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0. Motivation and introduction

Question?

For n × n positive definite matrices A,B and 0 < t < 1, the well-known
convergences of Lie-Trotter type are:

• lim
α→0

(
(1 − t)Aα + tBα

)1/α = exp((1 − t) log A + t log B),

• lim
α→0

(
Aα #α Bα

)1/α = exp((1 − t) log A + t log B).

What is the Riemannian geometry behind?

Can we explain these convergences in terms of Riemannian geometry?
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Notation

• Mn (the n × n complex matrices) is a Hilbert space with respect to
the Hilbert-Schmidt inner product 〈X,Y 〉HS := TrX∗Y .

• Hn (the n × n Hermitian matrices) is a real subspace of Mn,
∼= the Euclidean space Rn2

.

• Pn (the n × n positive definite matrices) is an open subset of Hn,

a smooth differentiable manifold with TDPn = Hn.

• Dn (the n × n positive definite matrices of trace 1) is a smooth
differentiable submanifold of Pn with TDDn = {H ∈ Hn : TrH = 0}.

A Riemannian metric KD(H,K) is a family of inner products on Hn

depending smoothly on the foot point D ∈ Pn.
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For D ∈ Pn, write

LDX := DX and RDX := XD, X ∈ Mn.

LD and RD are commuting positive operators on (Mn, 〈·, ·〉HS).

Statistical Riemannian metric [Mostow, Skovgaard,
Ohara-Suda-Amari, Lawson-Lim, Moakher, Bhatia-Holbrook]

gD(H,K) := Tr D−1HD−1K = 〈H, (LDRD)−1K〉HS

This is considered as a geometry on the Gaussian distributions pD with
zero mean and covariance matrix D. The Boltzmann entropy is

S(pD) =
1
2

log(det D) + const.

and

gD(H,K) =
∂2

∂s∂t
S(pD+sH+tK)

∣∣∣∣
s=t=0

(Hessian).
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Congruence-invariant For any invertible X ∈ Mn,

gXDX∗(XHX∗, XKX∗) = gD(H,K)

Geodesic curve

γ(t) = A#t B := A1/2(A−1/2BA−1/2)tA1/2 (0 ≤ t ≤ 1)

The geodesic midpoint γ(1/2) is the geometric mean A # B

[Pusz-Woronowicz].

Geodesic distance

δ(A,B) = ∥ log(A−1/2BA−1/2)∥HS

This is the so-called Thompson metric.
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Monotone metrics [Petz]

Kβ(D)(β(X), β(Y )) ≤ KD(X,Y )

if β : Mn → Mm is completely positive and trace-preserving.

Theorem (Petz, 1996) There is a one-to-one correspondence:{
monotone metrics with KD(I, I) = Tr D−1

}
↕{

operator monotone functions f : (0,∞) → (0,∞) with f(1) = 1
}

by
Kf

D(X,Y ) = 〈X, (Jf
D)−1Y 〉HS, Jf

D := f(LDR−1
D )RD.

Kf
D is symmetric (i.e., Kf

D(X,Y ) = Kf
D(Y ∗, X∗)) if and only if f is

symmetric, (i.e., xf(x−1) = f(x)).

A symmetric monotone metric is also called a quantum Fisher
information.
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Theorem (Kubo-Ando, 1980) There is a one-to-one correspondence:{
operator means σ

}
↕{

operator monotone functions f : (0,∞) → (0,∞) with f(1) = 1
}

by

Aσf B = A1/2f(A−1/2BA−1/2)A1/2, A,B ∈ Pn.

σf is symmetric if and only if f is symmetric.
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Quantum skew information

When 0 < p < 1, the Wigner-Yanase-Dyson skew information is

IWYD
D (p,K) := −1

2
Tr [Dp,K][D1−p,K] =

p(1 − p)
2

K
fp

D (i[D,K], i[D,K])

for D ∈ Dn, K ∈ Hn, where fp is an operator monotone function:

fp(x) := p(1 − p)
(x − 1)2

(xp − 1)(x1−p − 1)
.

For each operator monotone function f that is regular (i.e.,
f(0) := limx↘0 f(x) > 0), Hansen introduced the metric adjusted skew
information (or quantum skew information):

If
D(K) :=

f(0)
2

Kf
D(i[D,K], i[D,K]), D ∈ Dn, K ∈ Hn.
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Generalized covariance

For an operator monotone function f ,

ϕD[H,K] := 〈H,Jf
DK〉HS, D ∈ Dn, H,K ∈ Hn,TrH = TrK = 0,

ϕD[H,K] = TrDHK if D and K are commuting.

Motivation The above quantities are Riemannian metrics in the form

Kφ
D(H,K) := 〈H,φ(LD,LR)−1K〉HS =

k∑
i,j=1

φ(λi, λj)−1TrPiHPjK,

where D =
∑k

i=1 λiPi is the spectral decomposition, and the kernel
function φ : (0,∞) × (0,∞) → (0,∞) is in the form

φ(x, y) = M(x, y)θ,

a degree θ ∈ R power of a certain mean M(x, y). A systematic study is
desirable, from the viewpoints of geodesic curves, scalar curvature,
information geometry, etc.
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1. Geodesic shortest curve and geodesic distance

Let M0 denote the set of smooth symmetric homogeneous means
M : (0,∞) × (0,∞) → (0,∞) satisfying

• M(x, y) = M(y, x),

• M(αx, αy) = αM(x, y), α > 0,

• M(x, y) is non-decreasing and smooth in x, y,

• min{x, y} ≤ M(x, y) ≤ max{x, y}.

For M ∈ M0 and θ ∈ R, define φ(x, y) := M(x, y)θ and consider a
Riemannian metric on Pn given by

Kφ
D(H,K) := 〈H,φ(LD,RD)−1K〉HS, D ∈ Pn, H,K ∈ Hn.

11



When D = UDiag(λ1, . . . , λn)U∗ is the diagonalization,

φ(LD,RD)−1/2H = U

([
1√

φ(λi, λj)

]
ij

◦ (U∗HU)

)
U∗,

Kφ
D(H,H) = ∥φ(LD,RD)−1/2H∥2

HS =

∥∥∥∥∥
[

1√
φ(λi, λj)

]
ij

◦ (U∗HU)

∥∥∥∥∥
2

HS

,

where ◦ denotes the Schur product.

For a C1 curve γ : [0, 1] → Pn, the length of γ is

Lφ(γ) :=
∫ 1

0

√
Kφ

γ(t)(γ
′(t), γ′(t)) dt =

∫ 1

0

∥φ(Lγ(t),Rγ(t))−1/2γ′(t)∥HS dt.

The geodesic distance between A,B is

δφ(A, B) := inf
{
Lφ(γ) : γ is a C1 curve joining A,B

}
.

A geodesic shortest curve is a γ joining A,B s.t. Lφ(γ) = δφ(A,B) if exists.
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When φ(x, y) := M(x, y)θ for M ∈ M0 and θ ∈ R as above,

Theorem Assume A, B ∈ Pn are commuting (i.e., AB = BA). Then,
independently of the choice of M ∈ M0, the following hold:

• The geodesic distance between A,B is

δφ(A,B) =

 2
|2−θ|

∥∥A
2−θ
2 − B

2−θ
2

∥∥
HS

if θ ̸= 2,

∥ log A − log B∥HS if θ = 2,

• A geodesic shortest curve joining A,B is

γ(t) :=


(
(1 − t)A

2−θ
2 + tB

2−θ
2

) 2
2−θ , 0 ≤ t ≤ 1 if θ ̸= 2,

exp((1 − t) log A + t log B), 0 ≤ t ≤ 1 if θ = 2,

• If M(x, y) is an operator monotone mean and θ = 1, then
γ(t) =

(
(1 − t)A1/2 + tB1/2

)2
, 0 ≤ t ≤ 1, is a unique geodesic shortest

curve joining A,B.

13



Theorem (Pn,Kφ) is complete (i.e., the geodesic distance δφ(A, B) is
complete) if and only if θ = 2.

Proposition For every M ∈ M0 and A,B ∈ Pn there exists a smooth
geodesic shortest curve for Kφ joining A,B whenever θ is sufficiently
near 2 depending on M and A,B.
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2. Characterizing isometric transformation

For N,M ∈ M0 and κ, θ ∈ R, define ψ, φ : (0,∞) × (0,∞) → (0,∞) by

ψ(x, y) := N(x, y)κ, φ(x, y) := M(x, y)θ,

and Riemannian metrics Kψ,Kφ by

Kψ
D(H,K) := 〈H,ψ(LD,RD)−1K〉HS,

Kφ
D(H,K) := 〈H,φ(LD,RD)−1K〉HS.

F : (0,∞) → (0,∞) is an onto smooth function such that F ′(x) ̸= 0 for all
x > 0.

Theorem When α > 0, the transformation D ∈ Pn 7→ F (D) ∈ Pn is
isometric from (Pn, α2Kφ) onto (Pn,Kψ) if and only if one of the
following (1◦)–(5◦) holds:
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(1◦) κ = θ = 0 and F (x) = αx, x > 0. (N,M are irrelevant; Kψ and Kφ are
the Euclidean metric.)

(2◦) κ = 0, θ ̸= 0, 2 and

F (x) = α

∣∣∣∣ 2
2 − θ

∣∣∣∣ x
2−θ
2 , x > 0,

M(x, y) =

(
2 − θ

2
· x − y

x
2−θ
2 − y

2−θ
2

)2/θ

, x, y > 0.

(N is irrelevant; Kφ is a pull-back of the Euclidean metric.)

(3◦) κ ̸= 0, 2, θ = 0 and

F (x) =
(

α

∣∣∣∣2 − κ

2

∣∣∣∣ x

) 2
2−κ

, x > 0,

N(x, y) =

(
2 − κ

2
· x − y

x
2−κ

2 − y
2−κ

2

)2/κ

, x, y > 0.

(M is irrelevant.)
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(4◦) κ, θ ̸= 0, 2 and

F (x) =
(

α

∣∣∣∣2 − κ

2 − θ

∣∣∣∣) 2
2−κ

x
2−θ
2−κ , x > 0,

M(x, y) =

(
2 − θ

2 − κ
· x − y

x
2−θ
2−κ − y

2−θ
2−κ

)2/θ

N
(
x

2−θ
2−κ , y

2−θ
2−κ

)κ/θ

, x, y > 0.

(5◦) κ = θ = 2 and

F (x) = cxα, x > 0 (c > 0 is a constant),

M(x, y) = α

(
x − y

xα − yα

)
N

(
xα, yα

)
, x, y > 0,

or

F (x) = cx−α, x > 0 (c > 0 is a constant),

M(x, y) = α

(
x − y

y−α − x−α

)
N

(
x−α, y−α

)
, x, y > 0.
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3. Two kinds of isometric families of Riemannian metrics

For N ∈ M0, κ ∈ R \ {2}, θ ∈ R \ {0, 2}, and α ∈ R \ {0}, define

Nκ,θ(x, y) :=

(
2 − θ

2 − κ
· x − y

x
2−θ
2−κ − y

2−θ
2−κ

)2/θ

N
(
x

2−θ
2−κ , y

2−θ
2−κ

)κ/θ

,

Nα(x, y) := α

(
x − y

xα − yα

)
N

(
xα, yα

)
, x, y > 0.

In particular, N0,θ’s are Stolarsky means

Sθ(x, y) :=

(
2 − θ

2
· x − y

x
2−θ
2 − y

2−θ
2

)2/θ

,

interpolating the following typical means:
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S−2(x, y) = MA(x, y) :=
x + y

2
(arithmetic mean),

S1(x, y) = M√ (x, y) :=
(√

x +
√

y

2

)2

(root mean),

S2(x, y) := lim
θ→2

Sθ(x, y) = ML(x, y) :=
x − y

log x − log y
(logarithmic mean),

S4(x, y) = MG(x, y) :=
√

xy (geometric mean).

The metric corresponding to the root mean (called the Wigner-Yanase
metric) is a unique monotone metric that is a pull-back of the Euclidean
metric [Gibilisco-Isola].
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Proposition

(a) For any N ∈ M0, κ ∈ R \ {2}, and θ ∈ R \ {0, 2},

Nκ,θ(x, y) = S 2(θ−κ)
2−κ

(x, y)
2(θ−κ)
θ(2−κ) N

(
x

2−θ
2−κ , y

2−θ
2−κ

)κ/θ

,

lim
θ→2

Nκ,θ(x, y) = ML(x, y).

If 0 ≤ κ ≤ θ < 2 or 2 < θ ≤ κ, then Nκ,θ ∈ M0.

(b) For any N ∈ M0 and α ∈ R \ {0},

Nα(x, y) = S2−2α(x, y)1−αN(xα, yα),

lim
α→0

Nα(x, y) = ML(x, y).

If 0 < α ≤ 1, then Nα ∈ M0.
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For any N ∈ M0, the above theorem and proposition show:

• When κ ≥ 0 and κ ̸= 2,

KNθ
κ,θ (κ ≤ θ < 2 or κ ≥ θ > 2) is a one-parameter isometric family of

Riemannian metrics starting from KNκ

and converging to KM2
L as

θ → 2.

• When κ = 2,

KN2
α (1 ≥ α > 0) is a one-parameter isometric family of Riemannian

metrics starting from KN2
and converging to KM2

L as α → 0.

Claim The metric KM2
L is an attractor among the Riemannian metrics

KMθ

(M ∈ M0, θ ≥ 0).

The geodesic shortest curve for KM2
L joining A,B ∈ Pn is

γA,B(t) := exp((1 − t) log A + t log B) (0 ≤ t ≤ 1).

The geodesic distance between A,B with respect to KM2
L is

δM2
L
(A,B) := ∥ log A − log B∥HS.
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Theorem Let N ∈ M0 and A,B ∈ Pn be arbitrary.

(a) For the one-parameter family KNθ
κ,θ (0 ≤ κ ≤ θ < 2 or κ ≥ θ > 2),

δNθ
κ,θ

(A,B) = δNκ(Ak,θ, Bκ,θ) −→ ∥ log A − log B∥HS (θ → 2),

where

Aκ,θ :=
(

2 − κ

2 − θ

) 2
2−κ

A
2−θ
2−κ , Bκ,θ :=

(
2 − κ

2 − θ

) 2
2−κ

B
2−θ
2−κ .

(b) For the one-parameter family KN2
α (1 ≥ α > 0),

δN2
α
(A,B) =

1
α

δN2(Aα, Bα) −→ ∥ log A − log B∥HS (α ↘ 0).
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Theorem Let N ∈ M0 and A,B ∈ Pn be arbitrary. In the following,
assume that geodesic shortest curves are always parametrized under
constant speed.

(a) If γAκ,θ,Bκ,θ
(t) is the geodesic shortest curve for KNκ

joining

Aκ,θ, Bκ,θ, then the geodesic shortest curve for KNθ
κ,θ joining A, B is

given by
(

2−θ
2−κ

) 2
2−θ

(
γAκ,θ,Bκ,θ

(t)
) 2−κ

2−θ

and

lim
θ→2

(
2 − θ

2 − κ

) 2
2−θ (

γAκ,θ,Bκ,θ
(t)

) 2−κ
2−θ

= exp((1 − t) log A + t log B) (0 ≤ t ≤ 1).

(b) If γAα,Bα(t) is the geodesic shortest curve for KN2
joining Aα, Bα,

then the geodesic shortest curve for KN2
α joining A,B is given by(

γAα,Bα(t)
)1/α

and

lim
α↘0

(
γAα,Bα(t)

)1/α

= exp((1 − t) log A + t log B) (0 ≤ t ≤ 1).
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The above convergences for the geodesic shortest curves may be
considered as variations of the Lie-Trotter formula.

Examples

• When κ = 0, N0,θ = Sθ is the family of Stolarsky means. The
geodesic distance and the geodesic shortest curve for KSθ

θ are

δSθ
θ
(A, B) =

2
|2 − θ|

∥∥A
2−θ
2 − B

2−θ
2

∥∥
HS

,

γA,B(t) =
(
(1 − t)A

2−θ
2 + tB

2−θ
2

) 2
2−θ

.

We have

lim
θ→2

2
|2 − θ|

∥∥A
2−θ
2 − B

2−θ
2

∥∥
HS

= ∥ log A − log B∥HS,

lim
θ→2

(
(1 − t)A

2−θ
2 + tB

2−θ
2

) 2
2−θ

= exp((1 − t) log A + t log B).
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• When N = MG (geometric mean), KM2
G is the statistical Riemannian

metric and Nα(x, y) = α

(
x − y

xα − yα

)
(xy)α/2, x, y > 0. The geodesic

distance and the geodesic shortest curve for KN2
α are

δN2
α
(A,B) =

1
α

δM2
G
(Aα, Bα) =

∥∥ log(A−α/2BαA−α/2)1/α
∥∥

HS
,

γA,B(t) = (Aα #t Bα)1/α.

We have

lim
α→0

∥∥ log(A−α/2BαA−α/2)1/α
∥∥

HS
= ∥ log A − log B∥HS (decreasing),

lim
α→0

(Aα #t Bα)1/α = exp((1 − t) log A + t log B).

Remark When σ is an operator mean corresponding to an operator
monotone function f and s := f ′(1),

lim
α→0

(Aα σ Bα)1/α = exp((1 − s) log A + s log B).
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4. Comparison property

Theorem Let φ(1), φ(2) : (0,∞) × (0,∞) → (0,∞) be smooth symmetric
kernel functions. The following conditions are equivalent:

(i) φ(1)(x, y) ≤ φ(2)(x, y) for all x, y > 0;

(ii) Kφ(1)

D (H,H) ≥ Kφ(2)

D (H,H) for all D ∈ Pn and H ∈ Hn;

(iii) Lφ(1)(γ) ≥ Lφ(2)(γ) for all C1 curve γ ∈ Pn;

(iv) δφ(1)(A,B) ≥ δφ(2)(A,B) for all A,B ∈ Pn.

For example, for θ ∈ R, let φθ(x, y) := Sθ(x, y)θ and φ(x, y) := M(x, y)θ with
M ∈ M0. If θ > 0 and M(x, y) Q Sθ(x, y) for all x, y > 0, then

δφ(A,B) R δφθ
(A,B) =

 2
|2−θ|∥A

2−θ
2 − B

2−θ
2 ∥HS if θ ̸= 2,

∥ log A − log B∥HS if θ = 2.
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Theorem If AB ̸= BA and φ(x, y) ≶ φθ(x, y) for all x, y > 0 with x ̸= y,
then, δφ(A,B) ≷ δφθ

(A,B).

• In the case θ = 2 and φ(x, y) = MG(x, y)2,

∥ log(A−1/2BA−1/2)∥HS ≥ ∥ log A − log B∥HS

(exponential metric increasing [Mostow, Bhatia, Bhatia-Holbrook])

• In the case θ = 2 and φ(x, y) = MA(x, y)2,

δM2
A
(A, B) ≤ ∥ log A − log B∥HS

(exponential metric decreasing)

• In the case θ = 1,

δMG(A,B) ≥ δML(A,B) ≥ 2∥A1/2 − B1/2∥HS ≥ δMA(A,B)

Bogoliubov Wigner-Yanase Bures-Uhlmann

(square metric increasing/decreasing)
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Unitarily invariant norms

For a unitarily invariant norm ||| · |||,

Lφ,|||·|||(γ) :=
∫ 1

0

|||φ(Lγ(t),Rγ(t))−1/2γ′(t)||| dt,

δφ,|||·|||(A, B) := inf{Lφ,|||·|||(γ) : γ is a C1 curve joining A,B}.

(Pn, δφ,|||·|||) is no longer a Riemannian manifold but a differential
manifold of Finsler type. Many results above hold true even when ∥ · ∥HS

is replaced by ||| · |||.

Let φ(k)(x, y) := M (k)(x, y)θ, k = 1, 2. To compare Lφ(1),|||·|||(γ) and
Lφ(2),|||·|||(γ), the infinite divisibility of M (1)(x, y)/M (2)(x, y) is crucial:(

M (1)(et, 1)
M (2)(et, 1)

)r

is positive definite on R for any r > 0 [Bhatia-Kosaki, Kosaki].
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5. Problems

• Want to prove the unique existence of geodesic shortest curve
between A,B ∈ Pn with respect to Kφ.

• Need to study (Dn, Kφ) rather than (Pn, Kφ) for applicatioins to
quantum information.
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Thank you for your attention.
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