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Introduction

Algebraic geometry increasingly used to study the structure of
discrete multivariate statistical models.

Discrete graphical models e.g. Bayesian Networks especially useful.

For many families of graphical model, each atomic probability in the
joint pmf is a polynomial in certain "primitive" conditional
probabilities.

Inferring primitive probabilities from seeing the values of the marginal
mass function of a measurable function then corresponds to the
inverse map of a corresponding set of polynomials taking this value.

Well known examples include the relationship between decomposable
graphical models to toric ideals (see e.g. Garcia et al, 2005) and
binary phylogenetic tree models and their semi algebraic
characterisations, in terms of Mobius inversions and
hyperdeterminants (see e.g. Zwiernik and Smith,2010).
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A Typical example of a Binary Tree Model (Settimi and
Smith,1998)

X1 X2 X3
- " %

H

Xi = �1, 1, i = 1, 2, 3
H = �1, 1

Form an algebraic point of view model on margin (X1,X2,X3)
saturated.(dim 7)

However e.g. when µ1 = µ2 = µ3 then

�
1� µ2H

�
µ2123 � 4µ2Hµ12µ23µ13 = 0

Probabilities real and in [0, 1])e.g µ12µ23µ13 > 0 and jµ123j � 4
3
p
3
.

Also observed means µ1, µ2, µ3 induce further inequalily constraints.
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More General Trees (Settimi and Smith,2000)

X1 X2 X3
- " %

H ! X4

Xi = �1, 1, i = 1, 2, 3, 4
H = �1, 1

This must now satisfy equations reducing dimension of
(X1,X2,X3,X4).

We lose 6 dimensions and demand moments satisfy 5 quadratic
equations e.g.

µ12µ34 � µ14µ23 = 0

and a quartic.

Many other inequality constraints exist.

Now marginals on binary phylogenetic trees fully characterized Allman
and Rhodes(2010), Zwiernik and Smith(2010,2010a)
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Contents of this talk

Today I will focus on a di¤erent class of graphical model based on event
trees. They are a much richer class of models than the BN and so support
much more varied polynomial forms in their algebraic formulations.

De�nition of an event tree and a chain event graph (CEG).

Their corresponding polynomial representation.

Inferential questions asked of the CEG.

Causal questions associated with the CEG.

Future challenges.
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Advantages of an Event Tree

The most natural expression of a model describing how things happen.

Does not need a preferred set of measurement variables a priori.

Explicitly represents the event space of a model, e.g. levels of
variables.

Asymmetries of the model space explicitly represented.

Framework for probabilistic embellishment and algebraic descriptions.

Causal hypotheses much more richly expressed than in their BN
analogues.
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Example of an Event Tree

die full recovery
v7 v11

% survive %
up v3 ! v8|{z} ! v12

hostile % partial
v0 ! v1 ! v4 ! v10

& down & die full recovery
benign v2 v9|{z} ! v13

# & up survive &
down v6 v5 v14

partial
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Chain Event Graphs

Typically topologically much simpler than event trees but still
describe how things happen.

Their paths represent fully the structure of the sample space.

Expresses rich variety of dependence structures to be graphically
queried.

Embellishes to a probability model and its associated algebraic rep.

Like BNs provides a framework for fast propagation and conjugate
learning.

Almost as expressive of causal hypotheses as the event tree.
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Constructing a CEG

Event tree ! Staged tree ! CEG [by positions and stages]

Start with an event tree

Convert it into a staged tree

Then transform into a chain event graph by pooling positions and
stages together.
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Example of an Event Tree

die full recovery
v7 v11

% survive %
up v3 ! v8|{z} ! v12

hostile % partial
v0 ! v1 ! v4 ! v10

& down & die full recovery
benign v2 v9|{z} ! v13

# & up survive &
down v6 v5 v14

partial
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Example of a CEG

Elicit stages: i.e. partition of situations with the same associated
distribution

u0 = fv0g, u1 = fv1, v2g, u2 = fv3, v4g,
u3 = fv8, v9g, u∞ = fleavesg

Deduce positions: i.e. partition of situations with subsequent
isomorphic trees

w0 = fv0g,w1 = fv1g,w2 = fv2g,w3 = fv3, v4g,
w4 = fv8, v9g,w∞ = fleavesg

Each position has an associated �oret: that position and its
emanating edges.
Edges in �orets of positions in the same stage are colored to convey
isomorphism.
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Example of a CEG

Draw CEG with vertices as positions colour stages.

w3(3, 4)
+ %%� #survive &

w1(1) w4(8, 9) � w∞
hostile " + %%�
w0(0) ! w2(2)
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Properties of CEG�s - Smith and Anderson(2008)

Theorem
If the random variables X1,X2, . . . ,Xn with known sample spaces are fully
expressed as a BN, G, or as a context speci�c BN G, and you know its
CEG, C, then the random variables X1,X2, . . . ,Xn and all their conditional
independence structure together with their sample spaces can be retrieved
from C.

Theorem
Downstream q Upstreamj w�Cut

� � � � � ! �
% % % & &&

� � � � � ! � � � � �
& % & % %

� ! � � � ! �
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Probabilities on the gene CEG

Embellish a CEG with probabilities just as in a tree.

Note that the positions in the same stage have the same associated
edge probabilities.

Probabilities of atoms calculated by producting up edge probabilities
on each root to leaf path.

w3(3, 4)
π11 %%π12 #π22 π21 &

w1(1) w4(8, 9)
π31
π32 � w∞

π01 " π11 %%π12

w0(0) π02 ! w2(2)
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Probabilities and Algebra of CEG�s

Each stage u has an associated simplex of probabilities
fπi ,u : 1 � i � lugassociated with its emanating edges in the CEG.
In our example lu = 2 and the root to sink probabilities are given by

p(v5) = π02π21 p(v6) = π02π11
p(v7) = π01π11π21 p(v10) = π01π12π21

p(v11) = π01π11π22π31 p(v12) = π01π11π22π32
p(v13) = π01π12π22π32 p(v14) = π01π12π22π31

The probability of learning the margin of a random variable on this
space is to learn about some sums of these monomials. Note that the
8�vector of atomic probabilities is constrained to lie in a 4 (rather
than 7) dimensional space.

Unlike the BN of the generating monomials need not be multilinear or
homogeneous - in above they range from degree 2 to 4.
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Manifest polynomials, identi�ability and independence

Conditional independences appear as usual in terms of factorization.
Thus

π�121 (p(v5), p(v10), p(v14), p(v13))

= π�111 (p(v6), p(v7), p(v11), p(v12))

= (π02,π01π21,π01π22π31,π01π22π32)

so that under the appropriate identi�cation of events (as can be read
from the CEG)

X (�)ä rest

Now suppose we learn the distribution of a variable determining
whether or not the organism survives unharmed. This probability is
simply the value of a polynomial: π02 + π01π22π31. The �ats of this
polynomial within the model space above, de�ne the conditioned
model space.
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Causal Bayesian Networks

Recall that for causal BNs

Variables not downstream of X , a manipulated node, are una¤ected by
the manipulation.
X is set to the manipulated value x̂ with probability 1.
E¤ect on downstream variables is identical to ordinary conditioning.

But many manipulations don�t follow these rules, e.g. �Whenever a
unit is in set A of positions, take it to another position B�.

Recently the algebraic formulation of causal models has been studied.
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Causal CEGs

This can be implemented on a CEG by making paths through a
position w pass along a designated edge to a designated position w 0,
retaining all other �oret distributions elsewhere.

Similarly to Bayesian Networks:

Probabilities of edges not after w are unchanged.
An edge from w to w 0 forces w 0 after w .
Downstream probabilities after w 0 are unchanged.

Generalizations of Pearl�s Backdoor Theorem can be proven Thwaites
et al(2010).

Uses topology of the CEG to determine when the Bayes estimate of the
e¤ect of a manipulation is consistent, given partially observed data
from the corresponding unmanipulated CEG.
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An example of a causal CEG

Control: we plan to ensure gene is up regulated if in a hostile environment.

up w3(3, 4)
hostile 1 % #π22 π21 &
w1(1) w4(8, 9)

π31
π32 � w∞

π01 " π11 %%π12

w0(0) π02 ! w2(2)

Now probability in the controlled system of being up regulated and dying
is

p�(v7) = π01π21

In the uncontrolled system it is

p(v7) = π01π11π21

Often probabilities in a controlled system have a degree lower than in the
unmanipulated system.
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An example of a causal CEG

Here we plan to ensure gene is up regulated if in a hostile
environment the root to sink probabilities are given by

p�(v5) = π02π21 p�(v6) = π02π11
p�(v7) = π01π21 p�(v10) = 0

p�(v11) = π01π22π31 p�(v12) = π01π11π22π32
p�(v13) = 0 p�(v14) = 0

Now suppose we want to estimate the probability of surviving
unharmed if we force the gene to be up regulated if it is in a hostile
environment. Then the probability that this occurs is

p�(v5) + p�(v6) + p�(v11) = π02 + π01π22π31

Note that this is the probability it would have survived if we did not
control the environment. So we can identify this probability by
observing the idle system.
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Concluding Remarks

The geometry of moderate dimensional polynomials is relatively well
understood but only now being exploited to understand discrete
statistical graphical models.

In large problems, identi�ability functions of parameters - like causal
functions - as well as the inverse image of these observed functions
when there is no identi�ability, are giving valuable insight into
reliability of estimation techniques and robustness of statistical
inferences - especially in a Bayesian domain. We can see where the
problems are!

Two challenges in exploiting algebraic geometry for discrete statistical
modeling are:

1 Many results in algebraic geometry apply over polynomials over the
complex �eld.

2 Probabilities are positive and sum to one. The �rst issue demands a
semi-algebraic rather than algebraic description.

THANK YOU FOR YOUR ATTENTION!!
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Formal de�nitions of stages and positions

Two nodes v , v 0 are in the same stage u exactly when X (v),X (v 0)
have the same distribution under a bijection ψu(v , v

0), where

ψu(v , v
0) : X(v) = E (F (v , T )) �! X(v 0) = E (F (v 0, T ))

In other words, the two nodes have identical probability distributions
on their edges.

Two nodes v , v 0 are in the same position w exactly when there exists
a bijection φw (v , v

0) from Λ(v ,T ), the set of paths in the tree from
v to a leaf node, to Λ(v 0,T ),the set of paths from v 0 to a leaf node,
such that all edges in all the paths are coloured, and that the
sequence of colors in any path is the same as that in the path under
the bijection.
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Formal de�nition of a staged tree

A staged tree is a tree with stage set L(T ) and edges coloured as
follows:

When v 2 u 2 L(T ), but u contains only one node, all edges
emanating from v are left uncoloured
When u contains more than one node, all edges emanating from v are
coloured, such that two edges e(v , v�), e(v 0, v 0�) have the same
colour if and only if ψu(e(v , v�)) = e(v 0, v 0�)
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Formal De�nition of a Probability Graph

The probability graph of a staged tree is a directed graph, possibly
with some coloured edges. Each node represents a set of nodes from
the probability tree in the same position in the staged tree

Its edges are constructed as follows:

For each position w , choose a representative node v(w). For each
edge from v(w) to v 0(w 0), construct a single edge e(w ,w 0), where
w 0 = w∞ if v 0 is a leaf node in the tree; otherwise w 0 is the position of
v 0.
The colour of the edge is the colour of the edge between v and v 0.

So the number of edges in the probability tree is the same as in the
staged tree.
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A formal de�nition of the CEG

The chain event graph is the mixed graph with

the same nodes as the probability graph;
the same directed edges as the probability graph; and
undirected edges drawn between di¤erent positions that are at the
same stage

The colors of the edges are also inherited from the probability graph

Jim Smith (Warwick) Chain Event Graphs August 2010 26 / 31



Conjugate Bayesian Inference on CEG�s

Because the likelihood separates, the class of regular CEG�s admits
simple conjugate learning.

Explicitly the likelihood under complete random sampling is given by

l(π) = ∏
u2U

lu(πu)

lu(πu) = ∏
i2u

π
x (i ,u)
i ,u

where x(i , u) is the number of units entering stage u and proceeding
along edge labelled (i , u). and ∑i πu,i = 1

Independent Dirichlet priors D(α(u)) on the vectors πu leads to
independent Dirichlet D(α�(u)) posteriors where

α�(i , u) = α(i , u) + x(i , u)
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Conjugate Bayesian Inference on CEG�s

Prior stage �oret independence is a generalisation of local and global
independence in BNs. Just as in Geiger and Heckerman(1997), �oret
independence, together with appropriate Markov equivalence
characterises this product Dirichlet prior (see Freeman and Smith,
2009)

Just like for BNs, non - ancestral sampling of a CEG data destroys
conjugacy, but inference is no more di¢ cult than for a BN
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Learning the topology of a CEG

.

Choosing appropriate priors on model space and modular parameter
priors over CEGs, for any CEG log marginal likelhood score is linear in
stage components.

Explicitly for α = (α1, . . . , αk ), let s(α) = log Γ(∑k
i=1 αi ) and

t(α) = ∑k
i=1 log Γ(αi )

Ψ(C ) = log p(C ) = ∑
u2C

Ψu(c )

Ψu(c ) = ∑ s(α(i , u))� s(α�(i , u)) + t�(α(i , u))� t(α(i , u))

Conjugacy and linearity implies e.g. MAP model selection using AHC
or weighted MAX SAT is simple and fast over the albeit vast space
class of CEG�s (see Freeman and Smith,2009).
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Challenges in searching for a CEG

.

CEG Search space of substantive problems is huge (orders of
magnitude > for BNs).

However rationale behind the CEG helps design of intelligent search
procedures.

Often contextual information describing how things happen � the
size of space and makes methods feasible.

E.g. in educational example (Freeman and Smith,2009) only need
search over CEG�s consistent with order of courses (event tree).

CEG�s can also be used to embellishing BN search. The score
function above exactly corresponds to Bayes Factor score for BNs.
So: search BN tree space ! search BN space associated with the
best partial order ! search CEG embellishments.

Without strong information, sparse tables seem to be combined to
give MAP models with simple but unusual structure.
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A CEG which extends a BN

.

BN Y
%

X
&

Z

=)

CEG � � �
% &&

w0 �! � � � � w∞
& Y %%
X � � � Z

but context speci�c BN+ �ts much better

BN+ Y
%

X
&

Z

=)

CEG �
% &&

w0 �! � � � � w∞
& Y %%
X � � � Z

(the distribution of Z is the same whether or not X takes a medium or
large value)
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