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0. Motivation and introduction

Question?

For n x n positive definite matrices A, B and 0 <t < 1, the well-known
convergences of Lie-Trotter type are:

1/«

e lim((1—¢)A%+tB*) " =exp((1—t)log A+ tlogB),

a—0

1/

o lim (A #., B%)

a—0

= exp((1 —t)log A + tlog B).

What is the Riemannian geometry behind?

Can we explain these convergences in terms of Riemannian geometry?




Notation

e M, (the n x n complex matrices) is a Hilbert space with respect to
the Hilbert-Schmidt inner product (X,Y)pys := Tr X*Y.

H, (the n x n Hermitian matrices) is a real subspace of M,,,

>~ the Euclidean space R,

e P, (the n x n positive definite matrices) is an open subset of H,,,

a smooth differentiable manifold with TP, = H,,.

e D, (the n x n positive definite matrices of trace 1) is a smooth
differentiable submanifold of P, with TpD,, = {H € H,, : Tr H = 0}.

A Riemannian metric Kp(H, K) is a family of inner products on H,
depending smoothly on the foot point D € P,.




For D € P,,, write

LpX:=DX and RpX := XD, X € M,,.
Lp and Rp are commuting positive operators on (M,,, (-, -)us).
Statistical Riemannian metric [Mostow, Skovgaard,
Ohara-Suda-Amari, Lawson-Lim, Moakher, Bhatia-Holbrook]

gp(H,K):=TrD'HD 'K = (H,(LpRp) ' K)us

This is considered as a geometry on the Gaussian distributions pp with

zero mean and covariance matrix D. The Boltzmann entropy is

1
S(pp) = 5 log(det D) + const.

0? .
9D (H7 K) — 95Ot S(pD+sH—|—tK) (H6881an).

s=t=0




Congruence-invariant For any invertible X € M,,,

Geodesic curve

v(t) = A4 B = AY2(A7Y2BATY2) A2 (0 <t <1)

The geodesic midpoint v(1/2) is the geometric mean A# B

[Pusz-Woronowicz|.

Geodesic distance
§(A,B) = ||log(A™"2BA™"/?)||us

This is the so-called Thompson metric.




Monotone metrics [Petz]

KB(D) (ﬁ(X),ﬁ(Y)) < KD(X7 Y)

if 3 : M, — M,,, is completely positive and trace-preserving.

Theorem (Petz, 1996) There is a one-to-one correspondence:

{monotone metrics with Kp(I,1) =Tr D_l}

!

{operator monotone functions f : (0,00) — (0,00) with f(1) =

by
KL(X,Y) = (X,(3,) " V)us, I}, = f(LpR,)Rp.

K{) is symmetric (i.e. Kf( X,Y) = K{)(Y*,X*)) if and only if f is
symmetric, (i.e., zf(z~!) = f(z)).

A symmetric monotone metric is also called a quantum Fisher
information.




Theorem (Kubo-Ando, 1980) There is a one-to-one correspondence:

{operator means 0}

!

{operator monotone functions f : (0,00) — (0,00) with f(1) =1}

by

Aoy B=AY2f(A712BAT1/2)A1/2, A,BcP,.

o¢ is symmetric if and only if f is symmetric.




Quantum skew information

When 0 < p <1, the Wigner-Yanase-Dyson skew information is

IWYD(p K = —%Tr (DP, K][D'"?, K] = p(12—p) K7 (i|D, K],i[D, K])

for D € D,,, K € H,,, where f, is an operator monotone function:

(2~ 1)’
(o7 — (7 — 1)

fo(x) :=p(1 —p)

For each operator monotone function f that is regular (i.e.,
f(0) :=lim,\ o f(z) > 0), Hansen introduced the metric adjusted skew
information (or quantum skew information):

f(0)

I(K) = = K1 (i[D, K],i[D, K)), DeD,, KcH,.




Generalized covariance

For an operator monotone function f,

op|H, K] := (H,J K)ys, DeD,, HKcH, TrH=TrK =0,
¢ep|H, K| =Tr DHK if D and K are commuting.

Motivation The above quantities are Riemannian metrics in the form

k
K§(H,K) :=(H,¢(Lp, L) 'K)us = »_ ¢\, ;) ' Tr BHPK,

1,7=1

where D = Zle A; P; is the spectral decomposition, and the kernel
function ¢ : (0,00) x (0,00) — (0,00) is in the form

d(z,y) = M(z,y)°,

a degree 0 € R power of a certain mean M(z,y). A systematic study is
desirable, from the viewpoints of geodesic curves, scalar curvature,
information geometry, etc.




1. GGeodesic shortest curve and geodesic distance

Let 911y denote the set of smooth symmetric homogeneous means
M :(0,00) x (0,00) — (0,00) satisfying

M(z,y) = M(y,z),

M(ax,ay) = aM(x,y), a > 0,

M(z,y) is non-decreasing and smooth in z,y,
min{z,y} < M(x,y) < max{z,y}.

For M € 9, and 0 € R, define ¢(z,y) := M(z,y)’ and consider a
Riemannian metric on P,, given by

K%(H,K) := (H,¢(Lp,Rp) " K)us, DeP,, HKeH,.




When D = UDiag(Aq,...,\,)U”" is the diagonalization,

1
\/qb()‘za )‘J)

¢(LD,RD)1/2H=U< O(U*HU)>U*,

©J

o (U"HU)|

NCIEYRY) ] | L

K} (H, H) = ||¢(Lp, Rp) ™ H|lfs = H[
where o denotes the Schur product.

For a C! curve v:[0,1] — P,, the length of v is

K (7' (0,7 () dt = / |6(Ly ) Roy)) ™29 (1) s dit.
The geodesic distance between A, B is
04(A, B) :=inf {Ly(v) : v is a C' curve joining A, B} .

A geodesic shortest curve is a v joining A, B s.t. Ly(v) = d4(A, B) if exists.




When ¢(z,y) := M(z,y)? for M € My and § € R as above,

Theorem Assume A, B € P,, are commuting (i.e., AB = BA). Then,
independently of the choice of M € 91,, the following hold:

e The geodesic distance between A, B is

~ BT ||, if0#2,

e A geodesic shortest curve joining A, B is

(1-t)A™ +tB™ 7 )*7,
exp((1 —t)log A + tlog B),

(1) =

e If M(x,y) is an operator monotone mean and ¢ = 1, then
(1 —¢)AY? + tBl/Q)Q, 0 <t <1, is a unique geodesic shortest
curve joining A, B.




Theorem (P,, K?) is complete (i.e., the geodesic distance §,(A, B) is

complete) if and only if 6 = 2.

Proposition For every M € 9ty and A, B € P,, there exists a smooth
geodesic shortest curve for K? joining A, B whenever 6 is sufficiently

near 2 depending on M and A, B.




2. Characterizing isometric transformation

For N, M € My and k,0 € R, define v, ¢ : (0,00) x (0,00) — (0,00) by

Wz, y) == N(z,y)", d(z,y) = M(z,y)°,

and Riemannian metrics K%, K¢ by

K} (H,K) = (H,%(Lp,Rp) " K)us,
K}(H,K) == (H,¢(Lp,Rp) " K)us.

F :(0,00) — (0,00) is an onto smooth function such that F'(z) # 0 for all
x > 0.

Theorem When a > 0, the transformation D € P, — F(D) € P, is

isometric from (P,,a?K?) onto (P,, K¥) if and only if one of the
following (1°)—(5°) holds:




(1°) k=0=0and F(z) = azx, x > 0. (N, M are irrelevant; K¥ and K¢ are
the Euclidean metric.)

(2°) k=0, 0 +#0,2 and

F(z) =«

2—10

5 _ g 2/6
M(ajay)_< — ny@) ) $ay>0-

2 ztm oy
(N is irrelevant; K? is a pull-back of the Euclidean metric.)

(3°) k#£0,2, 0 =0 and

N(:U,’y) — (

(M is irrelevant.)




(4°) k,0 # 0,2 and

x>0 (c>01is a constant),

%)N(w’o‘,yo‘), z,y >0,
% —y

F(z)=cx™, x>0 (c>0is a constant),

x,y > 0.




3. T'wo kinds of isometric families of Riemannian metrics

For N € My, k € R\ {2}, 0 € R\ {0,2}, and o € R\ {0}, define

2/6
2—0 r—1Y 2—0 2_g\ K/0
NR,Q(Qjay) = ( " T 2.9 2_0 ) N(xz_'{a?JQ_'i) 3

2_5 xﬂ_yQ—m

No(z,y) := a<u)N(xo‘,y“), z,y > 0.

x(l_y(){

In particular, Ny y’s are Stolarsky means

2—0 20
S@($7y) = ( 9 | 29) )
_y D)

interpolating the following typical means:




(arithmetic mean),

Si(@,y) = My~(z,) i= (ﬁj v ) (root mean),

So(x,y) = gg So(z,y) = My (x,y) := logz : fogy (logarithmic mean),

Si(x,y) = Mg(x,y) = +/ry (geometric mean).

The metric corresponding to the root mean (called the Wigner-Yanase
metric) is a unique monotone metric that is a pull-back of the Euclidean

metric [Gibilisco-Isola].




Proposition

(a) For any N € My, k € R\ {2}, and 6 € R\ {0,2},

2(0—=r) 2—0 20\ K/0
Nyo(z,y) = S200-r) (%y)"(Q‘”)N(@”Q‘“»W‘*‘) :
2—k

gi_%Nﬁl,@(xvy) :ML(wvy)'
If0<k<0<2o0r 2<0<k, then N, c M.

(b) For any N € M, and o € R\ {0},
Na(2,y) = Sa—2a(z,y) " *N(z*,y*),
lim Ny (z,y) = My (x,y).

a—0

If 0 < a <1, then N, € 9.




For any N € 91,, the above theorem and proposition show:

e When «x > 0 and k # 2,

K N0 (k<0 <2o0r k>0>2)is a one-parameter isometric family of

° ° ° ° (oY ° 2
Riemannian metrics starting from K» and converging to KMt

0 — 2.
e When s = 2,

KNa (1 >« >0) is a one-parameter isometric family of Riemannian

as

metrics starting from KN® and converging to KM as a — 0.

Claim The metric Kt is an attractor among the Riemannian metrics
KM® (M € 9y, 0> 0).

The geodesic shortest curve for K My joining A, B € P, is
v4.B8(t) :=exp((1 —t)log A + tlog B) (0<t<]).
The geodesic distance between A, B with respect to K ML jg

opr2(A, B) := [|log A — log Bl|us.




Theorem Let N €91, and A, B € P,, be arbitrary.

(a) For the one-parameter family KN (0<k<O<2o0rk>0>2),
5N2’9(A7 B) = 0N~ (Akﬁa BF&,Q) - H logA - logBHHS ((9 — 2)7

where

2 2
0 (2—9) 0 (2—9)

(b) For the one-parameter family KV« (1> a > 0),

1
g (A, B) = = 632 (4%, BY) — ||log A — log Bllus (& \, 0),




Theorem Let N € 9y and A, B € P,, be arbitrary. In the following,
assume that geodesic shortest curves are always parametrized under

constant speed.

(a) If va, ,.B,,(t) is the geodesic shortest curve for K" joining

A, 9,B. 9, then the geodesic shortest curve for K N0 joining A, B is
9 ) g

_2 2=k
given by (%) o (VAK,Q,BR,Q(t)) o and

2—K

. 2—0\2%° =6
hm< > (WAK’Q,B%,Q(t)) =exp((1 —t)logA+tlogB) (0<t<1).

0—2\ 2 — K

(b) If y4o po(t) is the geodesic shortest curve for K™ joining A®, B*,
then the geodesic shortest curve for K N joining A, B is given by

1/«
(’YAa’Ba (t)) and

1/
1%(714@,3@(75)) =exp((1 —t)logA+tlogB) (0<t<1).




The above convergences for the geodesic shortest curves may be

considered as variations of the Lie-Trotter formula.

Examples

e When x =0, Nypg = Sp is the family of Stolarsky means. The

geodesic distance and the geodesic shortest curve for K i are

2

5Sg(fialg):: ’2___9’

HA¥ B B¥ HHS’

2

520 |47 = B 45 = lllog A — log B,

_2
2— 2—0

0 2—0
gin%((l—t)AT +tBT) = exp((1 —t)log A 4 tlog B).




¢ When N = Mg (geometric mean), K M is the statistical Riemannian

metric and N, (x,y) = oz(

=Y
xOé _ y@
distance and the geodesic shortest curve for K N are

)(xy)o‘/Q, z,y > 0. The geodesic

n2(A,B) = —5M2 (A%, B*) = || log(A™*/?B*A~*/2)1 ||,
va,8(t) = (A” #; B*)"/*.

We have

lim H log(A A—/2Bo A— O‘/2 1/a = ||log A — log B||lus (decreasing),

a—0

lus =
lim (A #, BY)Ye = exp((1 —t)log A + tlog B).

Remark When o is an operator mean corresponding to an operator

monotone function f and s:= f'(1),

lim (A% o B*)* = exp((1 — s) log A + slog B).

a—0




4. Comparison property

Theorem Let ¢V, ¢ : (0, 00) x (0,00) — (0,00) be smooth symmetric
kernel functions. The following conditions are equivalent:

(i) oW (x,y) < ¢ (x,y) for all =,y > 0;

(i) K (H,H)>K?% (H,H) forall DcP, and H € H,;
(iii) Ly () = Ly () for all C' curve v € Py;
(iv) 64, (A,B) > 64 (A, B) for all A, B € P,.

For example, for § € R, let ¢g(x,y) := So(z,y)? and ¢(x,y) :== M(z,y)’ with
M e My. If 6 >0 and M (x,y) § So(x,y) for all x,y > 0, then

29 2-9 .
mallA =B |las if 6 #2
| log A — log B||us if 6 = 2.

04(A, B) Z 04, (A, B) =




Theorem If AB # BA and ¢(z,y) S ¢g(z,y) for all z,y > 0 with x # vy,
then, 5¢(A,B) 2 5¢9 (A,B)
e In the case 0 =2 and ¢(z,y) = Mq(x,y)?,
|log(A™2BA™?)|lus > || log A — log Bl|us

(exponential metric increasing [Mostow, Bhatia, Bhatia-Holbrook])

e In the case § =2 and ¢(x,y) = MA(ZU,y)Qa

5M§ (A, B) < ||log A — log B||us

(exponential metric decreasing)
e In the case 0 =1,
Snio (A, B) 2 8, (A, B) 2 2| A2 — BY?||ys > du, (A, B)

Bogoliubov Wigner-Yanase Bures-Uhlmann

(square metric increasing/decreasing)




Unitarily invariant norms

For a unitarily invariant norm ||| ]

011111 (A, B) 1= inf{L¢,|||.|||(fy) : v is a C! curve joining A, B}.

(PP, 0,11111) is no longer a Riemannian manifold but a differential
manifold of Finsler type. Many results above hold true even when || - ||gs

is replaced by ||| - |||

Let ¢(®)(z,y) .= M®)(z,4)%, k =1,2. To compare Ly jy1.(v) and
Ly jj.1(7), the infinite divisibility of M1 (z,y)/M® (z,y) is crucial:

M@ (et 1))
M@ (et, 1)

is positive definite on R for any r > 0 [Bhatia-Kosaki, Kosaki].




5. Problems

e Want to prove the unique existence of geodesic shortest curve
between A, B € P,, with respect to K.

e Need to study (D,,, K?) rather than (P,, K?) for applicatioins to
quantum information.




Thank you for your attention.




