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Ideals, bases

R = k[x1, . . . , xd ] is the ring of polynomials in the inderrminates x1, . . . , xd
with coefficients in field k .

Polynomials f1, . . . , fm generate the ideal

〈f1, . . . , fm〉 =


m∑
j=1

gj fj : gj ∈ R


Every ideal has many finite generating set or bases

A monomial order is a type of total order on monomials which is compatible
with product. Given a monomial order it is possible to write every
polynomial in decreasing order and to identify its leading term.

The elimination ideal is the ideal

〈f1, . . . , fm〉 ∩ k[x1, . . . , xl ], l ≤ d

CCA Martin Kreuzer and Lorenzo Robbiano. Computational commutative
algebra. 1. Springer-Verlag, Berlin, 2000. ISBN 3-540-67733-X



CoCoA

Use R::= Q[x[1..4],t,y[1..2]], Lex; -- ring

Eqs:=[x[1]-(1-x[2])*x[2], -- first bernoulli

x[3]-(1-x[4])*x[4], -- second bernoulli

y[1]-x[2]-x[4], -- sum of k’

y[2]-x[1]-x[3], -- sum of k’’

t-x[2]+x[4]]; -- parameter

I:=Ideal(Eqs);

GBasis(I); -- Groebner basis

Elim(x,I); -- Elimination ideal

[-x[2] - x[4] + y[1],

x[3] + x[4]^2 - x[4],

x[1] + x[2]^2 - x[2],

-2x[4] - t + y[1],

-1/2t^2 - 1/2y[1]^2 + y[1] - y[2]]

-------------------------------

Ideal(-1/2t^2 - 1/2y[1]^2 + y[1] - y[2])

CoCoATeam. CoCoA: a system for doing Computations in Commutative Algebra. Available at cocoa.dima.unige.it,
online. L. Robbiano team leader.



Multivariate cumulant

Definition (Moment and cumulant generating function)

X is a random vector in Rm.

For θ ∈ Rm, θ · X =
∑m

i=1 θiXi is the scalar product.

DX is the interior of the convex set{
θ ∈ Rm : E [eθ·X ] < +∞

}
.

If DX 6= ∅, then the moment (generating) function MX and cumulant
(generating) function KX of X are the functions defined for each
t ∈ DX by the equations

MX (θ) = E [eθ·X ],

KX (θ) = log MX (θ).



Monomial and moment aliasing

Let D be a finite set of points in Rm, I (D) the design ideal in R[x1, . . . , xm],
g1, . . . , gk a polynomial basis of I (D), xα, α ∈ L, a linear monomial basis of
R[x1, . . . , xm]/I (D). Given a Gröbner basis, the monomials that are not
divider by a leading term for such a (linear) basis.

This is the usual setting of the algebric theory of Design of Experiments.
Each equation g(x) = 0, g ∈ I (D), is an aliasing relation between terms.

Let

H(x) = exp

(
n∑

i=1

sixi

)
=
∑
α∈L

bα(s)xα.

Therefore MX (s) =
∑
β≥0

sβµβ
β! =

∑
α∈L bα(s)µα,

µβ =
∑
α∈L

bα,βµα, bα,β = Dβbα(s)|s=0

The monomial basis is computed by CoCoA

the coefficients bα(s) are obtained by interpolation



Cumulant aliasing

For a discrete distribution and monomial order τ every cumulant µβ , β ≥ 0 is
expressible as a linear function of the moments µα, α ∈ L, whose coefficients
depend only the support and choice of monomial ordering, not the p(x).

Theorem (Cumulants aliasing)

For a discrete distribution and monomial order τ every cumulant κβ , β ≥ 0 is
expressible as a polynomial function of the cumulant κα, α ∈ L, whose form is
only dependent of the support and monomial ordering.

Giovanni Pistone and Henry P. Wynn. Cumulant varieties. Journal of Symbolic Computation, 41(2):210–221, 2006.
ISSN 0747-7171



Finite generation

Definition

The cumulants of X are called finitely generated if there exist polynomials

Fhk(ηi : i = 1, . . . ,m; γij : i ≤ j = 1, . . . ,m) , h ≤ k = 1, . . . ,m ,

such that the corresponding system of equations can be uniquely solved for
γ = (γij)1≤h≤k≤m as a function of η = (ηi )1≤i≤m, around the point

η0 = K ′X (0) , γ0 = K ′′X (0) ,

and the equations

Fhk(K ′X (t),K ′′X (t)) = 0 , h ≤ k = 1, . . . ,m ,

hold in a neighborhood of 0. The polynomials F = (Fhk)h≤k=1,...,m are
called generating polynomials of X .



CoCoA

Use R::= Q[x[1..4],t,y[1..2]], Lex; -- ring

Eqs:=[x[1]-(1-x[2])*x[2], -- first bernoulli

x[3]-(1-x[4])*x[4], -- second bernoulli

y[1]-x[2]-x[4], -- sum of k’

y[2]-x[1]-x[3], -- sum of k’’

t-x[2]+x[4]]; -- parameter

I:=Ideal(Eqs);

GBasis(I);

Elim(x,I);

[-x[2] - x[4] + y[1],

x[3] + x[4]^2 - x[4],

x[1] + x[2]^2 - x[2],

-2x[4] - t + y[1],

-1/2t^2 - 1/2y[1]^2 + y[1] - y[2]]

-------------------------------

Ideal(-1/2t^2 - 1/2y[1]^2 + y[1] - y[2])

CoCoATeam. CoCoA: a system for doing Computations in Commutative Algebra. Available at cocoa.dima.unige.it,
online



Variance function: Morris

The following table is adapted from [Morris, 1982, Table 1], where all
the distributions such as the variance function is a quadratic
polynomial in the mean are studied.

In our terms, the variance K ′′(θ) and the mean K ′(θ) are related by a
generating polynomial of degree 2.

Distribution Parameters Generating polynomial

Normal N(µ, σ2) µ, σ2 K ′′ − σ2
Poisson P(λ) λ K ′′ − K ′

Gamma Γ(α, λ) α, λ αK ′′ − (K ′)2

Binomial Bin(n, p) n, p nK ′′ − K ′(n − K ′)
Negative Binomial NegBin(r , p) r , p rK ′′ − K ′(r + K ′)
Generalised Hyperbolic Secant r , λ = tan t rK ′′ − (K ′)2 − r2



Finite generation; example

The generating polynomial uniquely defines the corresponding
distribution. E.g. the differential equation for η(θ) = K ′(θ) in the
GHS case is

rη′(θ) = η(θ)2 + r2, η(0) = 0

The unique solution is
η(θ) = r tan t

so that

K (θ) = r

∫ t

0
tan τ dτ = r log sec t.

All cumulants are polynomials in the mean parameter. E.g. for the
GHS distribution

rnK (n)(θ) = fn(K ′(θ)), n = 2, 3, . . .

where
fn+1(η) = f ′n(η)(η2 + r2).



Finite generation

The Laplace (double exponential) density with parameter 1 has
cumulant function K (t) = − log(1− t2). Then the first and second
derivatives are

K ′(t) =
2t

1− t2
,

K ′′(t) = 2
1 + t2

(1− t2)2
.

The generating polynomial is

(K ′′)2 − 2(1 + (K ′)2)K ′′ + (K ′)2 + (K ′)4.

The uniform density on {0, 1, 2} has generating polynomial

3(K ′)4+2K ′−2K ′′+11(K ′)2−12K ′K ′′−12(K ′)3+6(K ′)2(K ′′)+3(K ′′)2



Finite generation

Theorem

The FGC property is stable for

1 joining independent components, in particular sampling;

2 invertible linear transformations;

3 convolutions of the same distribution.

Theorem

Every discrete distribution supported on an equally spaced set of reals
has the FGC property.

Every finite mixture of exponential random variables has the FGC
property.

Let pX (x) be the density function of a random variable with the FGC
property. Then if Y is a random variable with density g(y)pX (y)
where g(y) is polynomial then Y also has the FGC property.



Finite generation: discussion

For U[0, 1] the MGF is M(θ) = eθ−1
θ .

This involves θ and eθ. We set z = 1
eθ−1 and t = 1

θ , so that

z ′ = −(1 + z)z t ′ = −t2 and

K ′ = 1 + z − t

K ′′ = −z − z2 + t2

K ′′′ = z + 3z2 + 2z3 − 2t3

Algebraic elimination of t and z gives

(K ′)6 − 5(K ′)5 − 3(K ′)4K ′′ + 17/2(K ′)4 + 2(K ′)3K ′′ − 4(K ′)3K ′′′

− 6(K ′)3 + 3(K ′)2(K ′′)2 + (K ′)2K ′′ + 6(K ′)2K ′′′ + 3/2(K ′)2

− 5K ′(K ′′)2 − 3K ′K ′′′ − (K ′′)3 + 5/2(K ′′)2 − 1/2K ′′ + 1/2K ′′′



Toric ideals

Let be given an integer model matrix X with rows x ∈ D and d columns.

Consider the ring k[yx : x ∈ D] and the Laurent ring k(t1, . . . , td), together
with their homomorphism A defined by

A : yx 7−→
d∏

j=1

t
Ax,j

j = tA(x),

The kernel I (A) of h is called the toric ideal of A,

I (A) =
{

f ∈ k[yx : x ∈ D] : f (tA(x) : x ∈ D) = 0
}
.

The toric ideal I (A) is a prime ideal and the binomials

Pz+ − Pz− , z ∈ ZD, AT z = 0,

are a generating set of I (A) as a k-vector space.

In particular, Hilbert says that a finite generating set of the ideal is formed
by selecting a finite subset of such binomials.

Bernd Sturmfels. Gröbner bases and convex polytopes. American Mathematical Society, Providence, RI, 1996. ISBN
0-8218-0487-1



Toric ideals in statistics

For the 2× 2 independence model parameterized as px1,x2 = t0tx11 tx22 , one
computes the invariant:

A =


1 x1 x2

++ +1 +1 +1
+− +1 +1 −1
−+ +1 −1 +1
−− +1 −1 −1

, z =


+1
−1
−1
+1

, p++p−− − p+−p−+ ∈ I (A)

Mathias Drton, Bernd Sturmfels, and Seth Sullivant. Lectures on Algebraic Statistics. Number 39 in Oberwolfach

Seminars. Birkhäuser, 2009. ISBN 978-3-7643-8904-8

Viceversa, one could go from the invariants to the parameterization.

Giovanni Pistone and Maria Piera Rogantin. Algebra of revesible Markov chains. arXiv:1007.4282v1, 2010



CoCoA elimination
1

6

2

5

3

4

Use S::=Q[t,k[1..6],p[1..6,1..6]];

Set Indentation;

NI:=6; M:=[];

Define Lista(L,NI);

For I:=1 To NI Do

For J:=1 To I-1 Do

Append(L,k[I]p[I,J]-k[J]p[J,I]); EndFor;

EndFor; Return L; EndDefine;

N:=Lista(M,NI);

LL:=t*Product([k[I]|I In 1..NI])-1; Append(N,LL);

P0:=[p[1,3],p[1,4],p[1,5],p[2,4],p[2,6], p[3,1],p[3,5],

p[4,1],p[4,2],p[4,6],p[5,1],p[5,3],p[6,2],p[6,4]];

N:=Concat(N,P0);

E:=Elim(k,Ideal(N)); GB:=ReducedGBasis(E); GB;



CoCoA output

GB;

[

p[1,3], p[1,4], p[1,5], p[2,4], p[2,6], p[3,1], p[3,5],

p[4,1], p[4,2], p[4,6], p[5,1], p[5,3], p[6,2], p[6,4],

p[2,3]p[3,4]p[4,5]p[5,2] - p[2,5]p[3,2]p[4,3]p[5,4],

p[1,2]p[2,3]p[3,6]p[6,1] - p[1,6]p[2,1]p[3,2]p[6,3],

p[1,2]p[2,5]p[5,6]p[6,1] - p[1,6]p[2,1]p[5,2]p[6,5],

p[2,5]p[3,2]p[5,6]p[6,3] - p[2,3]p[3,6]p[5,2]p[6,5],

p[3,4]p[4,5]p[5,6]p[6,3] - p[3,6]p[4,3]p[5,4]p[6,5],

p[1,2]p[2,5]p[3,6]p[4,3]p[5,4]p[6,1] -

p[1,6]p[2,1]p[3,4]p[4,5]p[5,2]p[6,3],

p[1,2]p[2,3]p[3,4]p[4,5]p[5,6]p[6,1] -

p[1,6]p[2,1]p[3,2]p[4,3]p[5,4]p[6,5]]



Toric model and Weyl

Consider the design (sample space) D ⊂ Zd
+ with reference measure µ, e.g.

µ = 1.

The design ideal is

I (D) = {f ∈ Q[x1, . . . , xd ] : f (x) = 0, x ∈ D} .

Consider the toric statistical model

p(x ; t) ∝
d∏

j=1

t
xj
j , x ∈ D, tj ≥ 0, j = 1, . . . , d ,

The normalizing constant (partition funtion) is

Z (t) =
∑
x∈D

txµ(x)

There exists a polynomial p(t, x) ∈ Q[t, x ] such that p(t, x) = tx , x ∈ D.



Weyl differential algebra

The Weyl algebra is the ring of differential operators C〈t1 . . . td , ∂1 . . . ∂d〉
where everything commutes but

∂i ti − ti∂i = 1

Define the operators

A(i , x) = ti∂i − xi = ∂i ti − (1 + xi ), i = 1, . . . , d , x ∈ D,

where the second equality follows from the commutation relation.

For all x ∈ D we have

A(i , x) • tx = ∂i • (ti t
x)− (1 + xi )tx = 0,

so that ti∂i • tx = xi t
x and, by iteration, (ti∂i )

α • tx = xαi tx , α ∈ N.

The operator (ti∂i )
α applied to the polynomial Z (t) ∈ C[t1, . . . , td ] gives

(ti∂i )
α • Z (t) =

∑
x∈D

(ti∂i )
α • tx =

∑
x∈D

xαi tx .

S. C. Coutinho. A primer of algebraic D-modules, volume 33 of London Mathematical Society Student Texts. Cambridge
University Press, Cambridge, 1995. ISBN 0-521-55119-6; 0-521-55908-1. doi10.1017/CBO9780511623653. URL
http://dx.doi.org/10.1017/CBO9780511623653

http://dx.doi.org/10.1017/CBO9780511623653


Note the commutativity

(ti∂i )(tj∂j) = (tj∂j)(ti∂i ),

hence we have an action of multivatiate monomials:

d∏
i=1

(ti∂i )
αi • Z (t) =

∑
x∈D

d∏
i=1

(ti∂i )
αi • tx =

∑
x∈D

(
d∏

i=1

xαi

i

)
txµ(x).

By dividing by the normalizing constant we obtain he following expression
for the moments:

Z (t)−1
d∏

i=1

(ti∂i )
αi • Z (t) =

∑
x∈D

d∏
i=1

(ti∂i )
αi • txµ(x) = Et [Xα] .

By consider the ring homomorphism

A : C[x ] → C〈t1 . . . td , ∂1 . . . ∂d〉
xi 7→ ti∂i

We have
A(f (x)) • Z (t) =

∑
x∈D

f (x)txµ(x)



Theorem

1 Let xα, α ∈ M, be a monomial basis for D. Then Z (t) satisfies the following
system of #M = #D linear non-omogeneous differential equations:

A(xα) • Z (t) =
∑
x∈D

xαtxµ(x), α ∈ M.

2 Let fa(x) be the (reduced) indicator polynomomial of a ∈ D. Then Z (t)
satisfies the following system of #D linear non-omogeneous differential
equations:

A(fa(x)) • Z (t) = µ(a)ta, a ∈ D

3 Let g(pa : a ∈ D) be a polynomial in the toric ideal of the monomial
homomorphism pa 7→ ta. Then

g
(
µ(x)−1A(fa(x)) • Z (t) : a ∈ D

)
= 0

4 Also for cumulants.

G. Pistone, H. Wynn, in progress
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