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History

This work started in 2005 at IGAIA2 in Tokio:
searching a link between monotone metrics and
the uncertainty principle.

People involved:
Luo, Z. Zhang, Q. Zhang, Kosaki, Yanagi,
Furuichi, Kuriyama, Gibilisco, Imparato, Isola,
Hansen, Andai, Petz, Hiai, Szabo, Audenaart,
Cai
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Heisenberg uncertainty principle

A,B ∈ Mn,sa(C), ρ density matrix

[A,B] := AB − BA Eρ(A) := Tr(ρA)

Varρ(A) := Eρ(A
2)− Eρ(A)

2

Heisenberg uncertainty principle (1927) reads as

Varρ(A) · Varρ(B) ≥
1

4
|Tr(ρ[A,B])|2.
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“Classical"’ doubts

In classical probability, let (X, Y ) be a r.v. on
(Ω,G, p).
The covariance matrix of (X, Y ) is symmetric
and semidefinite positive so its determinant is
non-negative and therefore

Varp(X) · Varp(Y ) ≥ Covp(X, Y )2.

So to have a general bound for Varp(X) · Varp(Y )
does not seems such a “quantum" phenomenon.
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Schrödinger – Robertson UP

Covρ(A,B) :=

[

Trρ

(

AB + BA

2

)]

−Tr(ρA)·Tr(ρB),

Varρ(A) := Covρ(A,A).

Schrödinger and Robertson (1929-1930)
improved UP

Varρ(A) ·Varρ(B)−Covρ(A,B)2 ≥ 1

4
|Tr(ρ[A,B])|2.

The standard u. p. is non-trivial whenever A,B
are not compatible, that is, [A,B] 6= 0.
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Robertson general UP (1934)

Let A1 . . . , AN ∈ Mn,sa(C).

det {Covρ(Ah, Aj)} ≥ det

{

− i

2
Tr(ρ[Ah, Aj])

}

,

for h, j = 1, . . . , N
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Robertson general UP (2nd version)

The matrix {− i
2Tr(ρ[Ah, Aj])} is anti-symmetric.

Therefore, the Robertson UP reads as

det {Covρ(Ah, Aj)} ≥
{

0, N odd
det{− i

2Tr(ρ[Ah, Aj])}, N even,

If N = 2m+ 1, UP says (classically !) that the
generalized variance is non-negative.
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Searching an UP forN odd

Robertson UP is based on the commutator
[Ah, Aj]. If N = 1 this structure becomes
meaningless !

Intuitively, an UP for N odd should be based
on a structure which involves [ρ,A] .

This commutator appears in quantum
dynamics.
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Quantum dynamics

Let ρ(t) be a curve in D1
n and let H ∈ Mn,sa; ρ(t)

satisfies Schrödinger equation w.r.t. H if

ρ̇(t) =
d

dt
ρ(t) = i[ρ(t), H].

Equivalently, ρH(t), the time evolution of
ρ = ρH(0) determined by H, evolves according to
the formula

ρH(t) := e−itHρeitH .
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Operator monotone functions

Mn = complex matrices
Definition
f : (0,+∞) → R is operator monotone iff
∀A,B ∈ Mn and ∀n = 1, 2, ...

0 ≤ A ≤ B =⇒ 0 ≤ f(A) ≤ f(B).
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Fop

Usually one consider o.m. functions that are:
i) normalized i. e. f(1) = 1;
ii) symmetric i.e. tf(t−1) = f(t).

Fop:= family of standard functions.

Examples
1 + x

2
,

√
x,

2x

1 + x
.
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Operator means

Let Dn := {A ∈ Mn|A > 0}.
A mean is a function m : Dn ×Dn → Dn such that
(i) m(A,A) = A,
(ii) m(A,B) = m(B,A),
(iii) A < B =⇒ A < m(A,B) < B,
(vi) A < A′, B < B′ =⇒ m(A,B) < m(A′, B′),
(v) m is continuous,
(vi) Cm(A,B)C∗ ≤ m(CAC∗, CBC∗), for every
C ∈ Mn.
Property (vi) is the transformer inequality.
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Kubo–Ando theorem

Mop:= family of matrix means.

Kubo and Ando (1980) proved the following,
fundamental result.

Theorem

There exists a bijection between Mop and Fop

given by the formula

mf(A,B) := A
1

2f(A− 1

2BA− 1

2 )A
1

2 .
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Kubo–Ando inequality

Examples of operator means

A+ B

2

A
1

2 (A− 1

2BA− 1

2 )
1

2A
1

2

2(A−1 + B−1)−1

Fundamental inequality

2(A−1+B−1)−1 ≤ mf(A,B) ≤ A+B

2
∀f ∈ Fop

– p. 14/54



Fisher information

X : Ω → R real r.v. with a differentiable strictly
positive density ρ

Fisher score

Jρ :=
ρ′

ρ
Eρ(Jρ) = 0

Fisher information

IX := Iρ = Varρ(Jρ) =

∫

R

(ρ′)2

ρ
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Rao remark 1945

M statistical model (set of densities)

M can be considered as a manifols where the ρ′

play the role of tangent vectors.

Iρ is a Riemannian metric in the sense that

gρ,F (ρ
′, ρ′) :=

∫

R

(ρ′)2

ρ
= Iρ
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On the simplex

P1
n := {ρ ∈ Rn|

∑

i

ρi = 1, ρi > 0}.

TP1
n = {u ∈ Rn|

∑

i

ui = 0}.

gρ,F (u, v) :=
∑

i

uivi
ρi

This will be the Fisher-Rao metric
Geodesic distance (Bhattacharya):

dF (ρ, σ) = 2 arccos
(

∑

i ρ
1

2

i σ
1

2

i

)
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The link with entropy

i) Hessian of Kullback-Leibler relative entropy

S(ρ, σ) :=
∑

i

ρi(log ρi − log σi);

− ∂2

∂t∂s
S(ρ+ tu, ρ+ sv)

∣

∣

∣

t=s=0

=
n
∑

i=1

uivi
ρi + svi

∣

∣

∣

t=s=0
=

n
∑

i=1

uivi
ρi

= gρ,F (u, v).
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The link with the sphere

FI as a spherical geometry (Rao, Dawid)
ii) pull-back of the map

ϕ(ρ) = ϕ(ρ1, . . . , ρn) = 2(
√
ρ1, . . . ,

√
ρn)

gϕρ (u, v) = gϕ(ρ)(Dρϕ(u), Dρϕ(v))

= 〈Mρ−1/2(u),Mρ−1/2(v)〉

=
n
∑

i=1

uivi
ρi

= gρ,F (u, v).

(1)
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FI in the quantum case

Examples of quantum FI

Hessian of Umegaki relative entropy
Tr(ρ(log ρ− log σ))
−→ Bogoliubov-Kubo-Mori metric

Pull-back of the immersion ρ → 2
√
ρ

−→ Wigner-Yanase metric
(Gibilisco-Isola 2001 IDAQP)

Question: into the quantum realm do we have
only a "zoo" of examples of FI?
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Chentsov Theorem

Can we have a unified quantum approach?
Yes using the classical Chentsov theorem .
On the simplex P1

n the Fisher information is the
only Riemannian metric contracting under an
arbitrary coarse graining T , namely for any
tangent vector X at the point ρ we have

gmT (ρ)(TX, TX) ≤ gnρ (X,X)

Remark
Coarse graining = stochastic map = linear,
positive, trace preserving.
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Monotone metrics (or QFI)

D1
n := {ρ ∈ Mn|Tr(ρ) = 1 ρ > 0} = faithful states

Definition
A quantum Fisher information is a Riemaniann
metric on D1

n contracting under an arbitrary
coarse graining T , namely

gmT (ρ)(TA, TA) ≤ gnρ (A,A).

(quantum) coarse graining = linear, (completely)
positive, trace preserving map.
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Petz theorem

Lρ(A) := ρA Rρ(A) := Aρ

Petz theorem

There is bijection among quantum Fisher
information and operator monotone functions
given by the formula

〈A,B〉ρ,f := Tr(A ·mf(Lρ, Rρ)
−1(B)).
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Summary

Kubo-Ando-Petz
f

l

mf(A,B) := A
1

2f(A− 1

2BA− 1

2 )A
1

2 .

l
〈A,B〉ρ,f := Tr(A ·mf(Lρ, Rρ)

−1(B)).
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Decomposition of tangent space I

TρD1
n = {A ∈ Mn,sa|A = A∗, Tr(A) = 0}.

TρD1
n = (TρD1

n)
c ⊕ (TρD1

n)
o

where

(TρD1
n)

c := {A ∈ TρD1
n| [ρ,A] = 0 }

(TρD1
n)

o := orth. compl. of (TρD1
n)

c resp. to H-S
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Decomposition of tangent space II

For each QFI and for each A ∈ (TρD1
n)

c one has

〈A,A〉ρ,f = Tr(ρ−1A2).

To evaluate a QFI one has just to know what
happens for (TρD1

n)
o whose typical element has

the form

i[ρ,A] A s.a.
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Regular and non-regular QFI

Fop := {f op. mon.|f(1) = 1, tf(t−1) = f(t)}

F r
op := {f ∈ Fop|f(0) := lim

t→0
f(t) > 0}

F n
op := {f ∈ Fop|f(0) = 0}

Fop = F r
op∪̇Fn

op

Why is this decomposition relevant?
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Riemannian metrics on the sphere

B3 := {(x, y, z) ∈ R3|x2 + y2 + z2 ≤ 1}
S2 := B3 0 := (0, 0, 0)

M := B3/(S2 ∪ {0})
M is a fiber bundle over S2 with projection

π : M → S2

π(x, y, z) :=
1

√

x2 + y2 + z2
(x, y, z)
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Riem. metrics on the sphere II

M ∋ Dn → ρ ∈ S2 radially iff
π(Dn) = ρ ∀n and limDn = ρ
Differential

Tπ : TM → TS2

Horizontal-Vertical decomposition

TDM = Ker(TDπ)⊕HD

HD = horizontal tangent vectors at the point D
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Riem. metrics on the sphere III

Restriction

TDπ = HD → TρS2

is a linear isomorphism between HD and TρS2

(where ρ = T (D)).

We may “lift" tangent vectors u, v ∈ TρS2 to
uD, vD ∈ TDM.
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Radial extensions

Suppose we have:
i) a Riemannian metric g(·, ·) on M;
ii) a Riemannian metric h(·, ·) on S2.

h is the radial extension of g if

Dn → ρ radially

⇓
g(uDn

, vDn
) → k(u, v)
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The Bloch sphere

2× 2 matrices, I identity, σ1, σ2, σ3 Pauli matrices

σ1 =

(

0 1

1 0

)

, σ2 =

(

0 −i

i 0

)

, σ3 =

(

1 0

0 −1

)

,

Stokes parametrization of qubits

ρ =
1

2
(I + 〈(x, y, z), (σ1, σ2, σ3)〉)

x2 + y2 + z2 ≤ 1
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Petz-Sudar theorem

Pure states → x2 + y2 + z2 = 1 (the sphere S2)
Faithful mixed states → x2 + y2 + z2 < 1
(manifold M plus the origin)
Theorem
If 〈·, ·〉FS denotes the standard Riemannian
metric on the sphere S2 (pure states), then a QFI
〈·, ·〉ρ,f has a radial extension iff it is regular. The
extension is given by

1

2f(0)
〈·, ·〉FS
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General P-S theorem

Remark

True in general using the Fubini–Study metric on
the projective space CP n.

More delicate because for n > 2:
extreme boundary (pure states) 6= topological
boundary (detρ = 0).
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The function f̃

f̃(x) :=
1

2

[

(x+ 1)− (x− 1)2
f(0)

f(x)

]

Theorem
f ∈ F r

op (f is a regular n. s. o. m. function)

⇓

f̃ ∈ F n
op (f̃ is a non-regular n. s. o. m. function)

Moreover f → f̃ is bijection.
Gibilisco-Imparato-Isola-Hansen (a different
proof also from Petz-Szabo)
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Regular and non-regular means

f → f̃

mf → mf̃

Examples

x+ y

2
→ 2

1
x
+ 1

y

(√
x+

√
y

2

)2

→ √
xy
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Classical and quantum covariance

Classical covariance

Covp(X, Y ) := Ep(XY )− Ep(X)Ep(Y ).

Quantum covariance (A0 := A− Tr(ρA) · I)

Covρ(A,B) :=
1

2
Tr(ρ(AB+BA))−Tr(ρA)·Tr(ρB) =

= Tr

[(

Lρ +Rρ

2

)

(A0)B0

]

.
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g-Covariance

To each operator monotone g ∈ Fop one
associate the means mg(·, ·).

Define the g-covariance as

Covgρ(A,B) := Tr(mg(Lρ, Rρ)(A0)B0)

Remark: in a commuting setting all the
g-covariances coincide with the classical
covariance.
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Fundamental formula

Theorem

If f is regular then

f(0)

2
〈i[ρ,A], i[ρ,B]〉ρ,f = Covρ(A,B)−Covf̃ρ(A,B).

Gibilisco-Imparato-Isola
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1. The dynamical UP

Let A1 . . . , AN ∈ Mn,sa(C).

det {Covρ(Ah, Aj)} ≥ det

{

f(0)

2
〈i[ρ,Ah], i[ρ,Aj]〉ρ,f

}

for h, j = 1, . . . , N ,
for all f ∈ Fop.

Nontrivial bound also if N is odd!

N = 1
Varρ(A) ≥ Ifρ (A) :=

f(0)
2 ||i[ρ,A]||2ρ,f
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Why “dynamical"?

Let ρ > 0 be a state and H,K ∈ Mn,sa. Suppose
that ρ = ρH(0) = ρK(0). Then, for any f ∈ Fop,
one has (taking the square root of both sides of
the DUP)

AreaCovρ (H,K) ≥ f(0)

2
· Areafρ(ρ̇H(0), ρ̇K(0)).

The bound on the right side of the inequality can
be seen as a measure of the difference between
the dynamics generated by H and K.
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2. The DUP on von Neumann alg.

While the first papers on the DUP where forced
to use eigenvalues (a Kosaki remark) now one
has to generalize something like the mean of the
operators Lρ and Rρ. These are commuting
operator therefore

mf̃(Lρ, Rρ) = Lρf̃(RρL
−1
ρ ) = Lρf̃(∆ρ)

So we are dealing with the modular operator and
this construction makes sense in the general
setting of von Neumann algebras.
Gibilisco-Isola
Petz-Szabo
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3. How the bound depend onf

Define for f ∈ F r
op

S(f) := det

{

f(0)

2
〈i[ρ,Ah], i[ρ,Aj]〉ρ,f

}

f̃(x) :=
1

2

[

(x+ 1)− (x− 1)2
f(0)

f(x)

]

.

Then, for any f, g ∈ F r
op

f̃ ≤ g̃ =⇒ S(f) ≥ S(g).
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The optimal bound

Let fSLD(x) :=
1 + x

2
. Since for any f ∈ F r

op

2x

1 + x
= f̃SLD ≤ f̃

then

S(fSLD) ≥ S(f)

namely the optimal bound is given by
Bures-Uhlmann metric.
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Relation with standard UP - I

Let f ∈ F r
op. The inequality

det

{

f(0)

2
〈i[ρ,Ah], i[ρ,Aj]〉ρ,f

}

≥ det

{

− i

2
Tr(ρ[Ah, Aj])

}

is (in general) false for any N = 2m. The proof is
a consequence of Hadamard inequality:

det(H) ≤
N
∏

j=1

hjj

for any H ∈ MN,sa.
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Relation with standard UP - II

Let f ∈ F r
op. The inequality

det

{

f(0)

2
〈i[ρ,Ah], i[ρ,Aj]〉ρ,f

}

≤ det

{

− i

2
Tr(ρ[Ah, Aj])

}

is (in general) false for any N = 2m.
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WYD-information

Wigner-Yanase-Dyson information

A s.a. matrix (observable in QM)
ρ density matrix (state in QM)

Iβρ (A) := −1

2
Tr([ρβ, A][ρ1−β, A]) β ∈ (0,

1

2
]

plays a role in ....
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WYD II

strong subadditivity of entropy
(Lieb-Ruskai,1973)

homogeneity of the state space of factors of
type III1 (Connes-Stormer,1978);

measures for quantum entanglement
(Chen,2005;
Klyachko-Oztop-Shumovsky,2006);

uncertainty relations ;

quantum hypothesis testing (Calsamiglia et
al., 2008)
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Explanation

Indeed WYD information is a quantum Fisher
information. To prove it one has to prove that the
function

fβ(x) = β(1− β)
(x− 1)2

(xβ − 1)(x1−β − 1)
0 < β < 1,

is operator monotone.
Original proof: Hasegawa-Petz.
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The inversion formula

Theorem
For g ∈ F n

op and x 6= 1 set

ǧ(x) = g′′(1) · (x− 1)2

2g(x)− (x+ 1)

Define g(1) = 1.
Then

ˇ̃f = f

Gibilisco-Hansen-Isola
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4. WYD as QFI: a new proof

The function fβ ∈ F r
op for 0 < β < 1.

Proof
The function

gβ(x) =
xβ + x1−β

2
0 < β < 1

is operator monotone. It easily follows that
gβ ∈ Fop and that gβ is non-regular. Since f̃β = gβ
we get the desired conclusion.
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3.bis A result by Kosaki

Note that if x > 0 is fixed the function

(

0,
1

2

]

∋ β → xβ + x1−β

2
= f̃β(x)

is decreasing and therefore

Theorem (Kosaki)
The function β → S(fβ) is increasing in

(

0, 12
]

.
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5. Skew information from entropy

∂2

∂t∂s
Sf̃(ρ+ i[ρ,A]t, ρ+ i[ρ,A]s)|t=s=0 =

= f(0)〈i[ρ,A], i[ρ,A]〉ρ,f

where SF (·, ·) is quantum version of Csiszar
F -entropy.

Petz-Szabo
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End

Some more applications for the f − f̃
correspondence?
Maybe at IGAIA4 ...

Thank you!
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