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Entropy Distance as an Information Functional

Definition

Entropy distance dE is the relative entropy distance from an
exponential family E in a finite-dimensional matrix algebra A.
Classical algebra A ∼= CN , quantum otherwise.

Overview of exponential families in statistics: Amari and
Nagaoka, Methods of information geometry (2000).
Applications of entropy distance include

MLE through the log-likelihood function (classical),
the stochastic interaction measure of multi-information, this
is the entropy distance from the independence model
(classical & quantum).

A. Knauf, S. Weis Department Mathematik University of Erlangen
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Previous Work on dE in Classical Probability Theory

Barndorff-Nielsen (’78),
Čencov (’82),
Ay (’02),
Csiszár and Matúš (’03, ’05, ’08)

Rough Idea:

Pythagorean theorem of relative entropy implies projection
theorem along the normal space,
mean value chart maps E to the mean value set (convex
support),
extension of E implies optimal projection theorem and
optimal Pythagorean theorem.
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Previous Work on dE in the Quantum Case

Classical extension of E is compact, the mean value set is a
polytope and dE is continuous. All wrong for quantum case!

Well-known in the quantum case:

Pythagorean theorem implies (only in a restriction!) a
projection theorem along the normal space, see Petz (’08),
mean value chart and mean value set are known, see
Wichmann (’63).

New in our work: Convex structure of mean value set includes
non-exposed faces; extensions of E ; optimal projection theorem
and Pythagorean theorem.

A. Knauf, S. Weis Department Mathematik University of Erlangen
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Exponential Families

Definition

State space S := {ρ ∈ A | ρ ≥ 0, tr(ρ) = 1}. Real vector space
Asa ⊂ A of self-adjoint matrices, Hilbert-Schmidt inner product.
Analytic diffeo. exp1 : Asa/R1l → S := {ρ ∈ S|ρ−1 exists },
a 7→ ea

tr(ea) , canonical chart ln0 = exp−1
1 to traceless matrices.

Exponential family E := exp1( linear subspace of Asa ),
V := ln0(E) tangent space, V⊥ normal space,
orth. projection πV : Asa → V , mean value set mv(V ) := πV (S).

Theorem (Wichmann ’63)

πV ◦ exp1 |V : V → Int(mv(V )) real analytic bijection.

A. Knauf, S. Weis Department Mathematik University of Erlangen
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Two Examples

Definition (Mean value chart)

The analytic chart πV |E onto Int(mv(V )) is called mean value
chart.

exp1(span{σ1 ⊕ 1, σ2 ⊕ 1})
exp1(span{σ1 ⊕ 0, σ2 ⊕ 1})

A := Mat(2, C)⊕ C

Swallow
family

Staffelberg
family

A. Knauf, S. Weis Department Mathematik University of Erlangen
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2D Mean Value Sets in A := Mat(2, C)⊕ C

S is the 4D cone conv( Bloch ball⊕ 0, 02 ⊕ 1),
every 2D exponential family E of A is included in a 3D
cone,
modulo automorphism take z := −1

21l2 ⊕ 1,
W := span{σ1 ⊕ 0, σ2 ⊕ 0, z}, V ⊂ W and the cone
C := (1

31l + W ) ∩ S = exp1(W ) ⊃ E ,
a complete orbit invariant of 2D planes V is the angle
∠�(V , z) ∈ [0, π

2 ].

Non-exposed faces
are typical

for a mean value set!

A. Knauf, S. Weis Department Mathematik University of Erlangen
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Exposed Faces, Poonems and Access Sequences

Definition (Rockafellar, Grünbaum, Csiszár and Matúš)

Let M be a convex set. The intersection F of M with a
supporting hyperplane of M is called exposed face of M. ∅ and
M are expsed faces by definition. In these cases we write

F
Ex
< M. A sequence F = F1

Ex
< · · ·

Ex
< Fk

Ex
< M is called access

sequence and F is called poonem of M. A poonem, which is
not an exposed face is called non-exposed face.

Concept of poonem is equivalent to the more popular concept
of face.

⊃ ⊃

A. Knauf, S. Weis Department Mathematik University of Erlangen
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The Pythagorean Theorem (Restricted Form)

Definition

The relative entropy of two states ρ, σ ∈ S is S(ρ, σ) := ∞
unless Im(σ) ⊃ Im(ρ) and then S(ρ, σ) := trρ(ln ρ− ln σ).

Theorem (Monograph Petz ’08 for an overview)

If ρ, σ, τ ∈ S are states, σ and τ are invertible and
ρ− σ ⊥ ln(τ)− ln(σ) holds, then we have
S(ρ, σ) + S(σ, τ) = S(ρ, τ).

The Pythagorean theorem induces the projection πE :
E + V⊥ → E , a 7→ (a + V⊥) ∩ E to an exponential family E .
For a state ρ ∈ E + V⊥ we have
dE(ρ) := infσ∈E S(ρ, σ) = S(ρ, πE(ρ)).

A. Knauf, S. Weis Department Mathematik University of Erlangen
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Lattice Isomorphisms and Compressions

Assignment of an orth. projector F 7→ pF to each face F of
mv(V ) through

inverse projection F 7→ (F + V⊥) ∩ S lifts faces of mv(V ) to
faces of S,
( face lattice of S ) ∼= ( projector lattice of A ).

Definition

Orth. projector p defines projection A → pAp := {pap | a ∈ A}
by a 7→ pap. We denote by expp

1 and lnp the trace normalized
exponential and the logarithm in pAp.
A face F of mv(V ) defines the compressed exponential family
EpF

:= exppF

1 (pF VpF ).

A. Knauf, S. Weis Department Mathematik University of Erlangen
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The Geodesic Closure

Definition

The e-geodesic through θ ∈ Asa in the direction of v ∈ Asa is the
curve γ 7→ gθ,v (λ) = exp1(θ + λv) ⊂ S.

If p is the maximal projector of v (spectral projector of the
largest eigenvalue), then Ep = {limλ→∞ gθ,v (λ) | θ ∈ V}.

Definition

The geodesic closure of E is clgeo(E) :=
⋃

F EpF
. Here F

extends over the exposed faces (6= ∅) of mv(V ).

The geodesic closure clgeo(E) exceeds E by the limit points of
e-geodesics in E .

A. Knauf, S. Weis Department Mathematik University of Erlangen
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The rI-Closure

Definition (Csiszár and Matúš)

The rI-closure of E is clrI(E) := {ρ ∈ S | dE(ρ) = 0}.

E-geodesic asymptotics show clgeo(E) ⊂ clrI(E).
The proof idea to the following theorem is to concatenate
e-geodesic asymptotics. For every poonem F in an access
sequence of mv(V ) we form the geodesic closure of the
compressed exponential family EpF

and take the union:

clrI(E) =
⋃

F EpF
.

Equality clgeo(E) = clrI(E) holds if and only if all faces of
mv(V ) are exposed. Examples: independence model,
convex family or classical algebra.

A. Knauf, S. Weis Department Mathematik University of Erlangen
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The Optimal Projection Theorem

Theorem (Weis ’09)

Let E be an exponential family with tangent space V .

(1) If ρ ∈ S, then ρ + V⊥ intersects the reverse information
closure clrI(E) in a unique point denoted by πE(ρ).

(2) If ρ ∈ S, then the relative entropy S(ρ, ·) has a unique local
minimum on clrI(E) and
minσ∈clrI(E) S(ρ, σ) = S(ρ, πE(ρ)) = SE(ρ).

A. Knauf, S. Weis Department Mathematik University of Erlangen
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A Discontinuous Entropy Distance is Possible

Staffelberg family: Discontinuity on the base
circle of the cone C

where dE ≡ 0 except
dE(ρ) = ln(2) for
ρ := 1

2(1l2 ⊕ σ2)⊕ 0.

ρ

The discontinuous dE at ϕ = ∠�(V , z) = π
3 separates mean

value sets with non-exposed faces from those without.
According to the Pinsker-Csiszár inequality clrI(E) ⊂ E
holds. Equality clrI(E) = E ⇐⇒ dE is continuous. E.g.
indep. model, convex family or (Ay ’02) classical algebra.
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The Optimal Pythagorean Theorem

Theorem (Weis ’10)

Let E be an exponential family with tangent space V . If ρ ∈ S
and σ, τ ∈ clrI(E) are states such that σ − ρ ⊥ V, then
S(ρ, σ) + S(σ, τ) = S(ρ, τ) holds.

ρ

σ

τ
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Maximization of Entropy Distance

Previous work e.g. by Ay, Knauf, Matúš

Definition

If ρ ∈ S then the support projector of ρ is the ortho. projector
s(ρ) ∈ A with the image Im(s(ρ)) = Im(ρ). For a ∈ Asa denote
the free energy F (a) := ln trea and use F p for free energy in
pAp.

Theorem (Knauf and Weis ’10)

Let ρ ∈ S, p := s(ρ) and q := s(πE(ρ)). For every traceless
self-adjoint matrix u ∈ pAp we have the directional derivative
D|ρdE(u) = 〈u, lnp(ρ)− lnq ◦πE(ρ)〉.
If ρ is a local maximizer of dE then for θ := lnq ◦πE(ρ) we have
ρ = expp

1(pθp) and dE(ρ) = F q(θ)− F p(pθp).
A. Knauf, S. Weis Department Mathematik University of Erlangen
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Maximum Entropy (Wichmann ’63, Ingarden et al. ’97)

Let U ⊂ Asa be a vector space and let u ∈ U.

Definition

The von Neumann entropy of a state ρ ∈ S is S(ρ) := −trρ ln ρ.
The constraint set of (U, u) is CU,u := {ρ ∈ S | πU(ρ) = u}. Let
E := exp1(U).

Theorem (Weis ’09)

We have argmaxρ∈CU,u
S(ρ) = CU,u ∩ clrI(E).

Idea: replace maxρ S(ρ)− ln tr1l = maxρ−S(ρ, 1l
tr1l) by

minρ S(ρ, 1l
tr1l) and use Pythagorean theorem

minρ[S(ρ, πE(ρ)) + S(πE(ρ), 1l
tr1l)] = S(πE(ρ), 1l

tr1l).
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Coordinates for Maximum Entropy Ensembles

We fix a1, . . . , ak ∈ Asa (observables) and put
V := span{a1, . . . , ak , 1l} ∩ {tr(·) = 0}. Then we choose a tuple
of mean values (ξi)

k
i=1 ∈ {{tr(aiρ)}k

i=1 | ρ ∈ S} ∼= mv(V ).

Theorem (Weis ’10)

There exists a unique face G of mv(V ) and unique coefficients
β1, . . . , βk ∈ R such that for a(β) := −

∑k
i=1 βipGaipG and for

j = 1, . . . , k we have

− ∂

∂βj
F (a(β)) = ξj〈pG, exp1(a(β))〉.

The maximizer of von Neumann entropy S with mean (ξi)
k
i=1 is

ρ := exppG

1 (a(β)) and S(ρ) =
∑k

i=1 βiξi + F pG
(a(β)).
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General Properties of the Entropy Distance dE

Entropy distance dE(ρ) = S(ρ, πE(ρ)) of a state ρ
given by projection πE : S → clrI(E) along the normal
space V⊥.
Optimal Pythagorean theorem, for states ρ ∈ S and
τ ∈ clrI(E) we have S(ρ, τ) = dE(ρ) + S(πE(ρ), τ).
Geo. closure clgeo(E) ⊂ rI-closure clrI(E) ⊂ topo. closure E ,

clgeo(E) = clrI(E) ⇐⇒ no non-exposed faces,
clrI(E) = E ⇐⇒ entropy distance is continuous.
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Open Questions

What can be said about special families, e.g.
independence model, Boltzmann machines?
Where are the discontinuities of entropy distance?
What are the one-sided directional derivatives?
Are there connections to the geometry of entanglement?

A. Knauf, S. Weis Department Mathematik University of Erlangen
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Thanks! The Staffelberg Mountain
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