Proper local scoring rules

Philip Dawid

Joint work with Matthew Parry and Steffen Lauritzen

University of Cambridge University of Oxford

Outline

[0]

Proper Scoring Rules

Definition

Examples

Statistical inference

Hyvärinen scoring rule

Local scoring rules

Definition

Variational analysis

Characterisation

Homogeneity

Propriety

Transformation of the data

Second order scoring rules

Discrete case

Scoring rules

X a random variable, values in \mathcal{X} .

- ▶ A scoring rule S = S(x, Q) measures the loss You suffer if You quote a distribution Q over \mathcal{X} to represent uncertainty about X, and then observe X = x.
- ▶ If You believe $X \sim P$, Your *expected score*, if you quote Q, is

$$S(P,Q) := \mathsf{E}_{X \sim P} \{ S(X,Q) \}.$$

S is proper (w.r.t. suitable class \mathcal{P} of distributions over \mathcal{X}) if, for $P,Q\in\mathcal{P}$, the expected score S(P,Q) is minimised in Q at Q=P, and strictly proper if S(P,Q)>S(P,P) for $Q\neq P$.

When S is proper, honesty is the best policy: If You believe $X \sim P$, You minimise Your expected score by quoting Q = P.

- ▶ H(P) := S(P, P) is the (generalised) entropy of P
- ▶ d(P, Q) := S(P, Q) H(P) is the discrepancy/divergence between P and Q

S is proper iff $d(P, Q) \ge 0$.

Locally, d(P, P + dP) defines a Riemannian metric on the set P of distributions over \mathcal{X} —decision geometry.

Log score

- ▶ $q(\cdot)$ the density of Q w.r.t. underlying measure μ
- \triangleright $S(x,Q) = -\ln q(x)$
- ► $H(P) = -\int d\mu(y)p(y) \ln p(y)$ is the Shannon entropy of P
- ▶ $d(P,Q) = \int d\mu(y)p(y) \ln\{p(y)/q(y)\}$ is the Kullback-Leibler discrepancy K(P,Q).

So *S* is strictly proper.

Decision metric = Fisher information metric.

NOTE: The log score has form $S(x,Q) = \xi\{x,q(x)\}$. When $\#(\mathcal{X}) > 2$ it is essentially the only such "strictly local" proper scoring rule.

Statistical inference

- ▶ IID observations $(x_1, ..., x_N)$ from Q_θ : empirical distribution P_N .
- ▶ The minimum discrepancy estimate minimises $d(P_N, Q_\theta)$.
- ▶ Since $d(P_N, Q_\theta) = S(P_N, Q_\theta) H(P_N)$, we can instead minimise the *total empirical score*

$$NS(P_N, Q_\theta) = \sum_{t=1}^N S(x_t, Q_\theta).$$

This yields the unbiased estimating equation

$$\sum_{t=1}^{N} s(x_t, \theta) = 0$$

(where
$$s(x, \theta) := \partial S(x, Q_{\theta})/\partial \theta$$
).

- ▶ Often we only know $q_{\theta}(\cdot)$ up to a multiplier $Z(\theta)$ that is hard to compute.
- ▶ Computation of $s(x, \theta)$ typically requires $Z(\theta)$.

Hyvärinen scoring rule

$$\mathcal{X} = \mathbb{R}^k$$
, $\nabla := (\partial/\partial x^j)$, $\Delta = \sum_{j=1}^k \partial^2/(\partial x^j)^2$

$$S(x,Q) = \Delta \ln q(x) + \frac{1}{2} |\nabla \ln q(x)|^2 = \frac{\Delta \sqrt{q(x)}}{\sqrt{q(x)}}$$

On integrating by parts, and requiring boundary terms to vanish,

$$S(P,Q) = \frac{1}{2} \int d\mu(x) \langle \nabla \ln q(x) - 2\nabla \ln p(x), \nabla \ln q(x) \rangle.$$

So

$$H(P) = -\frac{1}{2} \int d\mu(x) |\nabla \ln p(x)|^2$$

$$d(P, Q) = \frac{1}{2} \int d\mu(x) |\nabla \ln p(x) - \nabla \ln q(x)|^2 \ge 0$$

- ▶ Local: S(x,Q) depends only on behaviour of $q(\cdot)$ in neighborhood of realised point x
- ▶ Homogeneous: Only need $q(\cdot)$ up to scale-factor

Generalization

Carries over to a general Riemannian manifold \mathcal{X} :

- $ightharpoonup p, q \mapsto$ densities with respect to natural volume measure
- $ightharpoonup
 abla \mapsto \mathsf{natural} \; \mathsf{gradient}$
- $ightharpoonup \Delta \mapsto \mathsf{Laplace}\text{-}\mathsf{Beltrami}$ operator
- ▶ integration by parts → Stokes's theorem

When \mathcal{X} is itself the parameter-space of a statistical model endowed with the Fisher information metric, the associated decision metric over the space of prior distributions is that arising as a limiting form of Kullback-Leibler predictive loss (Komaki, Sweeting).

Works even for improper priors!

Local scoring rules

What other proper scoring rules are local and/or homogeneous?

A scoring rule S(x, Q) is local of order m if depends on the density $q(\cdot)$ of Q only through its its value and those of its first m derivatives at the realized value x of X:

$$S(x, Q) = s(x, q(x), q'(x), \dots, q^{(m)}(x)).$$

The log score is local of order 0. It is not homogeneous

The Hyvärinen scoring rule is local of order 2. It is homogeneous.

In sequel,
$$\mathcal{X} = \mathbb{R}$$
, s is a function of $(x, q_0, q_1, \dots, q_m)$, $s_k := \partial s/\partial q_k$, $S_k(x, Q) := s_k(x, q(x), q'(x), \dots, q^{(m)}(x))$.

Variational analysis

We develop conditions on s under which, at Q=P, S(P,Q) is stationary under arbitrary infinitesimal variations $\delta q(\cdot)$ of $q(\cdot)$ — weak propriety. This yields:

$$0 \equiv \int dx \left\{ \sum_{k=0}^{m} p(x) s_k\{x, p(x), p'(x), \dots, p^{(m)}(x)\} \delta q^{(k)}(x) + \lambda_P \delta q(x) \right\}$$

(λ_P = Lagrange multiplier for normalisation constraint). Integrate k'th term by parts k times, assume boundary terms vanish:

$$0 \equiv \int dx \, \delta q(x) \left[\sum_{k=0}^{m} (-1)^k \frac{\mathrm{d}^k}{\mathrm{d}x^k} \left\{ q(x) S_k(x, Q) \right\} + \lambda_Q \right].$$

So we want

$$\sum_{k=0}^{m} (-1)^{k+1} \frac{\mathrm{d}^k}{\mathrm{d}x^k} \left\{ q(x) S_k(x, Q) \right\} \equiv \lambda_Q.$$

Operator algebra

Introduce linear differential operators

$$D := \frac{\partial}{\partial x} + \sum_{j \ge 0} q_{j+1} \frac{\partial}{\partial q_j}$$

(corresponds to total derivative d/dx); and

$$L:=\sum_{k>0}(-1)^{k+1}D^k\,q_0\,\partial/\partial q_k$$

If f is of order m then Df is of order m+1 and Lf is (potentially) of order 2m.

Sufficient condition for weak propriety is

$$Ls \equiv \lambda$$
.

Characterisation

Re-express s as a function of $(x,\ell_0,\ell_1,\ldots,\ell_m)$ where generating functions $Q(z):=\sum_{k=0}^\infty q_k\,z^k/k!,\; L(z):=\sum_{k=0}^\infty \ell_k\,z^k/k!$ satisfy $L(z)=\ln Q(z).$

Then $S(x,Q) = s\{x,\ell(x),\ell'(x),\ldots,\ell^m(x)\}$, with $\ell(x) := \log q(x)$.

Note: S is homogeneous iff $\partial s/\partial \ell_0 = 0$.

In terms of the (ℓ_k) ,

$$D = \frac{\partial}{\partial x} + \sum_{p \ge 0} \ell_{p+1} \frac{\partial}{\partial \ell_p}$$

$$L = \sum_{k>0} (-1)^{k+1} e^{-\ell_0} D^k e^{\ell_0} \frac{\partial}{\partial \ell_k}.$$

We want to solve $Ls \equiv \lambda$.

Key Theorem

Theorem
$$\left(L + \frac{\partial}{\partial \ell_0}\right) (1 - L) = 0.$$

Corollary

If $Ls \equiv \lambda$, then s is of the form

$$s(x,\ell_0,\ldots,\ell_m)=-\lambda\ell_0+h(x,\ell_1,\ldots,\ell_m)$$

where Lh = 0.

Proof.

In this case

$$0 = \left(L + \frac{\partial}{\partial \ell_0}\right)(s - \lambda) = \left(L + \frac{\partial}{\partial \ell_0}\right)s = \lambda + \partial s / \partial \ell_0.$$

Homogeneous case

From Key Theorem, any solution of Ls=0 is homogeneous. Confine attention to this case.

Theorem

Ls = 0 iff s = (L-1)f for some homogeneous f.

Proof.

Restricted to act on homogeneous functions, $L^2 = L$: so L and 1 - L are complementary projections.

Corollary (Main result)

A homogeneous weakly proper local scoring rule arises iff

$$s = (L-1)f$$

for some homogeneous f.

Theorem

In this case s must be of even order.

Propriety

Write $\phi=q_0f$ (homogeneous of degree 1). Then $s=\Lambda\phi$ with

$$\Lambda := (L-1)q_0^{-1} \times = q_0^{-1} \sum_{k>0} (-1)^{k+1} D^k \partial / \partial \ell_k$$

Integrating by parts and ignoring boundary terms yields

$$S_0(P,Q) = -\int dx \sum_k p_k(x)\phi_k(x,\boldsymbol{q})$$

with $q = (q_0, q_1, ...) = (q(x), q'(x), ...)$, which gives

$$S_0(P,P) = -\int dx \, \phi(x, \boldsymbol{p}),$$

$$d_0(P,Q) = \int dx \left[\phi(x, \boldsymbol{p}) - \{ \phi(x, \boldsymbol{q}) + (\boldsymbol{p} - \boldsymbol{q}) \nabla \phi(x, \boldsymbol{q}) \} \right].$$

So long as $\phi(x, \mathbf{q})$ is, for each x, a [strictly] convex function of \mathbf{q} , $d_0(P, Q)$ will be [strictly] positive $(P \neq Q)$. Metric is given by:

$$g(\theta) = \int dx \sum_{j=1}^{m} \sum_{k=1}^{m} \phi_{jk} \dot{q}_{\theta,j} \, \dot{q}_{\theta,k}$$

Transformation of the data

Let $k: \mathcal{X} \to \overline{\mathcal{X}}$ be a (differentiable, invertible) transformation. If X has distribution Q over \mathcal{X} with Lebesgue density $q(\cdot)$, then the induced distribution \overline{Q} for $\overline{X}:=f(X)$ has density $\overline{q}(\overline{x})=q(x)/k'(x)$ over $\overline{\mathcal{X}}$. We can define operators \overline{D} , \overline{L} for $\overline{\mathcal{X}}$ exactly as D, L for \mathcal{X} .

Theorem

L is a scalar operator, i.e., if $f(x, \mathbf{q})$ transforms as a scalar: $(\overline{f}(\overline{x}, \overline{\mathbf{q}}) = f(x, \mathbf{q}))$, then so does Lf $(\overline{Lf} = Lf)$.

Corollary

If s=(L-1)f defines a scoring rule S over \mathcal{X} , and $\overline{s}=(\overline{L}-1)\overline{f}$ defines a scoring rule \overline{S} over $\overline{\mathcal{X}}$, then $S(x,Q)=\overline{S}(\overline{x},\overline{Q})$ (i.e., the scoring rule determined by scalar f is the same, no matter how the data are expressed).

Need deeper understanding!

Second order scoring rules

The general proper local scoring rule of order 2 has the form

$$S(x,Q) = \frac{\mathrm{d}}{\mathrm{d}x} \frac{\partial \phi}{\partial q_1} - \frac{\partial \phi}{\partial q_0}$$

where $\phi(x, q_0, q_1)$ is 1-homogeneous and convex in (q_0, q_1) , and evaluations are at $q_0 = q(x)$, $q_1 = q'(x)$.

- ► Entropy: $H(P) = -\int dx \, \phi(x, \mathbf{p})$
- ► Metric: $g(\theta) = \int dx \, p_{\theta}(x) (\partial^2 F / \partial u^2) \, \dot{u}^2$

where $F = F(x, u) = \phi(x, 1, u)$ and evaluations are at $u = p'_{\theta}(x)/p_{\theta}(x)$.

For $\phi = q_1^2/2q_0$ ($F = u^2/2$) we recover the Hyvärinen rule.

Discrete case

Now let $\mathcal X$ be a discrete outcome space, $\mathcal A$ the set of positive real vectors $\boldsymbol \alpha = (\alpha_{\mathsf x}: \mathsf x \in \mathcal X)$ and $\mathcal P = \{ \boldsymbol p \in \mathcal A: \sum_{\mathsf x} p_{\mathsf x} = 1 \}$ the set of strictly positive probability distributions on $\mathcal X$.

If S is a scoring rule, we can extend its domain to $\mathcal{X} \times \mathcal{A}$ by defining

$$S(x, \alpha) := S(x, \alpha/\alpha_+) \tag{1}$$

where $\alpha_+ := \sum_x \alpha_x$. Then S is 0-homogeneous in α .

Theorem

0-homogeneous S is proper if and only if it is the gradient of a concave 1-homogeneous function $H: \mathcal{A} \to \mathbb{R}$,

$$S(x, \alpha) = [\nabla H(\alpha)]_x.$$

Then $H(\alpha) = \sum_{x} \alpha_{x} S(x, \alpha)$ (so $H(\mathbf{p}) = S(\mathbf{p}, \mathbf{p})$ is the generalised entropy of the distribution \mathbf{p}).

Locality

We describe locality in terms of an undirected graph \mathcal{G} . We write $x \sim y$ if x = y or there is an edge between x and y, and require that $S(x, \mathbf{q})$ depend on \mathbf{q} only through $(q_y : y \sim x)$.

Let \mathcal{C} be the set of cliques of \mathcal{G} . For $C \in \mathcal{C}$, let $H_C : \mathcal{A} \to \mathbb{R}$ be a 1-homogeneous and concave function depending only on $\alpha_C := (\alpha_j : j \in C)$. This generates a proper scoring rule $S_C(x, \boldsymbol{q})$, which will depend on \boldsymbol{q} only through \boldsymbol{q}_C , and be non-zero only for $x \in C$. In particular it is local.

Since S_C is a 0-homogeneous function of q_C , it can be computed without knowledge of the normalising constant of q: at worst, we might need to compute $\sum_{i \in C} q_i$.

Extension

It follows that any scoring rule of the form

$$S(x, \mathbf{q}) = -\lambda \ln q_x + \sum_{C \in \mathcal{C}} S_C(x, \mathbf{q})$$
 (2)

with $\lambda \geq 0$ and each S_C having the form described above, will be both proper and local. When $\lambda = 0$, $S(x, \boldsymbol{q})$ can be computed without knowledge of the normalising constant of \boldsymbol{q} .

Conjecture

Any local proper scoring rule must have the form of equation (2).

Counterexample

$$G = 1-2-3$$

$$S(1,q) = S(2,q) = (1-q_1-q_2)^2$$

$$S(3,q) = (1-q_3)^2$$