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The Monge transport problem

Take

X , a measurable space;

c : X × X → [0,∞), a cost function;

µ0, µ1 ∈ P(X ), two probability measures on X .
Consider the measurable maps T : x ∈ X 7→ y = T (x) ∈ X such that

µ1 = T#µ0 (image measure).

Monge problem

minimize T 7→
∫
X

c(x ,T (x))µ0(dx) subject to µ1 = T#µ0. (M)

Example: X = Rd , c(x , y) = ‖y − x‖ or ‖y − x‖2.
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The Monge-Kantorovich transport problem
We want to transport µ0 onto µ1 with a minimal cost.

A transport plan is π ∈ P(X × X ) such that
{

first marginal := π0 = µ0

second marginal := π1 = µ1

The joint law π = L(X0,X1) is a coupling of µ0 = L(X0) and µ1 = L(X1).
With X0,X1 : X × X → X the first and second projections:

X0#π = µ0, X1#π = µ1.

Monge-Kantorovich problem

minimize π ∈ P(X × X ) 7→
∫
X×X

c(x , y)π(dxdy)

subject to X0#π = µ0,X1#π = µ1.

(MK)

It is a relaxed version of the Monge problem.
Disintegration: π(dxdy) = π0(dx)π(dy |X0 = x).
Monge corresponds to π(dy |X0 = x) = δT (x)(dy).
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Wasserstein metric

Take (X , d) a metric space.
Consider the cost c(x , y) = dp(x , y), p = 1 or 2.
The Wasserstein metric on Pp(X ) is

Wp(µ0, µ1) = inf
{

(MK)dp

}1/p
, µ0, µ1 ∈ P(X ).

Result: Wp is a metric on Pp(X ) := {µ ∈ P(X );
∫
X dp(xo, x)µ(dx) <∞}.
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The Schrödinger problem

Take n independent Brownian particles in X = Rd :

Xi (t) = xi + σWi (t), 0 ≤ t ≤ 1, i = 1, . . . , n.

σ2 is the temperature of the heat bath;

W1, . . . ,Wn are independent Brownian motions;

x1, . . . , xn are the initial positions.

Suppose that: Ln
0 := 1

n

∑n
i=1 δXi (0) = 1

n

∑n
i=1 δxi →n→∞

µ0 in P(X ). Then:

Ln :=
1
n

n∑
i=1

δXi →n→∞
R in P(Ω)

where Ω = {paths} = C([0, 1],X ) and R := L(X0 + σW ), W⊥X0 ∼ µ0.
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The Schrödinger problem

In particular, with R1 = µ0 ∗ N (0, Id),

Ln
1 :=

1
n

n∑
i=1

δXi (1) →
n→∞

R1 := X1#R in P(X )

With n =∞ the system starts from R0 = µ0 and ends up at R1 almost surely.
But n is finite.

Schrödinger’s question

Suppose that at time t = 1 you observe Ln
1 near µ1, far from R1.

What is the most likely path t ∈ [0, 1] 7→ Ln
t ∈ P(X ) of your particle system?

This is a large deviation problem.
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Schrödinger’s answer

Relative entropy: H(P|R) :=
∫

Ω
log( dP

dR ) dP ∈ [0,∞], P,R ∈ P(Ω).

Theorem (Sanov’s theorem)

For A ∈ P(Ω), P(Ln ∈ A) �
n→∞

exp {−n infP∈A H(P|R)} .

Conditionally on Ln
0 →n→∞

µ0 and Ln
1 →n→∞

µ1,

Ln →
n→∞

P̂ almost surely in P(Ω)

where P̂ is the unique solution of

Schrödinger dynamical problem

minimize P ∈ P(Ω) 7→ H(P|R)

subject to X0#P = µ0,X1#P = µ1.
(S)
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Schrödinger’s answer
Denote for all P ∈ P(Ω),

Pt = Xt #P ∈ P(X ) the law of position at time t ;
P01 = (X0,X1)#P ∈ P(X × X ) the joint law of initial and final positions;
Pxy = P(·|X0 = x ,X1 = y) the bridge between x and y ;

Rπ(·) :=
∫
X×X Rxy (·)π(dxdy).

Tensorization: H(P|R) = H(P01|R01) +
∫
X×X H(Pxy |Rxy ) P01(dxdy).

When P01 = π ∈ P(X × X ) is fixed, this is minimal when Pxy = Rxy for all
x , y ∈ X . That is for P = Rπ.
The solution of (S) is

P̂ = Rπ̂

where π̂ is the solution of

Schrödinger problem

minimize π ∈ P(X × X ) 7→ H(π|R01)

subject to X0#π = µ0,X1#π = µ1.
(S01)
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Schilder’s theorem
The main idea is to let the temperature ε = σ2 tend down to zero.
Let X ε(t) = X ε(0) +

√
εWt , 0 ≤ t ≤ 1.

For all path ω = (ωt )0≤t≤1, denote C(ω) =
∫ 1

0
1
2 |ω̇t |2 dt ∈ [0,∞].

Theorem (Schilder)

For all A ⊂ Ω, P(X ε ∈ A) �
ε→0

exp
{
− 1
ε

infω∈A[I0(ω0) + C(ω)]
}
.

Conditionally on X ε
0 →
ε→0

x and X ε
1 →
ε→0

y ,

X ε tends almost surely to the solution of the

Geodesic problem

minimize ω ∈ Ω 7→ C(ω) =

∫ 1

0

1
2
|ω̇t |2 dt subject to ω0 = x , ω1 = y .

Solution: γxy , the constant speed straight line between x and y and

c(x , y) := inf{C(ω);ω0 = x , ω1 = y} = C(γxy ) = ‖y − x‖2/2

is the popular quadratic cost.
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Schrödinger problem in a cold world

We mix Sanov and Schilder’s theorems.

Rε ∈ P(Ω) is the law of X ε;

X ε
1 , . . . ,X

ε
n are independent copies of X ε;

Ln,ε = 1
n

∑n
i=1 δXε

i
is a random element in P(Ω).

Theorem (Dawson-Gärtner, L.)

Assume that {X ε; ε > 0} obeys the LDP: Rε(·) �
ε→0

exp
{
− 1
ε
C(·)

}
. Then,

Γ- lim
ε→0

εH(P|Rε) =

∫
Ω

C dP ∈ [0,∞]

and {Ln,ε; ε > 0, n ≥ 1} obeys the double index LDP

P(Ln,ε ∈ A) �
ε→0,n→∞

exp
{
−n
ε

inf
P∈A

∫
Ω

C dP
}
.
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Idea of the proof

εH(P|Rε) = ε sup
f

{∫
f dP − log

∫
ef dRε

}
= sup

f

{
ε

∫
f/ε dP − ε log

∫
ef/ε dRε

}
= sup

f

{∫
f dP − ε log

∫
ef/ε dRε

}
But Rε(·) �

ε→0
exp{−C(·)/ε} gives

∫
ef/ε dRε �

ε→0
supΩ exp{(f − C)/ε} and

ε log
∫

ef/ε dRε →
ε→0

sup
Ω

(f − C).

εH(P|Rε)  
ε→0

sup
f

{∫
f dP − sup(f − C) dP

}
= sup

f

{∫
C dP +

∫
[(f − C)− sup(f − C)] dP

}
=

∫
C dP.
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Γ-convergence

Lower semicontinuous envelope: lsc(h)(x) := supV∈V(x) infy∈V h(y).
Γ-limit: Γ- limε→0 hε(x) := supV∈V(x) limε→0 infy∈V hε(y).
This implies that there exists a sequence {xε} such that

xε →
ε→0

x ; hε(xε) →
ε→0

h(x).

More,
min hε →

ε→0
min h; argmin hε →

ε→0
argmin h.

In particular, Γ- limε→0 εH(P|Rε) =
∫

Ω
C dP implies that there exists a

sequence {Pε} such that

Pε →
ε→0

P; εH(Pε|Rε) →
ε→0

∫
Ω

C dP.

Remark: {Rε} is a family of mutually singular measures.
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Contraction principle

I skip the technical details about the initial condition.
Idea: Take R0 as the reversing measure of the Markov dynamics.
Here R0 is Lebesgue measure, which is unbounded.
By the contraction principle

Rε(dω) �
ε→0

exp
{
−1
ε

C(ω)

}
gives

Rε
01(dxdy) �

ε→0
exp

{
−1
ε

c(x , y)

}
with

c(x , y) = inf{C(ω);ω : ω0 = x , ω1 = y}

= inf
{∫ 1

0

1
2
‖ω̇t‖2 dt ;ω : ω0 = x , ω1 = y

}
Γ-convergence is stable under contraction.
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Limit of the minimization problems

Theorem (Dynamical problems)

In the space P(Ω), we have the following convergence

(Sε) : minimize P 7→ εH(P|Rε) subject to P0 = µε0, P1 = µε1
Γ- limε ↓ ↓ ↓

(T ) : minimize P 7→
∫

Ω
C dP subject to P0 = µ0, P1 = µ1

And by contraction, we obtain the

Theorem (From (S) to (MK))

In the space P(X × X ), we have the following convergence

(Sε01) : minimize π 7→ εH(π|Rε
01) subject to π0 = µε0, π1 = µε1

Γ- limε ↓ ↓ ↓
(MK ) : minimize π 7→

∫
X×X c dπ subject to π0 = µ0, π1 = µ1

where

Rε
01(dxdy) �

ε→0
exp

{
−1
ε

c(x , y)

}
.
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Limit of the minimizers

Theorem (Convergence of the minimizers)

There exists a sequence (µε0, µ
ε
1) →

k→∞
(µ0, µ1) such that

P̂ε(·) =
∫
X×X Rε,xy (·) π̂ε(dxdy); P̂ε0 = π̂ε0 = µε0, P̂

ε
1 = π̂ε1 = µε1

↓ ↓ ↓
P̂(·) =

∫
X×X δγxy (·) π̂(dxdy); P̂0 = π̂0 = µ0, P̂1 = π̂1 = µ1

Recall: Rε,xy is the bridge of Rε and γxy is the geodesic between x and y .

This convergence is a tool for approximating some features of geometry by
means of probability theory.
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Other dynamics

For any k ≥ 1, let Rk be the law of the random walk in X = Rd

X k (t) = X k (0) +
1
k

bktc∑
j=1

Zj , 0 ≤ t ≤ 1

where Z1, . . . ,Zk are independent copies of Z . Define

C(ω) =
∫ 1

0 c(ω̇t ) dt ∈ [0,∞], ω ∈ Ω,

c(v) = supp∈Rd {v · p − log Eep·Z}, v ∈ Rd .

Theorem

1 Γ- limk→∞
1
k H(P|Rk ) =

∫
Ω

C dP, P ∈ P(Ω),

2 Γ- limk→∞
1
k H(π|Rk

01) =
∫

Ω
c(y − x)π(dxdy), π ∈ P(X × X )
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A geometry on P(X )

McCann, Gangbo, Otto, Villani,...

Definition (”Geodesics” in P(X ))

The flow
t 7→ µt := P̂t (·) =

∫
X×X

δγxy (t)(·) π̂(dxdy) ∈ P(X )

where π̂ is a solution of (MK) is a kind of geodesic from µ0 to µ1 in P(X ). We
write it

µt = [µ0, µ1]t , 0 ≤ t ≤ 1

This ”geodesic” is called a displacement interpolation.
It is approximated by the entropy minimizers

t 7→ µεt := P̂εt (·) =

∫
X×X

Rε,xy
t (·) π̂ε(dxdy) ∈ P(X ).

Remark: (MK) might admit infinitely many solutions. (Sε01) admits a unique
solution.
We select the viscosity solution.
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Ricci curvature

Active field of research: Lott, Sturm, von Renesse, Villani,...

Theorem

Let X be a connected Riemannian manifold. Then, X has a nonnegative
Ricci curvature if and only if the relative entropy H(·|vol) is displacement
convex.
That is, for any displacement interpolation (µt )0≤t≤1,

H(µt |vol) ≤ (1− t)H(µ0|vol) + tH(µ1|vol), ∀0 ≤ t ≤ 1.

This theory works mainly with the quadratic transport.
This gives a very interesting definition of lower-bounded-Ricci-curvature in a
general metric space X .
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Work in progress
Try to obtain curvature properties of the measure space (X , ρ) by means of
the second derivative of the function

t 7→ H(P̂t |ρ)

where

P̂ is the Schrödinger minimizer

with respect to a general Markov reversible Markov process R with
reversing measure ρ.

Take advantage of the convergence of the functions

t 7→ H(P̂εt |ρε)

where

P̂ε is the Schrödinger minimizer

with respect to a general Markov reversible Markov process Rε with
reversing measure ρε →

ε→0
ρ.
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Thank you for your attention.
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