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Biography of Igor Vajda

Born 1942

Graduated 1965, Czech Technical University

PhD 1968, Charles University, Prague

Work: UTIA (Institute of Information Theory and Automation, Czech
Academy of Sciences); member of Board of UTIA: 1990

Visiting Professor: Catholic Universiteit Leuven, Complutense
Universidad Madrid, Université de Montpellier, M. Hérnandez
Universidad, Alicante

Member of IEEE 1990, Fellow 2001

4 monographs, more than 100 journal publications

Awards: Prize of the Academy of Sciences, Jacob Wolfowitz Prize,
Medal of merits of Czech Technical University, several Annual prizes
of UTIA
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Subject of this memorial lecture

Igor Vajda’s contribution to “distances” of probability distributions (PD’s)
and their statistical applications

a major direction of his research

of main interest for this audience

also in the speaker’s research interest

Primarily: f -divergences in general, and their subclass called power
divergences

Secondarily: other distances not in this class, as Bregman distances
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f -divergence Df(P‖Q)

f any convex function on (0,∞). The conventions

f(0)
△
= lim

u↓0
f(u), 0f

(

0

0

)

△
= 0, 0f

(u

0

)

△
= u lim

t→∞

f(t)

t

make vf(u/v) convex, lower semicontinuous on [0,∞)2.
For PD’s P , Q on a set X (endowed with a σ-algebra)

Df (P‖Q)
△
=

{
∑

qif(pi

qi
) discrete case

∫

qf(pq )dµ p
△
= dP

dµ q
△
= dQ

dµ general case;

does not depend on the dominating measure, one may take µ = P +Q.
[Csiszár 1963, 67, Ali-Silvey 1966; books: Liese-Vajda, Teubner 1987,
Vajda, Kluwer 1989.]
Definition makes sense beyond PD’s but not considered here.
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Properties of f -divergences

Unless stated otherwise, f(1) = 0, and strict convexity at 1 are assumed.

0 ≤ Df (P‖Q) ≤ f(0) + f∗(0), f∗(t)
△
= tf

(

1

t

)

.

First equality iff P = Q (Df is a “distance”)
Second equality, for strictly convex f with f(0) + f∗(0) <∞: iff P ⊥ Q.

Df (Q‖P ) = Df∗(P‖Q).

Data processing inequality, for partitions A = (A1, . . . , Ak) of X:

Df (P
A‖QA) ≤ Df (P‖Q), where PA , (P (A1), . . . , P (Ak)).

Pardo-Vajda 1997: Characterizes f -divergences among distances of form
∑

δ(pi, qi).
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Examples

Kullback I-divergence (relative entropy) D(P‖Q): f(t) = t log t

Power divergences Dα(P‖Q)
△
= cα(

∑

pαi q
1−α
i − 1): f(t) = cα(tα − 1)

(Perez 1967 with cα = 1
α−1 ; Cressie-Read 1984 and Liese-Vajda 1987

with cα = 1
α(α−1) , admitting inclusion of D(P‖Q) and D(Q‖P ) as

limits for α→ 1 or 0.)

The order-α divergence of Rényi 1961 is a function of Dα(P‖Q).

α = 2: Pearson’s χ2
∑ p2

i

qi
− 1 =

∑ (pi−qi)
2

qi

α = 1/2: Hellinger 2(1 −∑√
piqi) =

∑

(
√
pi −

√
qi)

2

χα(P,Q)
△
=
∑ |pi − qi|αq1−αi of Vajda 1972: f(t) = |t− 1|α, α ≥ 1

α = 1: χ1(P,Q) = |P −Q| △
=
∑ |pi − qi|, variation distance
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Inequalities for f -divergencies

Here, Vajda’s first and last contributions to this subject are mentioned.

Vajda 1970: sharpened the “Pinsker inequality” D(P‖Q) ≥ 1
2 |P −Q|2 by

adding a fourth power term.
Vajda 1972: lower and upper bounds to Df (P‖Q) in terms of |P −Q|,
using that the minimum of Df (P‖Q) subject to |P −Q| = V is attained

for PD’s on a two-point set. The minimum of vf
(

u
v

)

+ (1 − v)f
(

1−u
1−v

)

subject to 2(u− v) = V has since been called Vajda’ tight lower bound.

Harremoöes -Vajda 2010: Given convex functions f, g, the range of the
map (P, Q) 7→ (Df (P‖Q), Dg(P‖Q)) is a convex set in R

2. Each point
in this set is achieved by PD’s on a 4-point set, but not necessarily on a
two-point set. Explicitly determined the range set for some pairs of
divergences, including the power divergences of orders 2 and 3.
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Metric divergences

No f -divergences except constant multiples of the variation distance are
metrics (Khosravifard-Fooladivanda-Gulliver 2007).
Powers of f -divergences may be metrics, thus symmetric and satisfy the
triangle inequality, such as Hellinger distance.
Csiszár-Fischer 1962: powers of symmetrized α-divergences, 0 < α < 1.
Kafka-Österreicher-Vincze 1991: If f = f∗ and f(t)/(1 − tβ)1/β is
nondecreasing for t ∈ [0, 1) then [Df (P‖Q)]β is a metric.

Österreicher-Vajda 2003 and Vajda 2009: For each α ∈ R, the function

fα(t) =
signα

1 − α

[

(t1/α + 1)α − 2α−1(t+ 1)
]

α 6= 0, 1

f1(t) = t log t+ (t+ 1) log
2

t+ 1
f0(t) =

1

2
|t− 1|

is convex, meets above condition with β = 1/2 or 1/α if α ≤ 2 or > 2.
The special cases α = −1, 0, 1, 2 give well-known f -divergences.
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Chernoff distance and error probability

Given: finite family {Pϑ, ϑ ∈ Θ} of PD’s on X and prior distribution on Θ;
observed: X-valued random variables X1, . . . , Xn, conditionally i.i.d. on
the condition ϑ = i with distribution Pi.

Estimator of ϑ: mapping d : Xn → Θ.
Error probability e = Pr{d(X1, . . . , Xn) 6= ϑ} is minimized by
Bayes estimator: d(X1, . . . , Xn) equals an i ∈ Θ with largest
posterior probability Pr{ϑ = i|X1, . . . , Xn}.
Chernoff 1952: For Θ = {1, 2}

lim
n→∞

1

n
log(eBayes) = log inf

0<α<1

∫

pα1 p
1−α
2 dµ

△
= −DCh(P1, P2).
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Further results on Bayes error

Vajda 1967: the Bayes error is exponentially small even in non-i.i.d. cases
(exact exponent not specified)

Rényi 1969, Vajda 1969: Chernoff’s result holds also for the conditional
entropy H(ϑ|X1, . . . , Xn) in the role of log eBayes. Vajda 1969 also
addressed the case Θ = {1, . . . , k}, replacing the Chernoff distance
DCh(P1, P2) by mini6=j DCh(Pi, Pj).

Vajda 1970 filled mathematical details; in the definition of DCh(P1, P2)
one can take

min
0≤α≤1

∫

p1p2>0
pα1 p

1−α
2 dµ,

restriction needed for not mutually absolutely continuous P1, P2.
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Divergence-based estimation and testing

Observing i.i.d. random variables X1, . . . , Xn whose commmon
distribution is an unknown member of a family {Pϑ, ϑ ∈ Θ} of PD’s on X,
one expects that the unkown distribution is close to the empirical
disrtibution P̂n of the sample (X1, . . . , Xn). This suggest the estimate

ϑ̂ , argminϑDf (P̂n‖Pϑ) (f(t) = t log t⇒MLE).

If it is a hypothesis to be tested that the commmon distribution of the
Xi’s indeed belongs to the family {Pϑ, ϑ ∈ Θ}, a natural acceptance
criterion is infϑD(P̂n‖Pϑ) ≤ cn, for suitable cn ↓ 0.

f(t) = t2 − 1 or t log t give the classical χ2 and likelihood ratio tests.
Liese-Vajda 1987 provide examples that other f -divergence tests may have
larger power against some alternatives.

Tests of this kind are directly applicable only in the discrete case. Ways to
overcome this problem will be discussed later.
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f -divergence tests

Provided that the f -estimate ϑ̂ , argminϑDf (P̂n‖Pϑ) is well defined, the

test statistic infϑD(P̂n‖Pϑ) equals Df (P̂n‖Pϑ̂). Modified versions of that

statistic are also used, with ϑ̂ minimizing f̃ -divergence for some f̃ 6= f .
For example, χ2 test may be used with MLE ϑ̂.

Tests of this kind were studied by Cressie-Reed 1984, concentrating on
power divergences.
Menandez-Morales-Pardo-Vajda 1995 studied asymptotic distributions of
such test statistics in a general setting, also including previously not
considered scenarios where P̂n is not necessarily an empirical distribution
(but the average of several ones). They also addressed the choice of f ,
concentrating on power divergences, extending results of Cressie-Reed.
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Convergence of quantized f -divergences

What sequences of partitions An = (An1, . . . , Ankn
) of X yield

lim
n→∞

Df (P
An‖QAn) = Df (P‖Q). (∗)

Gelfand-Yaglom 1957, Perez 1957: For I-divergence (f(t) = t log t), (∗)
holds if the partitions An are refining and dP

d(P+Q) is measurable with

respect to the smallest σ-algebra containing each Ank (thus the latter
σ-algebra is (P,Q)-sufficient).
Vajda 1972,1973: same proof works for any f , also for Fisher information.
Given a dominated family of PD’s {Pϑ, ϑ ∈ Θ}, where Θ ⊂ R is an open
interval, denote dP

dµ = pϑ,
∂
∂ϑpϑ = ṗϑ. Fisher information is defined by

I(ϑ) ,

∫

(ṗϑ/pϑ)
2 pϑdµ, IA(ϑ) ,

∑

(

Ṗϑ(Ai)/Pϑ(Ai)
)2
Pϑ(Ai).

Vajda 1973 also considered Iα(ϑ), replacing 2 by α > 1.
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Convergence of quantized f -divergences, continued

Partition sequences occurring in applications seldom have the refining
property. A general sufficient condition for (∗) appears in Csiszár 1973.
Vajda 2002: For X = R and (Lebesgue) absolutely continuous P and Q,
(∗) holds providing for each x ∈ R the length of An(x), the interval Ani
containing x, goes to 0 as n→ ∞.
An analogous result for (generalized) Fisher information also holds.
These results are extended also to X = R

d and rectangle partitions.

Berlinet-Vajda 2006: If {x : q(x) > 0} is an open interval then the
condition maxj Q(Anj) → 0 as n→ ∞ implies (∗) for each P << Q.
This condition is also necessary for (∗) when Df (P‖Q) <∞. Strong
results are proved also on the speed of convergence in (∗), for the case
of χ2-divergence and partitions into nearly Q-equiprobable intervals.
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f -divergence test, continuous case

The problem of testing a (simple) hypothesis given by a continuous
distribution Q on R may be reduced to that when Q is the uniform
distribution on (0, 1). Partitioning (0, 1) into intervals Anj = (aj−1, aj ],
j = 1, . . . , k = kn, consider the f -divergence statistic

Tn , nDf (Q‖P̂n) = n
k
∑

j=1

Q(Anj)f

(

P̂n(Anj)

Q(Anj)

)

.

It is convenient to take partitions into intervals either of equal Q-measure
(length), or of equal P̂n-measure 1

n |{i : Xi ∈ Anj}|.
In the first case the statistic Tn reduces to standard ones (for usual choices
of f) whose asymptotic behavior is, on a basic level, well understood. On
the next slide, a more refined problem is considered.
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Bahadur efficiency of power divergence tests

Consider the previous hypothesis testing problem, using partitions into
intervals of equal Q-measure (length). This leads to testing the (simple)
hypothesis that the common distribution of i.i.d. random variables
X1, . . . , Xn with values in {1, . . . , k} is uniform, via the f -divergence
test statistic

Df (P̂n‖Q) =
k
∑

j=1

Q(j)f

(

P̂n(j)

Q(j)

)

=
1

k

k
∑

j=1

f

(

k

n
|{i : Xi = j}|

)

.

Harremoës-Vajda 2008 compared such tests with different functions f ,
concentrating on power divergences with different α (admitting k grow
with n, subject to k/n→ 0). Extending a result of Quine-Robinson 1985
for α = 1 versus α = 2, they showed that any α ∈ (0, 1] is infinitely more
Bahadur efficient than any α > 1.
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f -divergences and spacings

Returning to the previous hypothesis testing problem, here take partitions
into intervals of equal P̂n-measure.
Denote the ordered sample by Y1, . . . , Yn, set Y0 = 0, suppose m = n/k is
an integer. Then Anj = (Ym(j−1), Ymj ], where Yn is replaced by 1, and

Tn = m





k−1
∑

j=1

f(k(Ymj − Ym(j−1))) + f(k(1 − Ym(k−1))



 .

Statisics based on “spacings” Yj − Yj−1 or “ m-spacings” Ymj − Ym(j−1)

are frequently used to test uniformity, on an intuitive background.

Morales-Pardo-Vajda 2003, Vajda-van der Meulen 2006, Vajda 2007: the
familiar test statistics using spacings are related to Tn above.
Though formally not special cases of the latter, asymptotic equivalence
has been demonstrated by them, and by Vajda-van der Meulen 2010.

Imre Csiszár (Rényi Institute) In Memory of Igor Vajda
Information Geometry ConferenceLeipzigAug

/ 1



Barron’s density estimator

The histogram estimate from an i.i.d. sample of a PD P on R, rather, of
its density with respect to a given Q, is fn(x) , P̂n(An(x))/Q(An(x)).
Let the kn intervals of the underlying partition An have equal Q-measure.
Barron 1988 and Barron-Györfi-van der Meulen 1992 proposed mixing
the histogram estimate with Q, giving weight kn

n+kn
to Q. This yields an

estimator consistent in reversed I-divergence, subject to D(P‖Q) <∞.

Berlinet-Vajda-van der Meulen 1998, Györfi-Liese-Vajda-van der Meulen
1998: consistensy in reversed χ2 divergence, and in other f -divergences.

Vajda-van der Meulen 1998, Vajda 2001: The χ2-divergence of P from
the Barron estimate goes to 0 at best rate if kn is of order n1/3 (subject
to regularity conditions). Vajda 2001 also addressed how to chose Q.

Beirant-Berlinet-Biau-Vajda 2002: Smooth Barron-type estimators.
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Regularized f -divergence

Statistical applications of f -divergence are facilitated by a “regularization”
to get meaningful values for P ⊥ Q, retaining the original ones for P ≡ Q.

Liese -Vajda 2006, Broniatowski-Keziou 2006, Broniatowski-Vajda 2009:

Df (P, P̃‖Q) ,

∫

f ′+(
dP

dP̃
)dP+

∫
[

f(
dP

dP̃
) − f ′+(

dP

dP̃
)
dP

dP̃

]

dQ ≤ Df (P‖Q)

for P ≡ P̃ , and any Q; equality if P̃ = Q.
Given a family {Pϑ, ϑ ∈ Θ} of mutually absolutely continuous PD’s, they
suggested a modified f -divergence statistic, replacing Df (Pϑ‖P̂n) either

by Df (Pϑ, Pϑ̃‖P̂n) (for a fixed “escort parameter” ϑ̃) or by the supremum

of the latter subject to ϑ̃ ∈ Θ. This supremum is equal to Df (Pϑ‖P̂n) in
the discrete case, and is typically non-trivial also otherwise.

For f(t) = − log t, both kinds of modified statistics yield the MLE.
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Other distances distances

A variant of Bregman (1967) distance, called scaled Bregman distance by
Stummer-Vajda 2009: For PD’s P, Q dominated by M

Bf (P,Q|M) ,
∫

[

f( dP
dM ) − f( dQ

dM ) − f ′+( dQ
dM )( dP

dM − dQ
dM )

]

dM.

They explicitly calculated Bf -distances for power functions fα, including
α = 0 and 1, specifically for P,Q,M in an exponential family.

Broniatowsky-Vajda 2009 studied more general distances of PD’s, of form
Dψ(P,Q) ,

∫

ψ(p, q)dµ, where ψ is any “decomposable” distance on
(0,∞), ψ(s, t) = ψ0(s) + ψ1(t) + ρ(s)t. They give rise to (generalized)
M-estimators, whose theory is well developed (Vajda substantially
contributed). This class contains the previous Df , Bregman distances, and
the generalized power divergences of Basu et al. 1998, studied in detail.

Györfi-Vajda-van der Meulen 1996: Consistency of minimum Kolmogorov
distance estimates.
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Efficiency and robustnes

ML estimators are typically efficient but not robust. Other estimators,
including f -divergence based ones, may be preferable for robustness.
Vajda paid substantial attention to robustness problems, computed
influence functions for various statistics considerd by him. His interest in
f -divergences was partially motivated by robustness considerations.

Broniatowski-Vajda 2009: The last family of distances studied there yields
estimators that in some cases outperform the best robust estimators
known before.

Gyorfi-Vajda 2001: Studied “blended statistics” of Lindsay 1994,
corresponding to f -divergences with f(t) = (1 − t)2/[a+ (1 − a)t],
robust for 0 < a < 1 unlike the “extremal cases” χ2 and reversed χ2

(a = 1/2 gives the divergence of Vincze 1981 and Le Cam 1986).
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Omitted topics

Many important contributions of Vajda could not be covered.

Development of the theory of statistical experiments (sufficiency,
deficiency, etc.) via f -vivergences

Generalized entropies, relation to divergences

Statistical theory of M-estimators

Neural nets

Log-optimal portfolios

Igor Vajda has been a highly productive scientist, even in the last years full
with ideas that he no longer had time to develop.
The scientific community will badly miss him, and his many friends even
more as a truely lovable person.

Imre Csiszár (Rényi Institute) In Memory of Igor Vajda
Information Geometry ConferenceLeipzigAug

/ 1


