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Brief overview of interest rate theory

Dynamical models for interest rates suffer from the fact that it is difficult to
isolate the independent degrees of freedom.

The question is: which ingredients in the determination of an interest rate model
can and should be specified independently and exogenously?

A related issue, important for applications, is the determination of an
appropriate data set for the specification of initial conditions.

This is the so-called ‘calibration problem’.

Traditionally interest rate models have tended to focus either on discount bonds
or on rates.

Depending on which choice is made, the resulting models take different forms,
and hence have a different feel to them.

Fundamentally, however, it should not make any difference whether a model is
based on bonds or rates.
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To develop this point further let us introduce some notation.

Let time 0 denote the present.

We write PtT for the value at time t of a discount bond that matures to deliver
one unit of currency at time T .
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Figure 1: Typical discount bond prices P0T .

The associated continuously compounded rate RtT is defined by

PtT = exp (−(T − t)RtT ) . (1)
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Figure 2: Typical yield curves R0T .

The dynamics of RtT and PtT look different from one another, even if the
underlying model is the same.

Once we have the discount bond system, the associated rates can be directly
constructed.
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For instance, the short (overnight) rate is defined by

rt = − ∂

∂T
lnPtT

∣

∣

∣

∣

T=t

. (2)

Dynamic models for the short rate

The model is defined with respect to a given probability space (Ω,F ,Q) with
filtration {Ft} and a standard multidimensional Brownian motion {W α

t }
(α = 1, 2, · · · , n), where n is possibly infinite.

Here Q denotes the “risk-neutral” measure.

The independent degree of freedom is given by

• the specification of the short rate {rt} as an essentially arbitrary Ito process
on (Ω,F ,Q).

The model for the discount bonds is

PtT = E

[

exp

(

−
∫ T

t

rsds

)
∣

∣

∣

∣

Ft

]

. (3)
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An advantage of this approach is that the process {rt} can be specified
independently and exogenously.

There are three disadvantages to this approach:

• the model is specified implicitly: the conditional expectation is generally
difficult to calculate.

• the initial term structure P0T is not fed in directly.

• it is difficult to generate a positive model for {rt} without making the model
somewhat artificial.

Term structure density approach

This approach has the virtue of eliminating undesirable features of rate-based
modelling while retaining desirable features.

Consider first the initial discount function P0T .

Positivity of nominal rates implies that the discount function P0T is decreasing
in the maturity variable T .
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A common sense argument shows that a bond with infinite maturity has no
value.

Thus P0T can be thought of as defining a right-side cumulative distribution
function on the positive real line R+.

In particular, ρ0(T ) = −∂TP0T defines a density function over R+.

Hence the positive interest term structure implies the existence of a random
variable X on (Ω,F ,Q) such that we have

P0T = Q(X ≥ T ). (4)

By consideration of the square-root map

ρ0(T ) → ξ(T ) =
√

ρ0(T ) (5)

we see that the system of admissible term structure is isomorphic to the convex
space D(R+) of smooth density functions on the positive real line.

The “distance” between a pair of term structures can thus be measured by

φ(ρ1, ρ2) = cos−1

∫ ∞

0

ξ1(T )ξ2(T )dT. (6)
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Figure 3: The system of admissible term structures.

Dynamics of the term-structure density

For the general discount bond dynamics, let us write

dPtT = rtPtTdt + ΣtTdWt, (7)

where ΣtT is the absolute volatility processes for a bond with maturity T .

In order to extend the analysis it is convenient to write

Btx = Pt,t+x (8)

where x is the time left until maturity.
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Thus Btx is the value at time t of a discount bond that has x years left to
mature.

It follows that

ρt(x) = − ∂

∂x
Btx (9)

is a measure-valued process in the sense that for each value of t the random
function ρt(x) satisfies ρt(x) > 0 and the normalisation condition

∫ ∞

0

ρt(x)dx = 1. (10)

The dynamics of Btx is determined by

dBtx = (dPtT )|T=t+x +
∂

∂x
Btxdt, (11)

and hence

dBtx = (rtBtx + ∂xBtx) dt + Σt,t+xdWt, (12)

where ∂x = ∂/∂x.

Differentiating this expression with respect to x, we obtain

dρt(x) = (rtρt(x) + ∂xρt(x)) dt + ωtxdWt, (13)
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where ωtx = −∂xΣt,t+x.

Before proceeding further, we remark that the short rate satisfies the relation:

rt = −
∫ ∞

0

ρt(x)∂x ln ρt(x)dx. (14)

In other words, rt is minus the expectation of the gradient of the log-likelihood
function.

Let us now examine more closely the volatility term ωtx.

Because ρt(x) must remain positive for all values of x, the coefficient of dWt

must be of the form

ωtx = ρt(x)σtx (15)

such that

σtx = νtx − Eρ[νtx], (16)

where νtx is an exogenously specifiable unconstrained process.
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As a consequence, we deduce

dρt(x)

ρt(x)
= (rt + ∂x ln ρt(x))dt + σtxdWt. (17)

This is the general dynamical equation satisfied by the term structure density
process.

Hilbert space dynamics for term structures

Let us consider how we transform to the Hilbert space representation for density
functions.

Denote by ξtx the process for the square-root likelihood function, defined by

ρt(x) = ξ2
tx. (18)

It follows by Ito’s lemma that

dρt(x) = 2ξtxdξtx + (dξtx)
2, (19)

and hence

dξtx =
(

∂xξtx + 1
2rtξtx − 1

8ξtxσ
2
tx

)

dt + 1
2ξtxσtxdWt. (20)
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Figure 4: Interest rate dynamics on Hilbert space.

We would like to interpret the Hilbert space dynamics in a geometrical fashion.

For this purpose we find it expedient to introduce the Dirac notation to signify
Hilbert space operations

Thus if the function ψ(x) is an element of H = L2(R1
+), we denote it by |ψ〉,

and if ϕ(x) belongs to the dual Hilbert space H∗ we denote this by 〈ϕ|.
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Their inner product is thus written

〈ψ|ϕ〉 =

∫ ∞

0

ψ(x)ϕ(x)dx. (21)

Now suppose ξ(x) is a positive function.

In that case, the derivative ∂x can be thought of as a linear operator D̂ on H,
and we have an endomorphism given by

|ξ〉 → D̂|ξ〉 (22)

providing that |ξ〉 lies in the domain of D̂.

We can now tentatively interpret, in the language of Hilbert space geometry, the
terms appearing in the drift in the dynamical equation.

Let us begin by noting first that (14) can be rewritten in the form
∫ ∞

0

ξtx∂xξtxdx = −1
2 rt. (23)

This allows us to interpret the short term interest rate process rt in terms of the
mean of the symmetric part of the operator D̂ in the state |ξt〉.

Information Geometry and its Applications III c© DC Brody 2010



Information, Interest Rates and Geometry - 14 - Leipzig, 2 August 2010

In particular, we have

〈ξt|D̂|ξt〉
〈ξt|ξt〉

= −1
2 rt. (24)

Therefore, if we let D̂s denote the symmetric part of D̂, then the abstract
random variable in H corresponding to the short rate rt is given by r̂ = −2D̂s.

If we further define the mean-adjusted operator

D̃ = D̂ − 〈ξt|D̂|ξt〉
〈ξt|ξt〉

1̂, (25)

then we deduce for the dynamical equation of the term structure state vector:

d|ξt〉 =
(

D̃ − 1
8σ̂

2
t

)

|ξt〉dt + 1
2σ̂t|ξt〉dWt, (26)

where

σ̂t = ν̂t −
〈ξt|ν̂t|ξt〉
〈ξt|ξt〉

1̂. (27)

Projectively, the first term in the drift is a negative ‘Hamiltonian’ gradient flow
−∇r; whereas the second term in the drift ensures the martingale property.
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Information and interest

We now consider how interest rate dynamics is generated from elementary
economic considerations.

There are of course numerous economic factors that affect the movement of
interest rates, and causal relations that hold between these factors are often
difficult to disentangle.

Hence, rather than attempting to address a range of factors simultaneously, we
will focus on one key factor that appears important.

This is the liquidity risk, in the narrow sense of cash demand.

Our objective is to build an information-based model that reflects the market
perception of future liquidity risk, and use it for the pricing and general risk
management of interest rate derivatives.

To illustrate the role played by liquidity risk in determining interest rate systems,
let us begin by examining deterministic term structures.

We remark that it is reasonable to regard the random variable X as representing
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the occurrence time of future liquidity issues, at least to first approximation.

From the viewpoint of the buyer of a bond, if with high probability cash is
needed before the maturity T , then purchase will be made only if the bond price
is sufficiently low.

Likewise, the seller of a bond would be willing to pay a high premium if there is
a likely need for cash before time T .

Thus P0T represents a survival function, where ‘survival’ means lack of liquidity
crisis.

In fact, the price of a discount bond with maturity T is determined by the
risk-adjusted probability that the liquidity crisis arises beyond time T :

P0T = Q(X ≥ T ). (28)

The risk-neutral hazard rate associated with liquidity crisis is just the initial
forward rate f0T .

Therefore, for a small dT we have

f0T dT = Q (X ∈ [T, T + dT ] |X ≥ T ) . (29)
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That is, f0T dT is the a priori risk-neutral probability of a liquidity crisis
occurring in an infinitesimal interval [T, T + dT ], conditional upon survival until
time T .

More generally, in the case of a deterministic interest rate system, we have:

PtT = Q (X ≥ T |X ≥ t) . (30)

Market information about future liquidity

Our aim now is to extend the deterministic model (30) into a dynamical one
without losing the key economic interpretation.

The problem therefore is to identify the relevant conditioning.

In a dynamical setup, market participants accumulate noisy information
concerning future liquidity risk.

It is this noisy observation of the timing X of the future cash demand that
generates random movements in the bond price.
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Thus if we let {Ft} denote the information generated by this observation, then
the price of a discount bond is given by the conditional probability

PtT = Q (X ≥ T | (X ≥ t) ∩ Ft) . (31)

If we apply the Bayes formula, then (31) can be expressed in the form

PtT =
Q (X ≥ T |Ft)

Q (X ≥ t|Ft)
. (32)

This is the pricing formula for a discount bond that we propose here.

An elementary model for information and bond price

Let us now consider the problem of introducing a specific model for {Ft}.

Since in the present formulation what concerns market participants is the value
of X , the ‘signal’ component of the observation must be generated in some
form by X itself.

In addition, there is an independent noise that obscures the value of X .

We consider a simple model whereby the information concerning the value of X
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is revealed to the market linearly in time at a constant rate σ, and the noise is
generated by an independent Q-Brownian motion {Bt}.

Thus the information generating process is given by

ξt = σtφ(X) +Bt, (33)

where φ(x) is a smooth invertible function.

In other words, we assume that the filtration Ft is given by the sigma algebra
generated by {ξs}0≤s≤t.

As regards the choice of the function φ(x) we shall have more to say shortly, but
let us for the moment proceed with generality.

We note that since the magnitude of the signal-to-noise ratio is given by σ
√
t,

the value of X will be revealed asymptotically, that is, X is F∞-measurable.

Along with the fact that {ξt} of (33) is Markovian, we find that the bond
pricing formula simplifies in this model to

PtT =
Q (X ≥ T |ξt)
Q (X ≥ t|ξt)

. (34)
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A calculation gives the following expression:

PtT =

∫ ∞
T ρ0(x) eσφ(x)ξt−1

2σ
2φ2(x)tdx

∫ ∞
t ρ0(x) eσφ(x)ξt−1

2σ
2φ2(x)tdx

. (35)

The model can be calibrated exactly against the initial yield curve according to
the prescription ρ0(x) = −∂xP0x.

The subsequent evolution is then determined by the Markovian market
information process.

The remaining degree of freedom, namely, the parameter σ, can be calibrated by
use of derivative prices.

From the bond price (35) we can infer the implied short rate rt = −∂TPtT |T=t.

This is given by

rt =
ρ0(t) eσφ(t)ξt−1

2σ
2φ2(t)t

∫ ∞
t ρ0(x) eσφ(x)ξt−1

2σ
2φ2(x)tdx

. (36)

Information Geometry and its Applications III c© DC Brody 2010



Information, Interest Rates and Geometry - 21 - Leipzig, 2 August 2010

0 1 2 3 4 5
0.88

0.9

0.92

0.94

0.96

0.98

1

Time (yrs)

B
on

d 
P

ric
e

0 1 2 3 4 5
0.01

0.015

0.02

0.025

0.03

Time (yrs)
S

ho
rt

 R
at

e

Figure 5: Sample paths of the discount function (35) and the associated short rate (36). The information-adjusting

function is set as φ(x) = e−0.025x, and the initial term structure is assumed flat so that P0T = e−0.02T . The information
flow rate is set as σ = 0.3, and the bond maturity is 5 years.
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The instantaneous forward rate ftT = −∂T lnPtT is expressed analogously as

ftT =
ρ0(T ) eσφ(T )ξt−1

2σ
2φ2(T )t

∫ ∞
T ρ0(x) eσφ(x)ξt−1

2σ
2φ2(x)tdx

. (37)

Example. Consider a flat initial term structure given by P0T = e−rT . The
associated a priori density function is then exponential: ρ0(T ) = re−rT .

In a linear information model, we have φ(x) = x. Substitution of these in (35)
yields the following bond price process

PtT =
N

(

ξt−r/σ√
t

− σT
√
t
)

N
(

ξt−r/σ√
t

− σt
√
t
) , (38)

where N(x) is the normal distribution function.

We remark that the interest rate dynamics can be driven by a other Lévy
processes.

An example is given by the gamma filter, whereby the information process is

ξt = Xγt. (39)
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Here {γt} denotes a standard gamma process with rate parameter m.

In this case, the expression for the bond price process reads

PtT =

∫ ∞
T ρ0(x)x−mte−ξt/xdx

∫ ∞
t ρ0(x)x−mte−ξt/xdx

, (40)

and the associated short rate process is

rt =
ρ0(t)t

−mte−ξt/t
∫ ∞
t ρ0(x)x−mte−ξt/xdx

. (41)

Hence the present framework provides for a wide range of new interest rate
models to be created that are tractable and relatively easy to implement.
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Figure 6: Sample paths of the discount function (40) and the associated short rate (41). The information-adjusting

function is set as φ(x) = e−0.02x, and the initial term structure is assumed flat so that P0T = e−0.025T . The rate is set
as m = 0.1, and the bond maturity is 5 years.
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Information and geometry

We see that the function φ(x) appearing in the information process

ξt = σtφ(X) +Bt (42)

embodies a significant economic impact.

It is therefore natural to enquire how much separation are there in a pair of
economies characterised by different information flows:

ξt = σtφ(X) +Bt and ηt = σtψ(X) +Bt. (43)

Since term structure density process takes the form

ρξt (x) =
ρ0(x) eσφ(x)ξt−1

2σ
2φ2(x)t

∫ ∞
t ρ0(x) eσφ(x)ξt−1

2σ
2φ2(x)tdx

, (44)

we can compute the separation via

D(φ, ψ) = cos−1

∫ ∞

t

√

ρξt (x)ρηt (x)dx. (45)
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Discussion: liquidity effect vs Fisher effect

Empirical studies indicate that a persistent increase in money supply leads in
short term (up to a month or so) to a fall in nominal interest rates.

This is the so-called liquidity effect.

On the other hand, in the longer term an increase in money supply increases
expected inflation, hence leading to an increase in nominal rates.

This is the so-called Fisher effect.

Typically both effects coexist in that an increase in money supply reduces
nominal rates but increases expected inflation so that the real rate also falls.

Needless to say, interrelations between these effects are difficult to disentangle.

The implication of these macroeconomic considerations to the present approach
is that the random variable X , which we identified as representing the timing of
liquidity crisis in the narrow sense of cash demand, is dependant on a number of
market factors and not merely on money supply.
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Our objective here has been the introduction of a new interest rate modelling
framework that captures some important macroeconomic elements, in such a
way that resulting models can be used in practice for the pricing and risk
management of interest rate derivatives.

The random variable X , whose existence is ensured by the positivity of nominal
rates and the vanishing of infinite-maturity bond prices, has the dimension of
time, and hence it has been interpreted as representing the timing of future
liquidity crises.

It is worth remarking that the method of information geometry has not been
fully exploited in the context of interest rate modelling.

There is a potential for significant further research into this area, with a range of
practical applications.
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