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Skew information

Wigner and Yanase proposed to find a measure of our knowledge of a
difficult-to-measure observable with respect to a conserved quantity.

They discussed a number of postulates that such a measure should satisfy
and proposed, tentatively, the so called skew information defined by

Iρ(A) = −1
2Tr [ρ

1
2 ,A]2,

where ρ is a state (density matrix) and A is an observable

The postulates included the requirement from thermodynamics that
knowledge decreases under the mixing of states; or put equivalently, that
the proposed measure is a convex function in the state ρ.

The measure should also be additive with respect to the aggregation of
isolated subsystems and, for an isolated system, independent of time.
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The Dyson generalization of skew information

Dyson proposed that other measures, in particular the expression

Iρ(p,A) = −1
2 Tr[ρ

p,A][ρ1−p,A] 0 < p < 1,

may have the same general properties as the skew information.

Convexity of this expression in ρ became the celebrated
Wigner-Yanase-Dyson conjecture which was later proved by Lieb.
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The superadditivity conjecture

In the process that is the opposite of mixing, the information content
should decrease.

This requirement comes from thermodynamics where it is satisfied for both
classical and quantum mechanical systems. It reflects the loss of
information about statistical correlations between two subsystems when
they are only considered separately.

Wigner and Yanase conjectured that the skew information also possesses
this property. They proved it when the state of the aggregated system is
pure. We subsequently demonstrated that the conjecture fails for general
mixed states.
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Quantum statistics

Chentsov and Morozova defined a monotone metric as a map ρ→ Kρ from
density matrices to sesquilinear forms on Mn(C) satisfying:
(i) Kρ(A,A) ≥ 0, (= 0⇔ A = 0).
(ii) Kρ(A,B) = Kρ(B∗,A∗)
(iii) ρ→ Kρ(A,A) is continuous onMn.

(iv) KT (ρ)(T (A),T (A)) ≤ Kρ(A,A) for stochastic mappings

T : Mn(C)→ Mm(C).

A stochastic map is a linear trace preserving completely positive map.
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Chentsov-Morozova’s theorem

Consider a basis in which ρ with eigenvalues λ1, . . . , λn is diagonalized.
Then Kρ is of the form

Kρ(A,A) = C
n∑

i=1

λ−1
i |Aii |2 +

∑
i 6=j

|Aij |2c(λi , λj),

where the function c : R2
+ → R is symmetric and

c(x , x) = Cx−1, c(tx , ty) = t−1c(x , y).

Theorem (Petz)
A monotone metric is defined if and only if c is of the form

c(x , y) =
1

yf (xy−1)
f : R+ → R+

where f is operator monotone, f (t) = tf (t−1) for t > 0, and f (1) = 1.
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The set Fop

Fop are the functions f : R+ → R+ such that
(i) f is operator monotone,
(ii) f (t) = tf (t−1) for all t > 0,
(iii) f (1) = 1.

Theorem
A function f ∈ Fop admits a canonical representation

f (t) =
1+ t
2

exp
∫ 1

0

(λ2 − 1)(1− t)2

(λ+ t)(1+ λt)(1+ λ)2
h(λ) dλ

where h : [0, 1]→ [0, 1] is measurable and (up to equivalence) uniquely
determined by f .
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Metric adjusted skew information

A Morozova-Chentsov function c is said to be regular, if the metric
constant

m(c) = lim
t→0

c(t, 1)−1 = f (0) f ∈ Fop

is strictly positive. We say also that the corresponding operator monotone
function f is regular.

The metric adjusted skew information I cρ (A) is defined by setting

I cρ (A) =
m(c)
2

K c
ρ (i [ρ,A], i [ρ,A]).

where
c(x , y) =

1
yf (xy−1)

x , y > 0

for a regular function f ∈ Fop.

8 / 32



The representation of the WYD-information

Consider the weight functions

hp(λ) =
1
π
arctan

(λp + λ1−p) sin pπ
1− λ− (λp − λ1−p) cos pπ

0 < λ < 1

for 0 < p < 1. The functions

fp(t) =
1+ t
2

exp
∫ 1

0

(λ2 − 1)(1− t)2

(λ+ t)(1+ λt)(1+ λ)2
hp(λ) dλ

= p(1− p) · (t − 1)2

(tp − 1)(t1−p − 1)
t > 0

are regular in Fop. The corresponding metric adjusted skew information

I cp
ρ (A) = −1

2 Tr[ρ
p,A][ρ1−p,A],

where cp(x , y) = 1/(yfp(xy−1)) for x , y > 0.
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Affine representation of Morozova-Chentson functions

A Morozova-Chentsov function c allows a canonical representation

c(x , y) =
∫ 1

0
cλ(x , y) dµc(λ) x , y > 0,

where µc is a finite Borel measure on [0, 1] and

cλ(x , y) =
1+ λ

2

(
1

x + λy
+

1
λx + y

)
λ ∈ [0, 1]. (1)

It is regular if and only if(
1

m(c)
=

) ∫ 1

0

(1+ λ)2

2λ
dµc(λ) <∞.
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Alternative representation

The metric adjusted skew information (with A self-adjoint) may be written
on the form

I cρ (A) = TrρA2 − m(c)
2

TrAdc(Lρ,Rρ)A,

where

dc(x , y) =
∫ 1

0
xy · cλ(x , y)

(1+ λ)2

λ
dµc(λ)

is operator concave in [0,∞)× [0,∞)\(0, 0).

The metric adjusted skew information may therefore be extended from the
state manifold to the state space.
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General results

(i) ρ→ I cρ (A) is a convex function.

(ii) For ρ = ρ1 ⊗ ρ2 and A = A1 ⊗ 1+ 1⊗ A2 we have

I cρ (A) = I cρ1
(A1) + I cρ2

(A2).

(iii) If A commutes with H then I cρt (A) = I cρ (A), where ρt = e itHρe−itH .

(iv) For any pure state ρ we have I cρ (A) = Varρ(A).

(v) For any density matrix ρ we have

0 ≤ I cρ (A) ≤ Varρ(A).
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Fop is a lattice with the order relation �

Let f , g ∈ Fop and consider the function

ϕ(t) =
t + 1
2

f (t)
g(t)

t > 0.

We write f � g if ϕ ∈ Fop. This definition renders Fop into a lattice with

fmin(t) =
2t

t + 1
and fmax(t) =

1+ t
2

as minimal respectively maximal element.

Theorem
f � g if and only if the representing functions satisfy hf ≥ hg a.e.
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Optimality of the Wigner-Yanase skew information

The functions

fp(t) = p(1− p) · (t − 1)2

(tp − 1)(t1−p − 1)
0 < p < 1

generate the Wigner-Yanase-Dyson skew-informations, and they are
represented by the weight functions

hp(λ) =
1
π
arctan

(λp + λ1−p) sin pπ
1− λ− (λp − λ1−p) cos pπ

in the exponential representation theorem for the elements in Fop.

Theorem
fp � fq for p ≤ q ≤ 1/2.

The statement is equivalent to operator monotonicity of the function

t → (t + 1)(tq − 1)(t1−q − 1)
(tp − 1)(t1−p − 1)

.
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Proof of optimality I

We consider a fixed λ ∈ (0, 1), set z0 = −λ+ iε for a small ε > 0, and
obtain

hp(λ) = −
1
π

lim
ε→0

fε(p),

where
fε(p) = arg((1− zp

0 )(1− z1−p
0 ))

= arg(1− zp
0 ) + arg(1− z1−p

0 ).

Since fε(p) = fε(1− p) it suffices to show that arg(1− zp
0 ) is concave in p

over [0, 1].
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Proof of optimality II

We intend to show that the function

g(p) = arg(1− zp) p ∈ [0, 1]

is concave for any z in

I = {z | =z > 0, |z | < 1}

including z0 for sufficiently small ε > 0. Since arg = = log, the second
derivative

g ′′(p) = =−z
p(log z)2

(1− zp)2
=

1
p2=
−zp(log zp)2

(1− zp)2
.
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Proof of optimality III

We have to show that g ′′(p) non-positive for z ∈ I and 0 ≤ p ≤ 1.

In fact, it is enough to do this for p = 1 only, since for z ∈ I and
0 ≤ p ≤ 1, then zp ∈ I too.

The imaginary part of a complex number is non-positive if and only its
complex argument is between π and 2π. Thus we need to show

q(z) = arg
−z(log z)2

(1− z)2
∈ [π, 2π]

for every z ∈ I.
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Proof of optimality IV

Set z = r exp(iθ), 0 < r < 1, 0 ≤ θ ≤ π, then

q(z) = arg(−z) + 2 arg log z − 2 arg(1− z)

= π + θ + 2 arctan
θ

log r
+ 2 arctan

r sin θ
1− r cos θ

.

For θ = 0, q(z) is obviously π. For θ = π,

q(z) = 2π + 2 arctan
π

log r
< 2π.

We will show that q(z) increases with θ for a fixed r , thus q is between π
and 2π for z ∈ I.
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Proof of optimality V

The first derivative

∂q
∂θ

= 2
log r

(log r)2 + θ2 +
1− r2

1+ r2 − 2r cos θ
.

Because of the inequality cos θ ≥ 1− θ2/2, we obtain a lower bound

∂q
∂θ

≥ 1− r2

(1− r)2 + rθ2 + 2
log r

(log r)2 + θ2

=
φ(r) log r + θ2ψ(r)

((1− r)2 + rθ2)((log r)2 + θ2)
≥ 0,

where φ(r) = (1− r2) log r + 2(1− r)2 and ψ(r) = 1− r2 + 2r log r .

The statement follows since φ ≤ 0 and ψ ≥ 0. QED
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The partial trace

Let ρ12 be an operator on a tensor product

H12 = H1 ⊗ H2

of two Hilbert spaces.

Definition
The partial trace ρ1 = Tr2 ρ12 is the operator on H1 defined by setting

(ξ | ρ1η) =
∑
i∈I

(ξ ⊗ ei | ρ12(η ⊗ ei )) ξ, η ∈ H1

where (ei )i∈I is any orthonormal basis in H2.
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Wigner and Yanase’s superadditivity conjecture

Let k1 (k2) be self-adjoint operators on H1 (H2) and define

k12 = k1 ⊗ 12 + 11 ⊗ k2.

Wigner and Yanase conjectured (1963) that

Iρ12(k12) ≥ Iρ1(k1) + Iρ2(k2),

where ρ12 is a bipartite state on H1 ⊗ H2 and ρ1 and ρ2 are the partial
traces of ρ12 on the first and second party.

They proved the conjecture when the state ρ12 is pure.

Theorem (2006)
The skew information is not superadditive.
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One-party superadditivity

Lemma
Let ρ be a bipartite density operator on a tensor product H1 ⊗ H2 of two
parties. If A is an observable of the first party then

I cρ (A⊗ 12) ≥ I cρ1
(A),

where ρ1 = Tr2 ρ is the partial trace of ρ on H1.

Since the partial trace is completely positive and trace preserving and the
metric K c

ρ is decreasing we obtain

I cρ (A⊗ 12) =
m(c)
2

K c
ρ (i [ρ,A⊗ 12], i [ρ,A⊗ 12])

≥ m(c)
2

K c
ρ1
(Tr2 i [ρ,A⊗ 12],Tr2 i [ρ,A⊗ 12])

=
m(c)
2

K c
ρ1
(i [ρ1,A], i [ρ1,A]) = I cρ1

(A).
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Semi-quantum states

A local von Neumann measurement P of the first party of a bipartite state
ρ on a tensor product H1 ⊗ H2 is given by

P(ρ) =
∑
i∈I

(Pi ⊗ 12)ρ(Pi ⊗ 12)

where {Pi}i∈I is a resolution of the identity on H1.

Definition
A bipartite state ρ is called a semi-quantum state if there exists a local von
Neumann measurement P = {Pi}i∈I of the first (or second) party leaving ρ
invariant, i.e. P(ρ) = ρ.

A state is semi-quantum if and only if

ρ =
∑
i∈I

piPi ⊗ ρi

where (pi )i∈I is a probability distribution and ρi for each i ∈ I is a state of
the second party.
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Superadditivity for semi-quantum states

Theorem
Let ρ be a semi-quantum state on a tensor product H1 ⊗ H2 of two parties,
then we obtain superadditivity of the metric adjusted skew information

I cρ (A⊗ 12 + 11 ⊗ B) ≥ I cρ1
(A) + I cρ2

(B).
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The Effros tranform

Theorem
Suppose that h is operator convex. When restricted to positive commuting
matrices the function g defined by

g(L,R) = h
(
L
R

)
R (2)

is jointly convex, that is if the commutator [L,R] = 0 and

L = λL1 + (1− λ)L2 and R = λR1 + (1− λ)R2

where also the commutators [L1,R1] = 0 and [L2,R2] = 0, then

g(L,R) ≤ λg(L1,R1) + (1− λ)g(L2,R2)

for 0 ≤ λ ≤ 1.
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New proof of convexity

The metric adjusted skew information may be written on the form

I cρ (A) =
m(c)
2

TrA ĉ(Lρ,Rρ)A,

where
ĉ(x , y) = (x − y)2c(x , y) x , y > 0. (3)

The metric adjusted skew information is convex in the state variable ρ if ĉ
is operator convex, but ĉ is the Effros transform of the function

h(t) =
(t − 1)2

f (t)
t > 0.

The statement therefore follows if h is operator convex.
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Some operator convex functions

Theorem
Let f : R+ → R+ be an operator monotone function. Then the function

h(t) =
(t − 1)2

f (t)
t > 0

is operator convex.

Notice that the theorem cannot be inverted. There are operator convex
functions h : R+ → R+ such that the function f (t) = (t − 1)2/h(t) is not
operator monotone.
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Unbounded metric adjusted skew information

Definition
We introduce the (unbounded) metric adjusted skew information
associated with a non-regular monotone metric by setting

I cρ (A) = K c
ρ (i [ρ,A], i [ρ,A])

if c is a non-regular Morozova-Chentsov function.

This type of metric adjusted skew information is unbounded and can no
longer be extended from the state manifold to the state space. However, it
enjoys all the same general properties as a bounded metric adjusted skew
information.
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A family of non-regular metrics I

Theorem
The functions

fp(t) = p(1− p) · (t − 1)2

(tp − 1)(t1−p − 1)

are for 1 < p ≤ 2 non-regular functions in Fop.

We only need to prove operator monotonicity and consider the identity

fp(t) = −p(1− p)
t − 1

gp(t)− 1

where the function

gp(t) =


tp − 1
t − 1

+
t1−p − 1
t − 1

t > 0, t 6= 1

1 t = 1.
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A family of non-regular metrics II

Since both tp and t1−p are operator convex for 1 < p ≤ 2, it follows that
gp is operator monotone, and it is therefore also operator concave (notice
that this conclusion does not require gp to be positive).

By appealing to Bendat and Sherman’s theorem once more and taking
inverse we conclude that fp is operator monotone.
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Unbounded extension of the WYD-information

For 1 < p ≤ 2 the (unbounded) metric adjusted skew information
associated with the non-regular functions fp ∈ Fop is given by

I cρ (A) =
−1

p(1− p)
Tr[ρp,A] · [ρ1−p,A].

But this is exactly the extension of the Wigner-Yanase-Dyson skew
information to parameter values 1 < p ≤ 2 studied by Jencǒva and Ruskai,
and earlier by Hasegawa.

In particular, this extension of the WYD-information is also associated with
monotone metrics and can be understood in terms of the notion of metric
adjusted skew information. The main difference is that the metric is regular
for 0 < p < 1 but non-regular for 1 < p ≤ 2.

It is therefore immediate that the extension is non-negative and convex in
the state variable. Furthermore, it satisfies all the restricted forms of
monotonicity under partial traces that we studied.
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information to parameter values 1 < p ≤ 2 studied by Jencǒva and Ruskai,
and earlier by Hasegawa.

In particular, this extension of the WYD-information is also associated with
monotone metrics and can be understood in terms of the notion of metric
adjusted skew information. The main difference is that the metric is regular
for 0 < p < 1 but non-regular for 1 < p ≤ 2.

It is therefore immediate that the extension is non-negative and convex in
the state variable. Furthermore, it satisfies all the restricted forms of
monotonicity under partial traces that we studied.
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Monotone metrics for −1 ≤ p ≤ 2

Hasegawa and Petz proved operator monotonicity of the functions fp for
0 < p < 1. We proved operator monotonicity for 1 < p ≤ 2 and by
symmetry for −1 < p < 0. We also notice that

fp(t)→
t − 1
log t

for p → 0 or p → 1,

and this is the function generating the Kubo metric. Similarly,

fp(t) =
2t

t + 1
for p = −1 or p = 2,

and this is the function generating the minimal monotone metric.

Therefore, with these extensions, we obtain monotone metrics for
−1 ≤ p ≤ 2.
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