A. Knauf S. Weis

Department Mathematik University of Erlangen

Information Geometry and its Applications III Leipzig, 6th August 2010



- 1 Motivation
- 2 Mean Value Char
- 3 Projection Theorem
- 4 Pythagorean Theorem
- 5 Applications
- 6 Summary



- Motivation
- 2 Mean Value Chart



- 1 Motivation
- 2 Mean Value Chart
- 3 Projection Theorem
- 4 Pythagorean Theorem
- 5 Applications
- 6 Summary



- 1 Motivation
- 2 Mean Value Chart
- 3 Projection Theorem
- 4 Pythagorean Theorem
- 5 Applications
- 6 Summary



- 1 Motivation
- 2 Mean Value Chart
- 3 Projection Theorem
- 4 Pythagorean Theorem
- 5 Applications
- 6 Summary



- 1 Motivation
- 2 Mean Value Chart
- 3 Projection Theorem
- 4 Pythagorean Theorem
- 5 Applications
- 6 Summary



#### Definition

Motivation

Entropy distance  $d_{\mathcal{E}}$  is the relative entropy distance from an exponential family  $\mathcal{E}$  in a finite-dimensional matrix algebra  $\mathcal{A}$ . Classical algebra  $A \cong \mathbb{C}^N$ , quantum otherwise.

Overview of exponential families in statistics: Amari and Nagaoka, Methods of information geometry (2000). Applications of entropy distance include

- MLE through the log-likelihood function (classical),
- the stochastic interaction measure of multi-information, this is the entropy distance from the independence model (classical & quantum).



## Previous Work on $d_{\mathcal{E}}$ in Classical Probability Theory

Barndorff-Nielsen ('78), Čencov ('82), Ay ('02), Csiszár and Matúš ('03, '05, '08)



### Rough Idea:

- Pythagorean theorem of relative entropy implies projection theorem along the normal space.
- mean value chart maps  $\mathcal{E}$  to the mean value set (convex support),
- $\blacksquare$  extension of  $\mathcal{E}$  implies optimal projection theorem and optimal Pythagorean theorem.



Barndorff-Nielsen ('78), Čencov ('82), Ay ('02), Csiszár and Matúš ('03, '05, '08)



### Rough Idea:

- Pythagorean theorem of relative entropy implies projection theorem along the normal space.
- mean value chart maps  $\mathcal{E}$  to the mean value set (convex support),
- $\blacksquare$  extension of  $\mathcal{E}$  implies optimal projection theorem and optimal Pythagorean theorem.



## Previous Work on $d_{\mathcal{E}}$ in Classical Probability Theory

Barndorff-Nielsen ('78), Čencov ('82), Ay ('02), Csiszár and Matúš ('03, '05, '08)



### Rough Idea:

- Pythagorean theorem of relative entropy implies projection theorem along the normal space,
- lacktriangle mean value chart maps  $\mathcal E$  to the mean value set (convex support),
- lacktriangle extension of  $\mathcal E$  implies optimal projection theorem and optimal Pythagorean theorem.



### Previous Work on $d_{\mathcal{E}}$ in the Quantum Case

Classical extension of  $\mathcal{E}$  is compact, the mean value set is a polytope and  $d_{\mathcal{E}}$  is continuous. All wrong for quantum case!

#### Well-known in the quantum case:

- Pythagorean theorem implies (only in a restriction!) a projection theorem along the normal space, see Petz ('08),
- mean value chart and mean value set are known, see Wichmann ('63).

New in our work: Convex structure of mean value set includes non-exposed faces; extensions of  $\mathcal{E}$ ; optimal projection theorem and Pythagorean theorem.



## **Exponential Families**

#### **Definition**

State space  $\overline{\mathcal{S}}:=\{\rho\in\mathcal{A}\mid\rho\geq0,\mathrm{tr}(\rho)=1\}$ . Real vector space  $\mathcal{A}_{\mathrm{sa}}\subset\mathcal{A}$  of self-adjoint matrices, Hilbert-Schmidt inner product. Analytic diffeo.  $\exp_1:\mathcal{A}_{\mathrm{sa}}/\mathbb{R}1\!\!1\to\mathcal{S}:=\{\rho\in\overline{\mathcal{S}}|\rho^{-1}\text{ exists }\},$   $a\mapsto\frac{e^a}{\mathrm{tr}(e^a)}$ , canonical chart  $\ln_0=\exp_1^{-1}$  to traceless matrices. Exponential family  $\mathcal{E}:=\exp_1($  linear subspace of  $\mathcal{A}_{\mathrm{sa}}$ ),  $V:=\ln_0(\mathcal{E})$  tangent space,  $V^\perp$  normal space, orth. projection  $\pi_V:\mathcal{A}_{\mathrm{sa}}\to V$ , mean value set  $\mathrm{mv}(V):=\pi_V(\overline{\mathcal{S}})$ .

### Theorem (Wichmann '63)

 $\pi_V \circ \exp_1 |_V : V \to \operatorname{Int}(\operatorname{mv}(V))$  real analytic bijection.



## Two Examples

### Definition (Mean value chart)

The analytic chart  $\pi_V|_{\mathcal{E}}$  onto  $\operatorname{Int}(\operatorname{mv}(V))$  is called mean value chart.



- $\overline{\mathcal{S}}$  is the 4D cone conv( Bloch ball  $\oplus$  0, 0<sub>2</sub>  $\oplus$  1),
- every 2D exponential family  $\mathcal{E}$  of  $\mathcal{A}$  is included in a 3D cone,
- modulo automorphism take  $z := -\frac{1}{2} \mathbb{I}_2 \oplus 1$ ,  $W := \operatorname{span} \{ \sigma_1 \oplus 0, \sigma_2 \oplus 0, z \}, \ V \subset W$  and the cone  $C := (\frac{1}{3} \mathbb{I} + W) \cap \overline{S} = \overline{\exp_1(W)} \supset \mathcal{E}$ ,
- **a** complete orbit invariant of 2D planes V is the angle  $\angle(V, z) \in [0, \frac{\pi}{2}]$ .



Non-exposed faces
are typical
tor a mean value set!









### Definition (Rockafellar, Grünbaum, Csiszár and Matúš)

Let M be a convex set. The intersection F of M with a supporting hyperplane of M is called exposed face of M.  $\emptyset$  and M are expsed faces by definition. In these cases we write  $F \stackrel{\text{Ex}}{<} M$ . A sequence  $F = F_1 \stackrel{\text{Ex}}{<} \cdots \stackrel{\text{Ex}}{<} F_k \stackrel{\text{Ex}}{<} M$  is called access sequence and F is called poonem of M. A poonem, which is not an exposed face is called non-exposed face.

Concept of poonem is equivalent to the more popular concept of face.



## The Pythagorean Theorem (Restricted Form)

#### Definition

Motivation

The relative entropy of two states  $\rho, \sigma \in \overline{S}$  is  $S(\rho, \sigma) := \infty$ unless  $\operatorname{Im}(\sigma) \supset \operatorname{Im}(\rho)$  and then  $S(\rho, \sigma) := \operatorname{tr}\rho(\ln \rho - \ln \sigma)$ .

### Theorem (Monograph Petz '08 for an overview)

If  $\rho, \sigma, \tau \in \overline{S}$  are states,  $\sigma$  and  $\tau$  are invertible and  $\rho - \sigma \perp \ln(\tau) - \ln(\sigma)$  holds, then we have  $S(\rho, \sigma) + S(\sigma, \tau) = S(\rho, \tau).$ 

- The Pythagorean theorem induces the projection  $\pi_{\mathcal{E}}$ :  $\mathcal{E} + V^{\perp} \to \mathcal{E}$ ,  $a \mapsto (a + V^{\perp}) \cap \mathcal{E}$  to an exponential family  $\mathcal{E}$ .
- For a state  $\rho \in \mathcal{E} + V^{\perp}$  we have  $d_{\mathcal{E}}(\rho) := \inf_{\sigma \in \mathcal{E}} S(\rho, \sigma) = S(\rho, \pi_{\mathcal{E}}(\rho)).$

## Lattice Isomorphisms and Compressions

Assignment of an orth. projector  $F \mapsto p^F$  to each face F of mv(V) through

- inverse projection  $F \mapsto (F + V^{\perp}) \cap \overline{S}$  lifts faces of mv(V) to faces of  $\overline{S}$ ,
- lacksquare ( face lattice of  $\overline{\mathcal{S}}$  )  $\cong$  ( projector lattice of  $\mathcal{A}$  ).

#### Definition

Orth. projector p defines projection  $\mathcal{A} \to p\mathcal{A}p := \{pap \mid a \in \mathcal{A}\}$  by  $a \mapsto pap$ . We denote by  $\exp_1^p$  and  $\ln^p$  the trace normalized exponential and the logarithm in  $p\mathcal{A}p$ .

A face F of mv(V) defines the compressed exponential family  $\mathcal{E}^{p^F} := \exp_{+}^{p^F}(p^F V p^F)$ .



#### Definition

Motivation

The e-geodesic through  $\theta \in \mathcal{A}_{sa}$  in the direction of  $v \in \mathcal{A}_{sa}$  is the curve  $\gamma \mapsto g_{\theta,\nu}(\lambda) = \exp_1(\theta + \lambda \nu) \subset \mathcal{S}$ .

If p is the maximal projector of v (spectral projector of the largest eigenvalue), then  $\mathcal{E}^p = \{\lim_{\lambda \to \infty} g_{\theta,\nu}(\lambda) \mid \theta \in V\}.$ 

#### Definition

The geodesic closure of  $\mathcal{E}$  is  $\operatorname{cl}_{geo}(\mathcal{E}) := \bigcup_{\mathcal{E}} \mathcal{E}^{\mathcal{P}^{\mathcal{F}}}$ . Here  $\mathcal{F}$ extends over the exposed faces  $(\neq \emptyset)$  of mv(V).

The geodesic closure  $cl_{geo}(\mathcal{E})$  exceeds  $\mathcal{E}$  by the limit points of e-geodesics in  $\mathcal{E}$ .



### The rl-Closure

Motivation

### Definition (Csiszár and Matúš)

The rl-closure of  $\mathcal{E}$  is  $\operatorname{cl}_{rI}(\mathcal{E}) := \{ \rho \in \overline{\mathcal{S}} \mid d_{\mathcal{E}}(\rho) = 0 \}.$ 

- E-geodesic asymptotics show  $cl_{geo}(\mathcal{E}) \subset cl_{rI}(\mathcal{E})$ .
- The proof idea to the following theorem is to concatenate e-geodesic asymptotics. For every poonem F in an access sequence of mv(V) we form the geodesic closure of the compressed exponential family  $\mathcal{E}^{p^F}$  and take the union:

$$\operatorname{cl}_{rI}(\mathcal{E}) = \bigcup_{\mathcal{F}} \mathcal{E}^{\mathcal{P}^{\mathcal{F}}}.$$

Equality cl<sub>geo</sub>(E) = cl<sub>rI</sub>(E) holds if and only if all faces of mv(V) are exposed. Examples: independence model, convex family or classical algebra.



## The Optimal Projection Theorem

### Theorem (Weis '09)

Let  $\mathcal{E}$  be an exponential family with tangent space V.

- (1) If  $\rho \in \overline{S}$ , then  $\rho + V^{\perp}$  intersects the reverse information closure  $\operatorname{cl}_{\mathrm{rI}}(\mathcal{E})$  in a unique point denoted by  $\pi_{\mathcal{E}}(\rho)$ .
- (2) If  $\rho \in \overline{S}$ , then the relative entropy  $S(\rho, \cdot)$  has a unique local minimum on  $cl_{rl}(\mathcal{E})$  and  $\min_{\sigma \in \operatorname{cl}_{r_{\mathsf{I}}}(\mathcal{E})} S(\rho, \sigma) = S(\rho, \pi_{\mathcal{E}}(\rho)) = S_{\mathcal{E}}(\rho).$





- The discontinuous  $d_{\mathcal{E}}$  at  $\varphi = \measuredangle(V, z) = \frac{\pi}{3}$  separates mean value sets with non-exposed faces from those without.
- According to the Pinsker-Csiszár inequality  $cl_{rI}(\mathcal{E}) \subset \overline{\mathcal{E}}$ holds. Equality  $\operatorname{cl}_{\mathrm{rI}}(\mathcal{E}) = \overline{\mathcal{E}} \iff d_{\mathcal{E}}$  is continuous. E.g. indep. model, convex family or (Ay '02) classical algebra.



## The Optimal Pythagorean Theorem

### Theorem (Weis '10)

Let  $\mathcal E$  be an exponential family with tangent space V. If  $\rho \in \overline{\mathcal S}$  and  $\sigma, \tau \in \mathrm{cl_{rl}}(\mathcal E)$  are states such that  $\sigma - \rho \perp V$ , then  $\mathcal S(\rho, \sigma) + \mathcal S(\sigma, \tau) = \mathcal S(\rho, \tau)$  holds.





# Maximization of Entropy Distance

Previous work e.g. by Ay, Knauf, Matúš

#### Definition

If  $\rho \in \overline{\mathcal{S}}$  then the support projector of  $\rho$  is the ortho. projector  $s(\rho) \in \mathcal{A}$  with the image  $\mathrm{Im}(s(\rho)) = \mathrm{Im}(\rho)$ . For  $a \in \mathcal{A}_{\mathrm{sa}}$  denote the free energy  $F(a) := \ln \mathrm{tr} e^a$  and use  $F^p$  for free energy in  $p\mathcal{A}p$ .

### Theorem (Knauf and Weis '10)

Let  $\rho \in \mathcal{S}$ ,  $p := s(\rho)$  and  $q := s(\pi_{\mathcal{E}}(\rho))$ . For every traceless self-adjoint matrix  $u \in p\mathcal{A}p$  we have the directional derivative  $D|_{\rho}d_{\mathcal{E}}(u) = \langle u, \ln^p(\rho) - \ln^q \circ \pi_{\mathcal{E}}(\rho) \rangle$ .

If  $\rho$  is a local maximizer of  $d_{\mathcal{E}}$  then for  $\theta := \ln^q \circ \pi_{\mathcal{E}}(\rho)$  we have  $\rho = \exp_1^p(p\theta p)$  and  $d_{\mathcal{E}}(\rho) = F^q(\theta) - F^p(p\theta p)$ .

200

# Maximum Entropy (Wichmann '63, Ingarden et al. '97)

Let  $U \subset A_{sa}$  be a vector space and let  $u \in U$ .

#### Definition

Motivation

The von Neumann entropy of a state  $\rho \in \mathcal{S}$  is  $S(\rho) := -\operatorname{tr} \rho \ln \rho$ . The constraint set of (U, u) is  $C_{U,u} := \{ \rho \in \overline{S} \mid \pi_U(\rho) = u \}$ . Let  $\mathcal{E} := \exp_1(U)$ .

#### Theorem (Weis '09)

We have  $\operatorname{argmax}_{\rho \in C_{U,U}} S(\rho) = C_{U,U} \cap \operatorname{cl}_{rI}(\mathcal{E})$ .

Idea: replace  $\max_{\rho} S(\rho) - \ln \operatorname{tr} \mathbb{1} = \max_{\rho} - S(\rho, \frac{\mathbb{1}}{\operatorname{tr} \mathbb{1}})$  by  $\min_{\rho} S(\rho, \frac{1}{tr1})$  and use Pythagorean theorem  $\min_{\rho} [S(\rho, \pi_{\mathcal{E}}(\rho)) + S(\pi_{\mathcal{E}}(\rho), \frac{1}{\operatorname{tr} \mathbb{I}})] = S(\pi_{\mathcal{E}}(\rho), \frac{1}{\operatorname{tr} \mathbb{I}}).$ 

Summary

## Coordinates for Maximum Entropy Ensembles

We fix  $a_1, \ldots, a_k \in A_{sa}$  (observables) and put  $V := \operatorname{span}\{a_1, \ldots, a_k, 1\} \cap \{\operatorname{tr}(\cdot) = 0\}$ . Then we choose a tuple of mean values  $(\xi_i)_{i=1}^k \in \{\{\operatorname{tr}(a_i\rho)\}_{i=1}^k \mid \rho \in \overline{\mathcal{S}}\} \cong \operatorname{mv}(V)$ .

### Theorem (Weis '10)

There exists a unique face G of mv(V) and unique coefficients  $\beta_1, \ldots, \beta_k \in \mathbb{R}$  such that for  $\mathbf{a}(\beta) := -\sum_{i=1}^k \beta_i \mathbf{p}^G \mathbf{a}_i \mathbf{p}^G$  and for  $i = 1, \ldots, k$  we have

$$-\frac{\partial}{\partial \beta_i} F(a(\beta)) = \xi_j \langle p^G, \exp_1(a(\beta)) \rangle.$$

The maximizer of von Neumann entropy S with mean  $(\xi_i)_{i=1}^k$  is  $\rho := \exp_1^{p^G}(a(\beta))$  and  $S(\rho) = \sum_{i=1}^k \beta_i \xi_i + F^{p^G}(a(\beta))$ .

A. Knauf, S. Weis

- Entropy distance  $d_{\mathcal{E}}(\rho) = S(\rho, \pi_{\mathcal{E}}(\rho))$  of a state  $\rho$  given by projection  $\pi_{\mathcal{E}} : \overline{S} \to \mathrm{cl}_{\mathrm{rI}}(\mathcal{E})$  along the normal space  $V^{\perp}$ .
- Optimal Pythagorean theorem, for states  $\rho \in \mathcal{S}$  and  $\tau \in \operatorname{cl}_{\mathrm{rI}}(\mathcal{E})$  we have  $S(\rho, \tau) = d_{\mathcal{E}}(\rho) + S(\pi_{\mathcal{E}}(\rho), \tau)$ .
- Geo. closure  $\operatorname{cl}_{geo}(\mathcal{E}) \subset \operatorname{rl-closure} \operatorname{cl}_{rI}(\mathcal{E}) \subset \operatorname{topo.}$  closure  $\overline{\mathcal{E}}$ ,
  - $\blacksquare$   $\mathrm{cl}_{\mathrm{geo}}(\mathcal{E}) = \mathrm{cl}_{\mathrm{rI}}(\mathcal{E}) \iff$  no non-exposed faces,
  - ightharpoonup  $\operatorname{cl}_{rI}(\mathcal{E}) = \overline{\mathcal{E}} \iff \operatorname{entropy} \operatorname{distance} \operatorname{is} \operatorname{continuous}.$



# General Properties of the Entropy Distance $d_{\mathcal{E}}$

- Entropy distance  $d_{\mathcal{E}}(\rho) = S(\rho, \pi_{\mathcal{E}}(\rho))$  of a state  $\rho$  given by projection  $\pi_{\mathcal{E}} : \overline{S} \to \operatorname{cl}_{\mathrm{rI}}(\mathcal{E})$  along the normal space  $V^{\perp}$ .
- Optimal Pythagorean theorem, for states  $\rho \in \mathcal{S}$  and  $\tau \in \operatorname{cl}_{\mathrm{rI}}(\mathcal{E})$  we have  $S(\rho, \tau) = d_{\mathcal{E}}(\rho) + S(\pi_{\mathcal{E}}(\rho), \tau)$ .
- Geo. closure  $\operatorname{cl}_{\operatorname{geo}}(\mathcal{E}) \subset \operatorname{rl-closure} \operatorname{cl}_{\operatorname{rl}}(\mathcal{E}) \subset \operatorname{topo.}$  closure  $\overline{\mathcal{E}}$ ,
  - $\blacksquare$   $\mathrm{cl}_{\mathrm{geo}}(\mathcal{E}) = \mathrm{cl}_{\mathrm{rI}}(\mathcal{E}) \iff$  no non-exposed faces,
  - ightharpoonup  $\operatorname{cl}_{\operatorname{rI}}(\mathcal{E}) = \overline{\mathcal{E}} \iff \operatorname{entropy\ distance\ is\ continuous\ }$



- Entropy distance  $d_{\mathcal{E}}(\rho) = S(\rho, \pi_{\mathcal{E}}(\rho))$  of a state  $\rho$  given by projection  $\pi_{\mathcal{E}} : \overline{\mathcal{S}} \to \operatorname{cl}_{\mathrm{rI}}(\mathcal{E})$  along the normal space  $V^{\perp}$ .
- Optimal Pythagorean theorem, for states  $\rho \in \overline{\mathcal{S}}$  and  $\tau \in \operatorname{cl}_{\mathrm{rI}}(\mathcal{E})$  we have  $S(\rho, \tau) = d_{\mathcal{E}}(\rho) + S(\pi_{\mathcal{E}}(\rho), \tau)$ .
- Geo. closure  $\mathrm{cl}_{\mathrm{geo}}(\mathcal{E})$   $\subset$  rl-closure  $\mathrm{cl}_{\mathrm{rI}}(\mathcal{E})$   $\subset$  topo. closure  $\overline{\mathcal{E}}$ ,
  - $\blacksquare$   $\operatorname{cl}_{\operatorname{geo}}(\mathcal{E}) = \operatorname{cl}_{\operatorname{rI}}(\mathcal{E}) \iff$  no non-exposed faces,
  - $\blacksquare$   $\operatorname{cl}_{\operatorname{rI}}(\mathcal{E}) = \overline{\mathcal{E}} \iff$  entropy distance is continuous.



# General Properties of the Entropy Distance $d_{\mathcal{E}}$

- Entropy distance  $d_{\mathcal{E}}(\rho) = S(\rho, \pi_{\mathcal{E}}(\rho))$  of a state  $\rho$  given by projection  $\pi_{\mathcal{E}} : \overline{\mathcal{S}} \to \operatorname{cl}_{\mathrm{rI}}(\mathcal{E})$  along the normal space  $V^{\perp}$ .
- Optimal Pythagorean theorem, for states  $\rho \in \overline{\mathcal{S}}$  and  $\tau \in \operatorname{cl}_{\mathrm{rI}}(\mathcal{E})$  we have  $S(\rho, \tau) = d_{\mathcal{E}}(\rho) + S(\pi_{\mathcal{E}}(\rho), \tau)$ .
- Geo. closure  $\mathrm{cl}_{\mathrm{geo}}(\mathcal{E})$   $\subset$  rl-closure  $\mathrm{cl}_{\mathrm{rI}}(\mathcal{E})$   $\subset$  topo. closure  $\overline{\mathcal{E}}$ ,

  - ightharpoonup  $\operatorname{cl}_{\operatorname{rI}}(\mathcal{E}) = \overline{\mathcal{E}} \iff \operatorname{entropy} \operatorname{distance} \operatorname{is} \operatorname{continuous}.$



# General Properties of the Entropy Distance $d_{\mathcal{E}}$

- Entropy distance  $d_{\mathcal{E}}(\rho) = S(\rho, \pi_{\mathcal{E}}(\rho))$  of a state  $\rho$  given by projection  $\pi_{\mathcal{E}} : \overline{\mathcal{S}} \to \operatorname{cl}_{\mathrm{rI}}(\mathcal{E})$  along the normal space  $V^{\perp}$ .
- Optimal Pythagorean theorem, for states  $\rho \in \overline{\mathcal{S}}$  and  $\tau \in \operatorname{cl}_{\mathrm{rI}}(\mathcal{E})$  we have  $S(\rho, \tau) = d_{\mathcal{E}}(\rho) + S(\pi_{\mathcal{E}}(\rho), \tau)$ .
- Geo. closure  $\mathrm{cl}_{\mathrm{geo}}(\mathcal{E})$   $\subset$  rl-closure  $\mathrm{cl}_{\mathrm{rI}}(\mathcal{E})$   $\subset$  topo. closure  $\overline{\mathcal{E}}$ ,
  - $ightharpoonup \operatorname{cl}_{\operatorname{geo}}(\mathcal{E}) = \operatorname{cl}_{\operatorname{rI}}(\mathcal{E}) \iff \operatorname{no} \operatorname{non-exposed} \operatorname{faces},$



## **Open Questions**

- What can be said about special families, e.g. independence model, Boltzmann machines?
- Where are the discontinuities of entropy distance?
- What are the one-sided directional derivatives?
- Are there connections to the geometry of entanglement?



### Evidence

Motivation



A. Knauf and S. Weis.

Entropy Distance: New Quantum Phenomena.

arXiv:1007.5464



S. Weis.

The Pythagorean Theorem of Relative Entropy.

arXiv:1003.5671



S. Weis.

Exponential Families with Incompatible Statistics and Their Entropy Distance, PhD thesis, Erlangen (2009).

www.opus.ub.uni-erlangen.de/opus/volltexte/2010/1580



Summary

### Thanks!

# The Staffelberg Mountain



