Riemannian metrics on positive definite matrices related to means

(joint work with Dénes Petz)

Fumio Hiai (Tohoku University)

2010, August (Leipzig)

Plan

- 0. Motivation and introduction
- 1. Geodesic shortest curve and geodesic distance
- 2. Characterizing isometric transformation
- 3. Two kinds of isometric families of Riemannian metrics
- 4. Comparison property
- 5. Problems

Reference

F. Hiai and D. Petz, Riemannian metrics on positive definite matrices related to means, Linear Algebra Appl. 430 (2009), 3105–3130.

0. Motivation and introduction

Question?

For $n \times n$ positive definite matrices A, B and 0 < t < 1, the well-known convergences of Lie-Trotter type are:

- $\lim_{\alpha \to 0} ((1-t)A^{\alpha} + tB^{\alpha})^{1/\alpha} = \exp((1-t)\log A + t\log B),$
- $\lim_{\alpha \to 0} \left(A^{\alpha} \#_{\alpha} B^{\alpha} \right)^{1/\alpha} = \exp((1-t)\log A + t\log B).$

What is the Riemannian geometry behind?

Can we explain these convergences in terms of Riemannian geometry?

Notation

- \mathbb{M}_n (the $n \times n$ complex matrices) is a Hilbert space with respect to the Hilbert-Schmidt inner product $\langle X, Y \rangle_{\mathrm{HS}} := \mathrm{Tr}\, X^*Y$.
- \mathbb{H}_n (the $n \times n$ Hermitian matrices) is a real subspace of \mathbb{M}_n , \cong the Euclidean space \mathbb{R}^{n^2} .
- \mathbb{P}_n (the $n \times n$ positive definite matrices) is an open subset of \mathbb{H}_n , a smooth differentiable manifold with $T_D\mathbb{P}_n = \mathbb{H}_n$.
- \mathcal{D}_n (the $n \times n$ positive definite matrices of trace 1) is a smooth differentiable submanifold of \mathbb{P}_n with $T_D \mathcal{D}_n = \{H \in \mathbb{H}_n : \operatorname{Tr} H = 0\}$.

A Riemannian metric $K_D(H,K)$ is a family of inner products on \mathbb{H}_n depending smoothly on the foot point $D \in \mathbb{P}_n$.

For $D \in \mathbb{P}_n$, write

$$\mathbf{L}_D X := D X$$
 and $\mathbf{R}_D X := X D$, $X \in \mathbb{M}_n$.

 \mathbf{L}_D and \mathbf{R}_D are commuting positive operators on $(\mathbb{M}_n, \langle \cdot, \cdot \rangle_{\mathrm{HS}})$.

Statistical Riemannian metric [Mostow, Skovgaard, Ohara-Suda-Amari, Lawson-Lim, Moakher, Bhatia-Holbrook]

$$g_D(H,K) := \operatorname{Tr} D^{-1}HD^{-1}K = \langle H, (\mathbf{L}_D\mathbf{R}_D)^{-1}K \rangle_{HS}$$

This is considered as a geometry on the Gaussian distributions p_D with zero mean and covariance matrix D. The Boltzmann entropy is

$$S(p_D) = \frac{1}{2} \log(\det D) + \mathbf{const.}$$

and

$$g_D(H,K) = \frac{\partial^2}{\partial s \partial t} S(p_{D+sH+tK}) \bigg|_{s=t=0}$$
 (Hessian).

Congruence-invariant For any invertible $X \in \mathbb{M}_n$,

$$g_{XDX^*}(XHX^*, XKX^*) = g_D(H, K)$$

Geodesic curve

$$\gamma(t) = A \#_t B := A^{1/2} (A^{-1/2} B A^{-1/2})^t A^{1/2} \quad (0 \le t \le 1)$$

The geodesic midpoint $\gamma(1/2)$ is the geometric mean A # B [Pusz-Woronowicz].

Geodesic distance

$$\delta(A, B) = \|\log(A^{-1/2}BA^{-1/2})\|_{HS}$$

This is the so-called Thompson metric.

Monotone metrics [Petz]

$$K_{\beta(D)}(\beta(X),\beta(Y)) \le K_D(X,Y)$$

if $\beta: \mathbb{M}_n \to \mathbb{M}_m$ is completely positive and trace-preserving.

Theorem (Petz, 1996) There is a one-to-one correspondence:

{monotone metrics with
$$K_D(I,I) = \operatorname{Tr} D^{-1}$$
}

 \uparrow

{operator monotone functions $f:(0,\infty)\to(0,\infty)$ with f(1)=1}

by

$$K_D^f(X,Y) = \langle X, (\mathbf{J}_D^f)^{-1}Y \rangle_{\mathrm{HS}}, \qquad \mathbf{J}_D^f := f(\mathbf{L}_D \mathbf{R}_D^{-1}) \mathbf{R}_D.$$

 K_D^f is symmetric (i.e., $K_D^f(X,Y) = K_D^f(Y^*,X^*)$) if and only if f is symmetric, (i.e., $xf(x^{-1}) = f(x)$).

A symmetric monotone metric is also called a quantum Fisher information.

Theorem (Kubo-Ando, 1980) There is a one-to-one correspondence:

 $\{$ operator means $\sigma \}$

 \uparrow

 $\left\{ \text{\bf operator monotone functions} \ f:(0,\infty)\to (0,\infty) \ \text{\bf with} \ f(1)=1 \right\}$

 $\mathbf{b}\mathbf{y}$

$$A \sigma_f B = A^{1/2} f(A^{-1/2} B A^{-1/2}) A^{1/2}, \qquad A, B \in \mathbb{P}_n.$$

 σ_f is symmetric if and only if f is symmetric.

Quantum skew information

When 0 , the Wigner-Yanase-Dyson skew information is

$$I_D^{\text{WYD}}(p,K) := -\frac{1}{2} \text{Tr}\left[D^p, K\right] [D^{1-p}, K] = \frac{p(1-p)}{2} K_D^{f_p}(i[D, K], i[D, K])$$

for $D \in \mathcal{D}_n$, $K \in \mathbb{H}_n$, where f_p is an operator monotone function:

$$f_p(x) := p(1-p) \frac{(x-1)^2}{(x^p-1)(x^{1-p}-1)}.$$

For each operator monotone function f that is regular (i.e., $f(0) := \lim_{x \searrow 0} f(x) > 0$), Hansen introduced the metric adjusted skew information (or quantum skew information):

$$I_D^f(K) := \frac{f(0)}{2} K_D^f(i[D, K], i[D, K]), \qquad D \in \mathcal{D}_n, \ K \in \mathbb{H}_n.$$

Generalized covariance

For an operator monotone function f,

$$\varphi_D[H, K] := \langle H, \mathbf{J}_D^f K \rangle_{HS}, \qquad D \in \mathcal{D}_n, \ H, K \in \mathbb{H}_n, \operatorname{Tr} H = \operatorname{Tr} K = 0,$$

 $\varphi_D[H,K] = \operatorname{Tr} DHK$ if D and K are commuting.

Motivation The above quantities are Riemannian metrics in the form

$$K_D^{\phi}(H, K) := \langle H, \phi(\mathbf{L}_D, \mathbf{L}_R)^{-1} K \rangle_{HS} = \sum_{i,j=1}^{\kappa} \phi(\lambda_i, \lambda_j)^{-1} \operatorname{Tr} P_i H P_j K,$$

where $D = \sum_{i=1}^{k} \lambda_i P_i$ is the spectral decomposition, and the kernel function $\phi: (0, \infty) \times (0, \infty) \to (0, \infty)$ is in the form

$$\phi(x,y) = M(x,y)^{\theta},$$

a degree $\theta \in \mathbb{R}$ power of a certain mean M(x,y). A systematic study is desirable, from the viewpoints of geodesic curves, scalar curvature, information geometry, etc.

1. Geodesic shortest curve and geodesic distance

Let \mathfrak{M}_0 denote the set of smooth symmetric homogeneous means $M:(0,\infty)\times(0,\infty)\to(0,\infty)$ satisfying

- $\bullet \ M(x,y) = M(y,x),$
- $M(\alpha x, \alpha y) = \alpha M(x, y), \ \alpha > 0,$
- M(x,y) is non-decreasing and smooth in x,y,
- $\bullet \min\{x,y\} \le M(x,y) \le \max\{x,y\}.$

For $M \in \mathfrak{M}_0$ and $\theta \in \mathbb{R}$, define $\phi(x,y) := M(x,y)^{\theta}$ and consider a Riemannian metric on \mathbb{P}_n given by

$$K_D^{\phi}(H,K) := \langle H, \phi(\mathbf{L}_D, \mathbf{R}_D)^{-1} K \rangle_{\mathrm{HS}}, \qquad D \in \mathbb{P}_n, \ H, K \in \mathbb{H}_n.$$

When $D = U \operatorname{Diag}(\lambda_1, \dots, \lambda_n) U^*$ is the diagonalization,

$$\phi(\mathbf{L}_D, \mathbf{R}_D)^{-1/2} H = U \left(\left[\frac{1}{\sqrt{\phi(\lambda_i, \lambda_j)}} \right]_{ij} \circ (U^* H U) \right) U^*,$$

$$K_D^{\phi}(H, H) = \|\phi(\mathbf{L}_D, \mathbf{R}_D)^{-1/2} H\|_{\mathrm{HS}}^2 = \left\| \left[\frac{1}{\sqrt{\phi(\lambda_i, \lambda_j)}} \right]_{ij} \circ (U^* H U) \right\|_{\mathrm{HS}}^2,$$

where o denotes the Schur product.

For a C^1 curve $\gamma:[0,1]\to\mathbb{P}_n$, the length of γ is

$$L_{\phi}(\gamma) := \int_{0}^{1} \sqrt{K_{\gamma(t)}^{\phi}(\gamma'(t), \gamma'(t))} dt = \int_{0}^{1} \|\phi(\mathbf{L}_{\gamma(t)}, \mathbf{R}_{\gamma(t)})^{-1/2} \gamma'(t)\|_{HS} dt.$$

The geodesic distance between A, B is

$$\delta_{\phi}(A,B) := \inf \{ L_{\phi}(\gamma) : \gamma \text{ is a } C^1 \text{ curve joining } A, B \}.$$

A geodesic shortest curve is a γ joining A, B s.t. $L_{\phi}(\gamma) = \delta_{\phi}(A, B)$ if exists.

When $\phi(x,y) := M(x,y)^{\theta}$ for $M \in \mathfrak{M}_0$ and $\theta \in \mathbb{R}$ as above,

Theorem Assume $A, B \in \mathbb{P}_n$ are commuting (i.e., AB = BA). Then, independently of the choice of $M \in \mathfrak{M}_0$, the following hold:

• The geodesic distance between A, B is

$$\delta_{\phi}(A, B) = \begin{cases} \frac{2}{|2 - \theta|} \|A^{\frac{2 - \theta}{2}} - B^{\frac{2 - \theta}{2}}\|_{HS} & \text{if } \theta \neq 2, \\ \|\log A - \log B\|_{HS} & \text{if } \theta = 2, \end{cases}$$

ullet A geodesic shortest curve joining A, B is

$$\gamma(t) := \begin{cases} \left((1-t)A^{\frac{2-\theta}{2}} + tB^{\frac{2-\theta}{2}} \right)^{\frac{2}{2-\theta}}, & 0 \le t \le 1 & \text{if } \theta \ne 2, \\ \exp((1-t)\log A + t\log B), & 0 \le t \le 1 & \text{if } \theta = 2, \end{cases}$$

• If M(x,y) is an operator monotone mean and $\theta=1$, then $\gamma(t)=\left((1-t)A^{1/2}+tB^{1/2}\right)^2,\ 0\leq t\leq 1$, is a unique geodesic shortest curve joining A,B.

Theorem (\mathbb{P}_n, K^{ϕ}) is complete (i.e., the geodesic distance $\delta_{\phi}(A, B)$ is complete) if and only if $\theta = 2$.

Proposition For every $M \in \mathfrak{M}_0$ and $A, B \in \mathbb{P}_n$ there exists a smooth geodesic shortest curve for K^{ϕ} joining A, B whenever θ is sufficiently near 2 depending on M and A, B.

2. Characterizing isometric transformation

For $N, M \in \mathfrak{M}_0$ and $\kappa, \theta \in \mathbb{R}$, define $\psi, \phi : (0, \infty) \times (0, \infty) \to (0, \infty)$ by

$$\psi(x,y) := N(x,y)^{\kappa}, \qquad \phi(x,y) := M(x,y)^{\theta},$$

and Riemannian metrics K^{ψ}, K^{ϕ} by

$$K_D^{\psi}(H,K) := \langle H, \psi(\mathbf{L}_D, \mathbf{R}_D)^{-1} K \rangle_{\mathrm{HS}},$$

$$K_D^{\phi}(H,K) := \langle H, \phi(\mathbf{L}_D, \mathbf{R}_D)^{-1} K \rangle_{\mathrm{HS}}.$$

 $F:(0,\infty)\to (0,\infty)$ is an onto smooth function such that $F'(x)\neq 0$ for all x>0.

Theorem When $\alpha > 0$, the transformation $D \in \mathbb{P}_n \mapsto F(D) \in \mathbb{P}_n$ is isometric from $(\mathbb{P}_n, \alpha^2 K^{\phi})$ onto (\mathbb{P}_n, K^{ψ}) if and only if one of the following (1°) – (5°) holds:

(1°) $\kappa = \theta = 0$ and $F(x) = \alpha x$, x > 0. (N, M are irrelevant; K^{ψ} and K^{ϕ} are the Euclidean metric.)

(2°) $\kappa = 0, \ \theta \neq 0, 2 \ \text{and}$

$$F(x) = \alpha \left| \frac{2}{2 - \theta} \right| x^{\frac{2 - \theta}{2}}, \qquad x > 0,$$

$$M(x, y) = \left(\frac{2 - \theta}{2} \cdot \frac{x - y}{x^{\frac{2 - \theta}{2}} - y^{\frac{2 - \theta}{2}}} \right)^{2/\theta}, \qquad x, y > 0.$$

(N is irrelevant; K^{ϕ} is a pull-back of the Euclidean metric.)

(3°) $\kappa \neq 0, 2, \theta = 0 \text{ and }$

$$F(x) = \left(\alpha \left| \frac{2-\kappa}{2} \right| x\right)^{\frac{2}{2-\kappa}}, \qquad x > 0,$$

$$N(x,y) = \left(\frac{2-\kappa}{2} \cdot \frac{x-y}{x^{\frac{2-\kappa}{2}} - y^{\frac{2-\kappa}{2}}}\right)^{2/\kappa}, \qquad x,y > 0.$$

(M is irrelevant.)

(4°) $\kappa, \theta \neq 0, 2$ and

$$F(x) = \left(\alpha \left| \frac{2-\kappa}{2-\theta} \right| \right)^{\frac{2}{2-\kappa}} x^{\frac{2-\theta}{2-\kappa}}, \qquad x > 0,$$

$$M(x,y) = \left(\frac{2-\theta}{2-\kappa} \cdot \frac{x-y}{x^{\frac{2-\theta}{2-\kappa}} - y^{\frac{2-\theta}{2-\kappa}}} \right)^{2/\theta} N\left(x^{\frac{2-\theta}{2-\kappa}}, y^{\frac{2-\theta}{2-\kappa}}\right)^{\kappa/\theta}, \qquad x, y > 0.$$

(5°) $\kappa = \theta = 2$ and

$$F(x) = cx^{\alpha}, \quad x > 0 \quad (c > 0 \text{ is a constant}),$$

$$M(x,y) = \alpha \left(\frac{x-y}{x^{\alpha}-y^{\alpha}}\right) N(x^{\alpha}, y^{\alpha}), \qquad x, y > 0,$$

or

$$F(x) = cx^{-\alpha}, \quad x > 0 \quad (c > 0 \text{ is a constant}),$$

$$M(x,y) = \alpha \left(\frac{x-y}{y^{-\alpha} - x^{-\alpha}}\right) N(x^{-\alpha}, y^{-\alpha}), \qquad x, y > 0.$$

3. Two kinds of isometric families of Riemannian metrics

For $N \in \mathfrak{M}_0$, $\kappa \in \mathbb{R} \setminus \{2\}$, $\theta \in \mathbb{R} \setminus \{0,2\}$, and $\alpha \in \mathbb{R} \setminus \{0\}$, define

$$N_{\kappa,\theta}(x,y) := \left(\frac{2-\theta}{2-\kappa} \cdot \frac{x-y}{x^{\frac{2-\theta}{2-\kappa}} - y^{\frac{2-\theta}{2-\kappa}}}\right)^{2/\theta} N\left(x^{\frac{2-\theta}{2-\kappa}}, y^{\frac{2-\theta}{2-\kappa}}\right)^{\kappa/\theta},$$

$$N_{\alpha}(x,y) := \alpha \left(\frac{x-y}{x^{\alpha} - y^{\alpha}}\right) N(x^{\alpha}, y^{\alpha}), \qquad x, y > 0.$$

In particular, $N_{0,\theta}$'s are Stolarsky means

$$S_{\theta}(x,y) := \left(\frac{2-\theta}{2} \cdot \frac{x-y}{x^{\frac{2-\theta}{2}} - y^{\frac{2-\theta}{2}}}\right)^{2/\theta},$$

interpolating the following typical means:

$$S_{-2}(x,y) = M_{
m A}(x,y) := rac{x+y}{2}$$
 (arithmetic mean), $S_1(x,y) = M_{\sqrt{-}}(x,y) := \left(rac{\sqrt{x}+\sqrt{y}}{2}
ight)^2$ (root mean), $S_2(x,y) := \lim_{ heta o 2} S_{ heta}(x,y) = M_{
m L}(x,y) := rac{x-y}{\log x - \log y}$ (logarithmic mean), $S_4(x,y) = M_{
m G}(x,y) := \sqrt{xy}$ (geometric mean).

The metric corresponding to the root mean (called the Wigner-Yanase metric) is a unique monotone metric that is a pull-back of the Euclidean metric [Gibilisco-Isola].

Proposition

(a) For any $N \in \mathfrak{M}_0$, $\kappa \in \mathbb{R} \setminus \{2\}$, and $\theta \in \mathbb{R} \setminus \{0, 2\}$,

$$N_{\kappa,\theta}(x,y) = S_{\frac{2(\theta-\kappa)}{2-\kappa}}(x,y)^{\frac{2(\theta-\kappa)}{\theta(2-\kappa)}} N\left(x^{\frac{2-\theta}{2-\kappa}}, y^{\frac{2-\theta}{2-\kappa}}\right)^{\kappa/\theta},$$
$$\lim_{\theta \to 2} N_{\kappa,\theta}(x,y) = M_{L}(x,y).$$

If $0 \le \kappa \le \theta < 2$ or $2 < \theta \le \kappa$, then $N_{\kappa,\theta} \in \mathfrak{M}_0$.

(b) For any $N \in \mathfrak{M}_0$ and $\alpha \in \mathbb{R} \setminus \{0\}$,

$$N_{\alpha}(x,y) = S_{2-2\alpha}(x,y)^{1-\alpha} N(x^{\alpha}, y^{\alpha}),$$

$$\lim_{\alpha \to 0} N_{\alpha}(x, y) = M_{L}(x, y).$$

If $0 < \alpha \le 1$, then $N_{\alpha} \in \mathfrak{M}_0$.

For any $N \in \mathfrak{M}_0$, the above theorem and proposition show:

- When $\kappa \geq 0$ and $\kappa \neq 2$, $K^{N_{\kappa,\theta}^{\theta}}$ ($\kappa \leq \theta < 2$ or $\kappa \geq \theta > 2$) is a one-parameter isometric family of Riemannian metrics starting from $K^{N^{\kappa}}$ and converging to $K^{M_{\rm L}^2}$ as $\theta \to 2$.
- When $\kappa=2$, $K^{N_{\alpha}^2}$ ($1 \ge \alpha > 0$) is a one-parameter isometric family of Riemannian metrics starting from K^{N^2} and converging to $K^{M_{\rm L}^2}$ as $\alpha \to 0$.

Claim The metric $K^{M_{\rm L}^2}$ is an attractor among the Riemannian metrics $K^{M^{\theta}}$ $(M \in \mathfrak{M}_0, \ \theta \ge 0)$.

The geodesic shortest curve for $K^{M_L^2}$ joining $A, B \in \mathbb{P}_n$ is

$$\gamma_{A,B}(t) := \exp((1-t)\log A + t\log B)$$
 $(0 \le t \le 1).$

The geodesic distance between A, B with respect to $K^{M_L^2}$ is

$$\delta_{M_{\mathbf{L}}^2}(A, B) := \|\log A - \log B\|_{\mathbf{HS}}.$$

Theorem Let $N \in \mathfrak{M}_0$ and $A, B \in \mathbb{P}_n$ be arbitrary.

(a) For the one-parameter family $K^{N_{\kappa,\theta}^{\theta}}$ $(0 \le \kappa \le \theta < 2 \text{ or } \kappa \ge \theta > 2)$,

$$\delta_{N_{\kappa,\theta}^{\theta}}(A,B) = \delta_{N^{\kappa}}(A_{k,\theta}, B_{\kappa,\theta}) \longrightarrow \|\log A - \log B\|_{HS} \quad (\theta \to 2),$$

where

$$A_{\kappa,\theta} := \left(\frac{2-\kappa}{2-\theta}\right)^{\frac{2}{2-\kappa}} A^{\frac{2-\theta}{2-\kappa}}, \qquad B_{\kappa,\theta} := \left(\frac{2-\kappa}{2-\theta}\right)^{\frac{2}{2-\kappa}} B^{\frac{2-\theta}{2-\kappa}}.$$

(b) For the one-parameter family $K^{N_{\alpha}^2}$ $(1 \ge \alpha > 0)$,

$$\delta_{N_{\alpha}^{2}}(A,B) = \frac{1}{\alpha} \, \delta_{N^{2}}(A^{\alpha},B^{\alpha}) \longrightarrow \|\log A - \log B\|_{\mathrm{HS}} \quad (\alpha \searrow 0).$$

Theorem Let $N \in \mathfrak{M}_0$ and $A, B \in \mathbb{P}_n$ be arbitrary. In the following, assume that geodesic shortest curves are always parametrized under constant speed.

(a) If $\gamma_{A_{\kappa,\theta},B_{\kappa,\theta}}(t)$ is the geodesic shortest curve for $K^{N^{\kappa}}$ joining $A_{\kappa,\theta},B_{\kappa,\theta}$, then the geodesic shortest curve for $K^{N^{\theta}_{\kappa,\theta}}$ joining A,B is given by $\left(\frac{2-\theta}{2-\kappa}\right)^{\frac{2}{2-\theta}}\left(\gamma_{A_{\kappa,\theta},B_{\kappa,\theta}}(t)\right)^{\frac{2-\kappa}{2-\theta}}$ and

$$\lim_{\theta \to 2} \left(\frac{2 - \theta}{2 - \kappa} \right)^{\frac{2}{2 - \theta}} \left(\gamma_{A_{\kappa, \theta}, B_{\kappa, \theta}}(t) \right)^{\frac{2 - \kappa}{2 - \theta}} = \exp((1 - t) \log A + t \log B) \quad (0 \le t \le 1).$$

(b) If $\gamma_{A^{\alpha},B^{\alpha}}(t)$ is the geodesic shortest curve for K^{N^2} joining A^{α},B^{α} , then the geodesic shortest curve for $K^{N^2_{\alpha}}$ joining A,B is given by $\left(\gamma_{A^{\alpha},B^{\alpha}}(t)\right)^{1/\alpha}$ and

$$\lim_{\alpha \searrow 0} \left(\gamma_{A^{\alpha}, B^{\alpha}}(t) \right)^{1/\alpha} = \exp((1-t)\log A + t\log B) \quad (0 \le t \le 1).$$

The above convergences for the geodesic shortest curves may be considered as variations of the Lie-Trotter formula.

Examples

• When $\kappa = 0$, $N_{0,\theta} = S_{\theta}$ is the family of Stolarsky means. The geodesic distance and the geodesic shortest curve for $K^{S_{\theta}^{\theta}}$ are

$$\delta_{S_{\theta}^{\theta}}(A,B) = \frac{2}{|2-\theta|} \|A^{\frac{2-\theta}{2}} - B^{\frac{2-\theta}{2}}\|_{HS},$$

$$\gamma_{A,B}(t) = \left((1-t)A^{\frac{2-\theta}{2}} + tB^{\frac{2-\theta}{2}} \right)^{\frac{2}{2-\theta}}.$$

We have

$$\lim_{\theta \to 2} \frac{2}{|2 - \theta|} \|A^{\frac{2 - \theta}{2}} - B^{\frac{2 - \theta}{2}}\|_{HS} = \|\log A - \log B\|_{HS},$$

$$\lim_{\theta \to 2} \left((1 - t) A^{\frac{2 - \theta}{2}} + t B^{\frac{2 - \theta}{2}} \right)^{\frac{2}{2 - \theta}} = \exp((1 - t) \log A + t \log B).$$

• When $N=M_{\rm G}$ (geometric mean), $K^{M_{\rm G}^2}$ is the statistical Riemannian metric and $N_{\alpha}(x,y)=\alpha\bigg(\frac{x-y}{x^{\alpha}-y^{\alpha}}\bigg)(xy)^{\alpha/2}, \ x,y>0.$ The geodesic distance and the geodesic shortest curve for $K^{N_{\alpha}^2}$ are

$$\delta_{N_{\alpha}^{2}}(A, B) = \frac{1}{\alpha} \, \delta_{M_{G}^{2}}(A^{\alpha}, B^{\alpha}) = \left\| \log(A^{-\alpha/2} B^{\alpha} A^{-\alpha/2})^{1/\alpha} \right\|_{HS},$$

$$\gamma_{A, B}(t) = (A^{\alpha} \#_{t} B^{\alpha})^{1/\alpha}.$$

We have

$$\lim_{\alpha \to 0} \| \log (A^{-\alpha/2} B^{\alpha} A^{-\alpha/2})^{1/\alpha} \|_{HS} = \| \log A - \log B \|_{HS} \quad \text{(decreasing)},$$

$$\lim_{\alpha \to 0} (A^{\alpha} \#_t B^{\alpha})^{1/\alpha} = \exp((1 - t) \log A + t \log B).$$

Remark When σ is an operator mean corresponding to an operator monotone function f and s := f'(1),

$$\lim_{\alpha \to 0} (A^{\alpha} \sigma B^{\alpha})^{1/\alpha} = \exp((1-s)\log A + s\log B).$$

4. Comparison property

Theorem Let $\phi^{(1)}, \phi^{(2)}: (0, \infty) \times (0, \infty) \to (0, \infty)$ be smooth symmetric kernel functions. The following conditions are equivalent:

- (i) $\phi^{(1)}(x,y) \le \phi^{(2)}(x,y)$ for all x,y>0;
- (ii) $K_D^{\phi^{(1)}}(H,H) \ge K_D^{\phi^{(2)}}(H,H)$ for all $D \in \mathbb{P}_n$ and $H \in \mathbb{H}_n$;
- (iii) $L_{\phi^{(1)}}(\gamma) \geq L_{\phi^{(2)}}(\gamma)$ for all C^1 curve $\gamma \in \mathbb{P}_n$;
- (iv) $\delta_{\phi^{(1)}}(A,B) \geq \delta_{\phi^{(2)}}(A,B)$ for all $A,B \in \mathbb{P}_n$.

For example, for $\theta \in \mathbb{R}$, let $\phi_{\theta}(x,y) := S_{\theta}(x,y)^{\theta}$ and $\phi(x,y) := M(x,y)^{\theta}$ with $M \in \mathfrak{M}_0$. If $\theta > 0$ and $M(x,y) \leq S_{\theta}(x,y)$ for all x,y > 0, then

$$\delta_{\phi}(A, B) \geq \delta_{\phi_{\theta}}(A, B) = \begin{cases} \frac{2}{|2 - \theta|} \|A^{\frac{2 - \theta}{2}} - B^{\frac{2 - \theta}{2}}\|_{HS} & \text{if } \theta \neq 2, \\ \|\log A - \log B\|_{HS} & \text{if } \theta = 2. \end{cases}$$

Theorem If $AB \neq BA$ and $\phi(x,y) \leq \phi_{\theta}(x,y)$ for all x,y > 0 with $x \neq y$, then, $\delta_{\phi}(A,B) \geq \delta_{\phi_{\theta}}(A,B)$.

• In the case $\theta = 2$ and $\phi(x, y) = M_G(x, y)^2$,

$$\|\log(A^{-1/2}BA^{-1/2})\|_{HS} \ge \|\log A - \log B\|_{HS}$$

(exponential metric increasing [Mostow, Bhatia, Bhatia-Holbrook])

• In the case $\theta = 2$ and $\phi(x, y) = M_A(x, y)^2$,

$$\delta_{M_{\mathcal{A}}^2}(A, B) \le \|\log A - \log B\|_{\mathcal{HS}}$$

(exponential metric decreasing)

• In the case $\theta = 1$,

$$\delta_{M_{\mathcal{G}}}(A,B) \ge \delta_{M_{\mathcal{L}}}(A,B) \ge 2\|A^{1/2} - B^{1/2}\|_{\mathcal{HS}} \ge \delta_{M_{\mathcal{A}}}(A,B)$$

Bogoliubov Wigner-Yanase Bures-Uhlmann

(square metric increasing/decreasing)

Unitarily invariant norms

For a unitarily invariant norm $|||\cdot|||$,

$$L_{\phi,||\cdot||\cdot||}(\gamma) := \int_0^1 |||\phi(\mathbf{L}_{\gamma(t)}, \mathbf{R}_{\gamma(t)})^{-1/2} \gamma'(t)||| dt,$$

 $\delta_{\phi,|||\cdot|||}(A,B) := \inf\{L_{\phi,|||\cdot|||}(\gamma) : \gamma \text{ is a } C^1 \text{ curve joining } A,B\}.$

 $(\mathbb{P}_n, \delta_{\phi, |||\cdot|||})$ is no longer a Riemannian manifold but a differential manifold of Finsler type. Many results above hold true even when $\|\cdot\|_{HS}$ is replaced by $|||\cdot|||$.

Let $\phi^{(k)}(x,y) := M^{(k)}(x,y)^{\theta}$, k = 1,2. To compare $L_{\phi^{(1)},|||\cdot|||}(\gamma)$ and $L_{\phi^{(2)},|||\cdot|||}(\gamma)$, the infinite divisibility of $M^{(1)}(x,y)/M^{(2)}(x,y)$ is crucial:

$$\left(\frac{M^{(1)}(e^t,1)}{M^{(2)}(e^t,1)}\right)^r$$

is positive definite on \mathbb{R} for any r > 0 [Bhatia-Kosaki, Kosaki].

5. Problems

- Want to prove the unique existence of geodesic shortest curve between $A, B \in \mathbb{P}_n$ with respect to K^{ϕ} .
- Need to study $(\mathcal{D}_n, K^{\phi})$ rather than (\mathbb{P}_n, K^{ϕ}) for applications to quantum information.

