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Second order scoring rules

The general proper local scoring rule of order 2 has the form

S(x ,Q) =
d

dx
∂φ

∂q1
− ∂φ

∂q0

where φ(x , q0, q1) is 1-homogeneous and convex in (q0, q1), and
evaluations are at q0 = q(x), q1 = q′(x).

I Entropy: H(P) = −
∫
dx φ(x ,p)

I Metric: g(θ) =
∫
dx pθ(x)(∂2F/∂u2) u̇2

where F = F (x , u) = φ(x , 1, u) and evaluations are at
u = p′θ(x)/pθ(x).

For φ = q2
1/2q0 (F = u2/2) we recover the Hyvärinen rule.
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Discrete case
Now let X be a discrete outcome space, A the set of positive real
vectors α = (αx : x ∈ X ) and P = {p ∈ A :

∑
x px = 1} the set

of strictly positive probability distributions on X .
If S is a scoring rule, we can extend its domain to X ×A by
defining

S(x ,α) := S(x ,α/α+) (1)

where α+ :=
∑

x αx . Then S is 0-homogeneous in α.

Theorem
0-homogeneous S is proper if and only if it is the gradient of a
concave 1-homogeneous function H : A → R,

S(x ,α) = [∇H(α)]x .

Then H(α) =
∑

x αxS(x ,α) (so H(p) = S(p,p) is the generalised
entropy of the distribution p).
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Locality

We describe locality in terms of an undirected graph G. We write
x ∼ y if x = y or there is an edge between x and y , and require
that S(x ,q) depend on q only through (qy : y ∼ x).

Let C be the set of cliques of G. For C ∈ C, let HC : A → R be a
1-homogeneous and concave function depending only on
αC := (αj : j ∈ C). This generates a proper scoring rule SC (x ,q),
which will depend on q only through qC , and be non-zero only for
x ∈ C . In particular it is local.

Since SC is a 0-homogeneous function of qC , it can be computed
without knowledge of the normalising constant of q: at worst, we
might need to compute

∑
j∈C qj .
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Extension
It follows that any scoring rule of the form

S(x ,q) = −λ ln qx +
∑
C∈C

SC (x ,q) (2)

with λ ≥ 0 and each SC having the form described above, will be
both proper and local. When λ = 0, S(x ,q) can be computed
without knowledge of the normalising constant of q.
Conjecture
Any local proper scoring rule must have the form of equation (2).

Counterexample

G = 1—2—3
S(1, q) = S(2, q) = (1− q1 − q2)2

S(3, q) = (1− q3)2
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