
Bandits, Global Optimization, Active Learning, and
Bayesian RL – understanding the common ground

Marc Toussaint

Machine Learning & Robotics Lab – University of Stuttgart
marc.toussaint@informatik.uni-stuttgart.de

Autonomous Learning Summer School, Leipzig, Sep 2014

1/53

• This does not focus on own work! It’s really a lecture...

The goal is to understand sequential decision problems in which
decisions equally influence the learning progress as well as
rewards/states.

• Bandits, Global Optimization, Active Learning, and Bayesian RL are
instances of this. The perspective taken is simple: All of these
problems are eventually Markovian processes in belief space

• For instance, you’ll learn what ’optimal optimization’ is

Disclaimer: Whenever I say “optimal” I mean “Bayes optimal” (we
always assume having priors P (θ))

2/53

Outline

• Problems covered:

– Bandits

– Global optimization

– Active learning

– Bayesian RL

– Monte Carlo Tree Search (MTCS)

• Methods covered (interweaved with the above):

– Belief planning

– Upper Confidence Bound (UCB)

– Expected Improvement, probability of improvement

– Predictive Entropy, Uncertainty Sampling, Shannon Information

– Bayesian exploration bonus, Rmax

– Monte Carlo Tree Search (MCTS; UCT)

3/53

Bandits

4/53

Bandits

• There are n machines.

• Each machine i returns a reward y ∼ P (y; θi)

The machine’s parameter θi is unknown

5/53

Bandits

• Let at ∈ {1, .., n} be the choice of machine at time t
Let yt ∈ R be the outcome with mean 〈yat〉

• A policy or strategy maps all the history to a new choice:

π : [(a1, y1), (a2, y2), ..., (at-1, yt-1)] 7→ at

• Problem: Find a policy π that

max
〈∑T

t=1 yt

〉
or

max 〈yT 〉

or other objectives like discounted infinite horizon max
〈∑∞

t=1 γ
tyt
〉

6/53

Exploration, Exploitation

• “Two effects” of choosing a machine:

– You collect more data about the machine→ knowledge

– You collect reward

• For example

– Exploration: Choose the next action at to min 〈H(bt)〉

– Exploitation: Choose the next action at to max 〈yt〉

7/53

The Belief State

• “Knowledge” can be represented in two ways:

– as the full history

ht = [(a1, y1), (a2, y2), ..., (at-1, yt-1)]

– as the belief
bt(θ) = P (θ|ht)

where θ are the unknown parameters θ = (θ1, .., θn) of all machines

• In the bandit case:

– The belief factorizes bt(θ) = P (θ|ht) =
∏
i bt(θi|ht)

e.g. for binary bandits, θi = pi, with prior Beta(pi|α, β):

bt(pi|ht) = Beta(pi|α+ ai,t, β + bi,t)

ai,t =
∑t−1
s=1[as= i][ys=0] , bi,t =

∑t−1
s=1[as= i][ys=1]

8/53

The Belief MDP

• The process can be modelled as
a1 a2 a3y1 y2 y3

θ θ θ θ

or as Belief MDP
a1 a2 a3y1 y2 y3

b0 b1 b2 b3

P (b′|y, a, b) =

1 if b′ = b′[b,a,y]

0 otherwise
, P (y|a, b) =

∫
θa
b(θa) P (y|θa)

• The Belief MDP describes a different process: the interaction between
the information available to the agent (bt or ht) and its actions, where
the agent uses his current belief to anticipate outcomes, P (y|a, b).

Optimality in the Belief MDP ⇒ optimality in the original problem
9/53

Optimal policies via Dynamic Programming in
Belief Space

• The Belief MDP:
a1 a2 a3y1 y2 y3

b0 b1 b2 b3

P (b′|y, a, b) =

1 if b′ = b′[b,a,y]

0 otherwise
, P (y|a, b) =

∫
θa
b(θa) P (y|θa)

• Belief Planning: Dynamic Programming on the value function

∀b : Vt-1(b) = max
π

〈∑T
t=t yt

〉
= max

π

[
〈yt〉+

〈∑T
t=t+1 yt

〉]
= max

at

∫
yt
P (yt|at, b)

[
yt + Vt(b

′
[b,at,yt]

)
]

10/53

V ∗t (h) := argmax
π

∫
θ
P (θ|h) V π,θt (h) (1)

= argmax
π

∫
θ
P (θ|h) max

a

[
R(a, h) +

∫
h′
P (h′|h, a, θ) V π,θt+1 (h′)

]
(2)

V ∗t (b) = argmax
π

∫
θ
b(θ) max

a

[
R(a, b) +

∫
b′
P (b′|b, a, θ) V π,θt+1 (b′)

]
(3)

= argmax
π

max
a

∫
θ

∫
b′
b(θ) P (b′|b, a, θ)

[
R(a, b) + V π,θt+1 (b′)

]
(4)

P (b′|b, a, θ) =

∫
y
P (b′, y|b, a, θ) (5)

=

∫
y

P (θ|b, a, b′, y) P (b′, y|b, a)

P (θ|b, a)
(6)

=

∫
y

b′(θ) P (b′, y|b, a)

b(θ)
(7)

V ∗t (b) = argmax
π

max
a

∫
θ

∫
b′

∫
y
b(θ)

b′(θ) P (b′, y|b, a)

b(θ)

[
R(a, b) + V π,θt+1 (b′)

]
(8)

= argmax
π

max
a

∫
b′

∫
y
P (b′, y|b, a)

[
R(a, b) +

∫
θ
b′(θ) V π,θt+1 (b′)

]
(9)

= argmax
π

max
a

∫
y
P (y|b, a)

[
R(a, b) +

∫
θ
b′[b,a,y](θ) V

π,θ
t+1 (b′[b,a,y])

]
(10)

= max
a

∫
y
P (y|b, a)

[
R(a, b) + V ∗t+1(b′[b,a,y])

]
(11)

11/53

Optimal policies

• The value function assigns a value (maximal achievable expected
return) to a state of knowledge

• Optimal policies “navigate through belief space”

– This automatically implies/combines “exploration” and “exploitation”

– There is no need to explicitly address “exploration vs. exploitation” or
decide for one against the other. Optimal policies will automatically do this.

• The optimal policy is greedy w.r.t. the value function (in the sense of
the maxat above)

• Computationally heavy: bt is a probability distribution, Vt a function
over probability distributions

• The term
∫
yt
P (yt|at, bt-1)

[
yt + Vt(bt-1[at, yt])

]
is related to the Gittins Index: it can be

computed for each bandit separately.

12/53

Exercise

• Consider 3 binary bandits for T = 10.

– How “large” is the belief space? What numbers do you need to store a
belief?

The belief is 3 Beta distributions Beta(pi|α+ ai, β + bi) → 6 integers
T = 10 → each integer ≤ 10

– How “large” is the value function Vt(bt)? How many numbers to store
Vt(bt)?
Vt(bt) is a function over {0, .., 10}6 → 1 Mio. numbers ∈ R
Many states cannot be visited (integers need to sum up)
Only very few transitions are possible (incrementing integers)

13/53

Exercise

• Consider 3 binary bandits for T = 10.

– How “large” is the belief space? What numbers do you need to store a
belief?
The belief is 3 Beta distributions Beta(pi|α+ ai, β + bi) → 6 integers
T = 10 → each integer ≤ 10

– How “large” is the value function Vt(bt)? How many numbers to store
Vt(bt)?
Vt(bt) is a function over {0, .., 10}6 → 1 Mio. numbers ∈ R
Many states cannot be visited (integers need to sum up)
Only very few transitions are possible (incrementing integers)

13/53

Exercise

• Consider 3 binary bandits for T = 10.

– How “large” is the belief space? What numbers do you need to store a
belief?
The belief is 3 Beta distributions Beta(pi|α+ ai, β + bi) → 6 integers
T = 10 → each integer ≤ 10

– How “large” is the value function Vt(bt)? How many numbers to store
Vt(bt)?

Vt(bt) is a function over {0, .., 10}6 → 1 Mio. numbers ∈ R
Many states cannot be visited (integers need to sum up)
Only very few transitions are possible (incrementing integers)

13/53

Exercise

• Consider 3 binary bandits for T = 10.

– How “large” is the belief space? What numbers do you need to store a
belief?
The belief is 3 Beta distributions Beta(pi|α+ ai, β + bi) → 6 integers
T = 10 → each integer ≤ 10

– How “large” is the value function Vt(bt)? How many numbers to store
Vt(bt)?
Vt(bt) is a function over {0, .., 10}6 → 1 Mio. numbers ∈ R

Many states cannot be visited (integers need to sum up)
Only very few transitions are possible (incrementing integers)

13/53

Exercise

• Consider 3 binary bandits for T = 10.

– How “large” is the belief space? What numbers do you need to store a
belief?
The belief is 3 Beta distributions Beta(pi|α+ ai, β + bi) → 6 integers
T = 10 → each integer ≤ 10

– How “large” is the value function Vt(bt)? How many numbers to store
Vt(bt)?
Vt(bt) is a function over {0, .., 10}6 → 1 Mio. numbers ∈ R
Many states cannot be visited (integers need to sum up)
Only very few transitions are possible (incrementing integers)

13/53

Greedy heuristic: Upper Confidence Bound (UCB)

1: Initializaiton: Play each machine once
2: repeat
3: Play the machine i that maximizes ŷi + β

√
2 lnn
ni

4: until

ŷi is the average reward of machine i so far
ni is how often machine i has been played so far
n =

∑
i ni is the number of rounds so far

β is often chosen as β = 1

See Finite-time analysis of the multiarmed bandit problem, Auer, Cesa-Bianchi & Fischer,
Machine learning, 2002.

14/53

UCB algorithms

• UCB algorithms determine a confidence interval such that

ŷi − σi < 〈yi〉 < ŷi + σi

with high probability.
UCB chooses the upper bound of this confidence interval

• Optimism in the face of uncertainty

• Strong bounds on the regret (sub-optimality) of UCB (e.g. Auer et al.)

15/53

Exercise

• Data so far:
Machine A: 8, 7, 12, 13, 11, 9
Machine B: 8, 12
Machine C: 5, 13

Which one do you choose next?

Machine A: 10± 2.16/
√

6

Machine B: 10± 2/
√

2

Machine C: 9± 4/
√

2

16/53

Exercise

• Data so far:
Machine A: 8, 7, 12, 13, 11, 9
Machine B: 8, 12
Machine C: 5, 13

Which one do you choose next?

Machine A: 10± 2.16/
√

6

Machine B: 10± 2/
√

2

Machine C: 9± 4/
√

2

16/53

Conclusions

• The bandit problem is an archetype for

– Sequential decision making

– Decisions that influence knowledge as well as rewards/states

– Exploration/exploitation

• The same aspects are inherent also in global optimization, active
learning & RL

• Belief Planning in principle gives the optimal solution

• Greedy Heuristics (UCB) are computationally much more efficient and
guarantee bounded regret. MCTS is also applicable

17/53

Further reading

• ICML 2011 Tutorial Introduction to Bandits: Algorithms and Theory,
Jean-Yves Audibert, Rémi Munos

• Finite-time analysis of the multiarmed bandit problem, Auer,
Cesa-Bianchi & Fischer, Machine learning, 2002.

• On the Gittins Index for Multiarmed Bandits, Richard Weber, Annals of
Applied Probability, 1992.
Optimal Value function is submodular.

18/53

Global Optimization

19/53

Global Optimization

• Let x ∈ Rn, f : Rn → R, find

min
x

f(x)

(I neglect constraints g(x) ≤ 0 and h(x) = 0 here – but could be included.)

• Blackbox optimization: find optimium by sampling values yt = f(xt)

No access to ∇f or ∇2f

Observations may be noisy y ∼ N(y | f(xt), σ)

20/53

Global Optimization = infinite bandits

• In global optimization f(x) defines a reward for every x ∈ Rn

– Instead of a finite number of actions at we now have xt

• Optimal Optimization could be defined as: find π : ht 7→ xt that

min
〈∑T

t=1 f(xt)
〉

or
min 〈f(xT)〉

21/53

Gaussian Processes as belief

• The unknown “world property” is the function θ = f

• Given a Gaussian Process prior GP (f |µ,C) over f and a history

Dt = [(x1, y1), (x2, y2), ..., (xt-1, yt-1)]

the belief is

bt(f) = P (f |Dt) = GP(f |Dt, µ, C)

Mean(f(x)) = f̂(x) = κ(x)(K + σ2I)-1y response surface

Var(f(x)) = σ̂(x) = k(x, x)− κ(x)(K + σ2In)-1κ(x) confidence interval

• Side notes:

– Don’t forget that Var(y∗|x∗, D) = σ2 + Var(f(x∗)|D)

– We can also handle discrete-valued functions f using GP classification

22/53

Optimal optimization via belief planning

• As for bandits it holds

Vt-1(bt-1) = max
π

〈∑T
t=t yt

〉
= max

xt

∫
yt
P (yt|xt, bt-1)

[
yt + Vt(bt-1[xt, yt])

]
Vt-1(bt-1) is a function over the GP-belief!
If we could compute Vt-1(bt-1) we “optimally optimize”

• I don’t know of a minimalistic case where this might be feasible

23/53

Greedy 1-step heuristics

• Maximize Probability of Improvement (MPI)

from Jones (2001)

xt = argmax
x

∫ y∗
−∞N(y|f̂(x), σ̂(x))

• Maximize Expected Improvement (EI)

xt = argmax
x

∫ y∗
−∞N(y|f̂(x), σ̂(x)) (y∗ − y)

• Maximize UCB
xt = argmin

x
f̂(x)− βtσ̂(x)

(Often, βt = 1 is chosen. UCB theory allows for better choices. See Srinivas et al.
citation below.) 24/53

From Srinivas et al., 2012:

25/53

26/53

Further reading

• Classically, such methods are known as Kriging

• Information-theoretic regret bounds for gaussian process optimization
in the bandit setting Srinivas, Krause, Kakade & Seeger, Information
Theory, 2012.

• Efficient global optimization of expensive black-box functions. Jones,
Schonlau, & Welch, Journal of Global Optimization, 1998.

• A taxonomy of global optimization methods based on response
surfaces Jones, Journal of Global Optimization, 2001.

• Explicit local models: Towards optimal optimization algorithms, Poland,
Technical Report No. IDSIA-09-04, 2004.

27/53

Active Learning

28/53

Example
Active learning with gaussian processes for object categorization.
Kapoor, Grauman, Urtasun & Darrell, ICCV 2007.

29/53

Active Learning
• In standard ML, a data set Dt = {(xs, ys)}t-1s=1 is given.

In active learning, the learning agent sequencially decides on each xt
– where to collect data

• Generally, the aim of the learner should be to learn as fast as possible,
e.g. minimize predictive error

• Finite horizon T predictive error problem:
Given P (x∗), find a policy π : Dt 7→ xt that

min 〈− logP (y∗|x∗, DT)〉y∗,x∗,DT ;π

This also can be expressed as predictive entropy:

〈− logP (y∗|x∗, DT)〉y∗,x∗ =
〈
−
∫
y∗
P (y∗|x∗, DT) logP (y∗|x∗, DT)

〉
x∗

= 〈H(y∗|x∗, DT)〉x∗ =: H(f |DT)

• Find a policy that min 〈H(f |DT)〉DT ;π 30/53

Gaussian Processes as belief

• Again, the unknown “world property” is the function θ = f

• We can use a Gaussian Process to represent the belief

bt(f) = P (f |Dt) = GP(f |Dt, µ, C)

31/53

Optimal Active Learning via belief planning

• The only difference to global optimization is the reward.
In active learning it is the predictive entropy: −H(f |DT)

• Dynamic Programming:

VT (bT) = −H(bT) , H(b) := 〈H(y∗|x∗, b)〉x∗
Vt-1(bt-1) = max

xt

∫
yt
P (yt|xt, bt-1) Vt(bt-1[xt, yt])

• Computationally intractable

32/53

Greedy 1-step heuristic
• The simplest greedy policy is 1-step Dynamic Programming:

Directly maximize immediate expected reward, i.e., minimizes H(bt+1).

π : bt(f) 7→ argmin
xt

∫
yt
P (yt|xt, bt) H(bt[xt, yt])

• For GPs, you reduce the entropy most if you choose xt where the
current predictive variance is highest:

Var(f(x)) = k(x, x)− κ(x)(K + σ2In)-1κ(x)

This is referred to as uncertainty sampling

• Note, if we fix hyperparameters:
– This variance is independent of the observations yt, only the set Dt

matters!

– The order of data points also does not matter

– You can pre-optimize a set of “grid-points” for the kernel – and play them
in any order 33/53

Further reading

• Active learning literature survey. Settles, Computer Sciences Technical
Report 1648, University of Wisconsin-Madison, 2009.

• Bayesian experimental design: A review. Chaloner & Verdinelli,
Statistical Science, 1995.

• Active learning with statistical models. Cohn, Ghahramani & Jordan,
JAIR 1996.

• ICML 2009 Tutorial on Active Learning, Sanjoy Dasgupta and John
Langford http://hunch.net/~active_learning/

34/53

http://hunch.net/~active_learning/

Bayesian Reinforcement Learning

35/53

Markov Decision Process

• Other than the previous cases, actions now influence a world state

s0 s1 s2 s3

a1 a2

r0 r1 r2

a0

– initial state distribution P (s0)

– transition probabilities P (s′|s, a)

– reward probabilities P (r|s, a)

– agent’s policy P (a|s;π)

• Planning in MDPs: Given knowledge of P (s′|s, a), P (r|s, a) and
P (y|s, a), find a policy π : st 7→ at that maximizes the discounted
infinite horizon return 〈

∑∞
t=0 γ

trt〉:

V (s) = max
a

[
E(r|s, a) + γ

∑
s′ P (s′ | s, a) V (s′)

]
36/53

Bayesian RL: The belief state
• In Reinforcement Learning we do not know the world

Unknown MDP parameters θ = (θs, θs′sa, θrsa)
(for P (s0), P (s′|s, a), P (r|s, a))

• “Knowledge” can be represented in two ways:
– as the full history

ht = [(s0, a0, r0), ..., (st-1, at-1, rt-1), (st)]

– as the belief
bt(θ) = P (θ|ht)

where θ are all the unknown parameters

• In the case of discrete MDPs
– θ are CPTs (conditional probability tables)

– Assuming Dirichlet priors over CPTs, the exact posterior is a Dirichlet

– Amounts to counting transitions 37/53

Optimal policies
• The process can be modelled as (omitting rewards)

a0 a1 a2

θ θ θ θ

s0 s1 s2 s3

or as Belief MDP

s0 s1 s2 s3

b0 b1 b2 b3

a0 a1 a2

P (b′|s′, s, a, b) =

1 if b′ = b[s′, s, a]

0 otherwise
, P (s′|s, a, b) =

∫
θ
b(θ) P (s′|s, a, θ)

V (b, s) = max
a

[
E(r|s, a, b) +

∑
s′ P (s′|a, s, b) V (s′, b′)

]
• Dynamic programming can be approximated (Poupart et al.) 38/53

Heuristics
• As with UCB, choose estimators for R∗, P ∗ that are

optimistic/over-confident

Vt(s) = max
a

[
R∗ +

∑
s′ P

∗(s′|s, a) Vt+1(s′)
]

• Rmax:

– R∗(s, a) =

Rmax if #s,a < n

θ̂rsa otherwise
, P ∗(s′|s, a) =

δs′s∗ if #s,a < n

θ̂s′sa otherwise

– Guarantees over-estimation of values, polynomial PAC results!

– Read about “KWIK-Rmax”! (Li, Littman, Walsh, Strehl, 2011)

• Bayesian Exploration Bonus (BEB), Kolter & Ng (ICML 2009)
– Choose P ∗(s′|s, a) = P (s′|s, a, b) integrating over the current belief b(θ)

(non-over-confident)

– But choose R∗(s, a) = θ̂rsa +
β

1+α0(s,a)
with a hyperparameter α0(s, a),

over-estimating return

• Confidence intervals for V -/Q-function (Kealbling ’93, Dearden et al.
’99) 39/53

Further reading

• ICML-07 Tutorial on Bayesian Methods for Reinforcement Learning
https://cs.uwaterloo.ca/~ppoupart/ICML-07-tutorial-Bayes-RL.html

Esp. part 3: Model-based Bayesian RL (Pascal Poupart); and the
methods cited on slide 22

• Optimal learning: Computational procedures for Bayes-adaptive
Markov decision processes. Duff, Doctoral dissertation, University of
Massassachusetts Amherst, 2002.

• An analytic solution to discrete Bayesian reinforcement learning.
Poupart, Vlassis, Hoey, & Regan (ICML 2006)

• KWIK-Rmax: Knows what it knows: a framework for self-aware
learning. Li, Littman, Walsh & Strehl, Machine learning, 2011.

• Bayesian Exploration Bonus: Near-Bayesian exploration in polynomial
time. Kolter & Ng, ICML 2009.

• The “interval exploration method” described in Reinforcement learning:
A survey. Kaelbling, Littman & Moore, arXiv preprint cs/9605103, 1996.

40/53

https://cs.uwaterloo.ca/~ppoupart/ICML-07-tutorial-Bayes-RL.html

Monte Carlo Tree Search (MCTS)

41/53

Monte Carlo Tree Search (MCTS)

• MCTS triggered a little revolution...

• MCTS is very successful on Computer Go and other games

• MCTS is rather simple to implement

• MCTS is very general: applicable on any discrete domain

• Key paper:
Kocsis & Szepesvári: Bandit based Monte-Carlo Planning, ECML
2006.

• Survey paper:
Browne et al.: A Survey of Monte Carlo Tree Search Methods, 2012.

• POMDPs:
Silver & Veness: Monte-Carlo Planning in Large POMDPs, NIPS 2010

• Tutorial presentation:
http://web.engr.oregonstate.edu/~afern/icaps10-MCP-tutorial.ppt

42/53

http://web.engr.oregonstate.edu/~afern/icaps10-MCP-tutorial.ppt

Basic MCTS scheme

from Browne et al.

1: start tree V = {v0}
2: while within computational budget do
3: vl ← TREEPOLICY(V) chooses a leaf of V
4: append vl to V
5: ∆← ROLLOUTPOLICY(V) rolls out a full simulation, with return ∆

6: BACKUP(vl,∆) updates the values of all parents of vl
7: end while
8: return best child of v0

43/53

Growing the tree as a sequential decision problem

• We talk here about the internal planning process!

• Deciding to allocate resources to grow the tree in a certain direction
(the TREEPOLICY) is a decision!
Growing the full tree a sequential decision problem

• What would be the optimal way to make growing decisions?
→ A problem of planning within the planning algorithm...

• The optimal solution is of course infeasible, but...

44/53

Upper Confidence Tree (UCT)

• UCT uses UCB to realize the TreePolicy, i.e. to decide where to
expand the tree

• BACKUP updates all parents of vl as
n(v)← n(v) + 1 (count how often has it been played)
Q(v)← Q(v) + ∆ (sum of rewards received)

• TREEPOLICY chooses child nodes based on UCB:

argmax
v′∈∂(v)

Q(v′)

n(v′)
+ β

√
2 lnn(v)

n(v′)

or choose v′ if n(v′) = 0

• In games use a “negamax” backup: While iterating upward, flip sign
∆← −∆ in each iteration

45/53

Issues when applying MCTS ideas to POMDPs
• key paper:

Silver & Veness: Monte-Carlo Planning in Large POMDPs, NIPS 2010

• MCTS is based on generating rollouts using a simulator
– Rollouts need to start at a specific state st
→ Nodes in our tree need to have states associated, to start rollouts
from

• At any point in time, the agent has only the history ht = (y0:t, a0:t-1) to
decide on an action
– The agent wants to estimate the Q-funcion Q(ht, at)

→ Nodes in our tree need to have a history associated

→ Nodes in the search tree will
– maintain n(v) and Q(v) as before

– have a history h(v) attached

– have a set of states S(v) attached 46/53

MCTS applied to POMDPs

from Silver & Veness

47/53

MCTS applied to POMDPs

• For each rollout:

– Choose a random world state s0 ∼ S(v0) from the set of states associated
to the root v0; initialize the simulator with this s0

– Use a TREEPOLICY to traverse the current tree; during this, update the
state sets S(v) to contain the world state simulated by the simulator

– Use a ROLLOUTPOLICY to simulate a full rollout

– Append a new leaf vl with novel history h(vl) and a single state S(vl)

associated

48/53

Discussion
3 points to make

49/53

Point 1: Common ground

What bandits, global optimization, active learning, Bayesian RL &
POMDPs share

– Sequential decisions

– Markovian w.r.t. belief

– Decisions influence the knowledge as well as rewards/states

– Sometimes described as “exploration/exploitation problems”

50/53

Point 2: Optimality

• In all cases, belief planning would yield optimal solutions
→ Optimal Optimization, Optimal Active Learning, etc...

• Even if it may be computationally infeasible, it is important to know
conceptually

• Optimal policies “navigate through belief space”

– This automatically implies/combines “exploration” and “exploitation”

– There is no need to explicitly address “exploration vs. exploitation” or
decide for one against the other. Policies that maximize the single
objective of future returns will automatically do this.

51/53

Point 3: Greedy (1-step) heuristics

• Also the optimal policy is greedy – w.r.t. the value function!

• “Greedy heuristics” replace the value function by something simpler
and more direct to compute, typically 1-step criteria

– UCB

– Probability of Improvement, Expected Improvement

– Expected immediate reward, expected predictive entropy

• Typically they reflect optimism in the face of uncertainty

• Regret bounds for UCB on bandits and optimization (Auer et al.;
Srinivas et al.)

• Theory on submodularity very stongly motivates greedy heuristics

• In RL: Optimism w.r.t. θ, but planning w.r.t. s

– Bayesian Exploration Bonus (BEB), Rmax, interval exploration method

52/53

Thanks
for your attention!

53/53

