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• This does not focus on own work! It’s really a lecture...

The goal is to understand sequential decision problems in which
decisions equally influence the learning progress as well as
rewards/states.

• Bandits, Global Optimization, Active Learning, and Bayesian RL are
instances of this. The perspective taken is simple: All of these
problems are eventually Markovian processes in belief space

• For instance, you’ll learn what ’optimal optimization’ is

Disclaimer: Whenever I say “optimal” I mean “Bayes optimal” (we
always assume having priors P (θ))
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Outline

• Problems covered:

– Bandits

– Global optimization

– Active learning

– Bayesian RL

– Monte Carlo Tree Search (MTCS)

• Methods covered (interweaved with the above):

– Belief planning

– Upper Confidence Bound (UCB)

– Expected Improvement, probability of improvement

– Predictive Entropy, Uncertainty Sampling, Shannon Information

– Bayesian exploration bonus, Rmax

– Monte Carlo Tree Search (MCTS; UCT)
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Bandits
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Bandits

• There are n machines.

• Each machine i returns a reward y ∼ P (y; θi)

The machine’s parameter θi is unknown
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Bandits

• Let at ∈ {1, .., n} be the choice of machine at time t
Let yt ∈ R be the outcome with mean 〈yat〉

• A policy or strategy maps all the history to a new choice:

π : [(a1, y1), (a2, y2), ..., (at-1, yt-1)] 7→ at

• Problem: Find a policy π that

max
〈∑T

t=1 yt

〉
or

max 〈yT 〉

or other objectives like discounted infinite horizon max
〈∑∞

t=1 γ
tyt
〉
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Exploration, Exploitation

• “Two effects” of choosing a machine:

– You collect more data about the machine→ knowledge

– You collect reward

• For example

– Exploration: Choose the next action at to min 〈H(bt)〉

– Exploitation: Choose the next action at to max 〈yt〉
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The Belief State

• “Knowledge” can be represented in two ways:

– as the full history

ht = [(a1, y1), (a2, y2), ..., (at-1, yt-1)]

– as the belief
bt(θ) = P (θ|ht)

where θ are the unknown parameters θ = (θ1, .., θn) of all machines

• In the bandit case:

– The belief factorizes bt(θ) = P (θ|ht) =
∏
i bt(θi|ht)

e.g. for binary bandits, θi = pi, with prior Beta(pi|α, β):

bt(pi|ht) = Beta(pi|α+ ai,t, β + bi,t)

ai,t =
∑t−1
s=1[as= i][ys=0] , bi,t =

∑t−1
s=1[as= i][ys=1]

8/53



The Belief MDP

• The process can be modelled as
a1 a2 a3y1 y2 y3

θ θ θ θ

or as Belief MDP
a1 a2 a3y1 y2 y3

b0 b1 b2 b3

P (b′|y, a, b) =

1 if b′ = b′[b,a,y]

0 otherwise
, P (y|a, b) =

∫
θa
b(θa) P (y|θa)

• The Belief MDP describes a different process: the interaction between
the information available to the agent (bt or ht) and its actions, where
the agent uses his current belief to anticipate outcomes, P (y|a, b).

Optimality in the Belief MDP ⇒ optimality in the original problem
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Optimal policies via Dynamic Programming in
Belief Space

• The Belief MDP:
a1 a2 a3y1 y2 y3

b0 b1 b2 b3

P (b′|y, a, b) =

1 if b′ = b′[b,a,y]

0 otherwise
, P (y|a, b) =

∫
θa
b(θa) P (y|θa)

• Belief Planning: Dynamic Programming on the value function

∀b : Vt-1(b) = max
π

〈∑T
t=t yt

〉
= max

π

[
〈yt〉+

〈∑T
t=t+1 yt

〉 ]
= max

at

∫
yt
P (yt|at, b)

[
yt + Vt(b

′
[b,at,yt]

)
]
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V ∗t (h) := argmax
π

∫
θ
P (θ|h) V π,θt (h) (1)

= argmax
π

∫
θ
P (θ|h) max

a

[
R(a, h) +

∫
h′
P (h′|h, a, θ) V π,θt+1 (h′)

]
(2)

V ∗t (b) = argmax
π

∫
θ
b(θ) max

a

[
R(a, b) +

∫
b′
P (b′|b, a, θ) V π,θt+1 (b′)

]
(3)

= argmax
π

max
a

∫
θ

∫
b′
b(θ) P (b′|b, a, θ)

[
R(a, b) + V π,θt+1 (b′)

]
(4)

P (b′|b, a, θ) =

∫
y
P (b′, y|b, a, θ) (5)

=

∫
y

P (θ|b, a, b′, y) P (b′, y|b, a)

P (θ|b, a)
(6)

=

∫
y

b′(θ) P (b′, y|b, a)

b(θ)
(7)

V ∗t (b) = argmax
π

max
a

∫
θ

∫
b′

∫
y
b(θ)

b′(θ) P (b′, y|b, a)

b(θ)

[
R(a, b) + V π,θt+1 (b′)

]
(8)

= argmax
π

max
a

∫
b′

∫
y
P (b′, y|b, a)

[
R(a, b) +

∫
θ
b′(θ) V π,θt+1 (b′)

]
(9)

= argmax
π

max
a

∫
y
P (y|b, a)

[
R(a, b) +

∫
θ
b′[b,a,y](θ) V

π,θ
t+1 (b′[b,a,y])

]
(10)

= max
a

∫
y
P (y|b, a)

[
R(a, b) + V ∗t+1(b′[b,a,y])

]
(11)
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Optimal policies

• The value function assigns a value (maximal achievable expected
return) to a state of knowledge

• Optimal policies “navigate through belief space”

– This automatically implies/combines “exploration” and “exploitation”

– There is no need to explicitly address “exploration vs. exploitation” or
decide for one against the other. Optimal policies will automatically do this.

• The optimal policy is greedy w.r.t. the value function (in the sense of
the maxat above)

• Computationally heavy: bt is a probability distribution, Vt a function
over probability distributions

• The term
∫
yt
P (yt|at, bt-1)

[
yt + Vt(bt-1[at, yt])

]
is related to the Gittins Index: it can be

computed for each bandit separately.
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Exercise

• Consider 3 binary bandits for T = 10.

– How “large” is the belief space? What numbers do you need to store a
belief?

The belief is 3 Beta distributions Beta(pi|α+ ai, β + bi) → 6 integers
T = 10 → each integer ≤ 10

– How “large” is the value function Vt(bt)? How many numbers to store
Vt(bt)?
Vt(bt) is a function over {0, .., 10}6 → 1 Mio. numbers ∈ R
Many states cannot be visited (integers need to sum up)
Only very few transitions are possible (incrementing integers)
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Greedy heuristic: Upper Confidence Bound (UCB)

1: Initializaiton: Play each machine once
2: repeat
3: Play the machine i that maximizes ŷi + β

√
2 lnn
ni

4: until

ŷi is the average reward of machine i so far
ni is how often machine i has been played so far
n =

∑
i ni is the number of rounds so far

β is often chosen as β = 1

See Finite-time analysis of the multiarmed bandit problem, Auer, Cesa-Bianchi & Fischer,
Machine learning, 2002.
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UCB algorithms

• UCB algorithms determine a confidence interval such that

ŷi − σi < 〈yi〉 < ŷi + σi

with high probability.
UCB chooses the upper bound of this confidence interval

• Optimism in the face of uncertainty

• Strong bounds on the regret (sub-optimality) of UCB (e.g. Auer et al.)
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Exercise

• Data so far:
Machine A: 8, 7, 12, 13, 11, 9
Machine B: 8, 12
Machine C: 5, 13

Which one do you choose next?

Machine A: 10± 2.16/
√

6

Machine B: 10± 2/
√

2

Machine C: 9± 4/
√

2
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Conclusions

• The bandit problem is an archetype for

– Sequential decision making

– Decisions that influence knowledge as well as rewards/states

– Exploration/exploitation

• The same aspects are inherent also in global optimization, active
learning & RL

• Belief Planning in principle gives the optimal solution

• Greedy Heuristics (UCB) are computationally much more efficient and
guarantee bounded regret. MCTS is also applicable
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Further reading

• ICML 2011 Tutorial Introduction to Bandits: Algorithms and Theory,
Jean-Yves Audibert, Rémi Munos

• Finite-time analysis of the multiarmed bandit problem, Auer,
Cesa-Bianchi & Fischer, Machine learning, 2002.

• On the Gittins Index for Multiarmed Bandits, Richard Weber, Annals of
Applied Probability, 1992.
Optimal Value function is submodular.
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Global Optimization
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Global Optimization

• Let x ∈ Rn, f : Rn → R, find

min
x

f(x)

(I neglect constraints g(x) ≤ 0 and h(x) = 0 here – but could be included.)

• Blackbox optimization: find optimium by sampling values yt = f(xt)

No access to ∇f or ∇2f

Observations may be noisy y ∼ N(y | f(xt), σ)
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Global Optimization = infinite bandits

• In global optimization f(x) defines a reward for every x ∈ Rn

– Instead of a finite number of actions at we now have xt

• Optimal Optimization could be defined as: find π : ht 7→ xt that

min
〈∑T

t=1 f(xt)
〉

or
min 〈f(xT )〉
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Gaussian Processes as belief

• The unknown “world property” is the function θ = f

• Given a Gaussian Process prior GP (f |µ,C) over f and a history

Dt = [(x1, y1), (x2, y2), ..., (xt-1, yt-1)]

the belief is

bt(f) = P (f |Dt) = GP(f |Dt, µ, C)

Mean(f(x)) = f̂(x) = κ(x)(K + σ2I)-1y response surface

Var(f(x)) = σ̂(x) = k(x, x)− κ(x)(K + σ2In)-1κ(x) confidence interval

• Side notes:

– Don’t forget that Var(y∗|x∗, D) = σ2 + Var(f(x∗)|D)

– We can also handle discrete-valued functions f using GP classification
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Optimal optimization via belief planning

• As for bandits it holds

Vt-1(bt-1) = max
π

〈∑T
t=t yt

〉
= max

xt

∫
yt
P (yt|xt, bt-1)

[
yt + Vt(bt-1[xt, yt])

]
Vt-1(bt-1) is a function over the GP-belief!
If we could compute Vt-1(bt-1) we “optimally optimize”

• I don’t know of a minimalistic case where this might be feasible
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Greedy 1-step heuristics

• Maximize Probability of Improvement (MPI)

from Jones (2001)

xt = argmax
x

∫ y∗
−∞N(y|f̂(x), σ̂(x))

• Maximize Expected Improvement (EI)

xt = argmax
x

∫ y∗
−∞N(y|f̂(x), σ̂(x)) (y∗ − y)

• Maximize UCB
xt = argmin

x
f̂(x)− βtσ̂(x)

(Often, βt = 1 is chosen. UCB theory allows for better choices. See Srinivas et al.
citation below.) 24/53



From Srinivas et al., 2012:
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Further reading

• Classically, such methods are known as Kriging

• Information-theoretic regret bounds for gaussian process optimization
in the bandit setting Srinivas, Krause, Kakade & Seeger, Information
Theory, 2012.

• Efficient global optimization of expensive black-box functions. Jones,
Schonlau, & Welch, Journal of Global Optimization, 1998.

• A taxonomy of global optimization methods based on response
surfaces Jones, Journal of Global Optimization, 2001.

• Explicit local models: Towards optimal optimization algorithms, Poland,
Technical Report No. IDSIA-09-04, 2004.
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Active Learning
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Example
Active learning with gaussian processes for object categorization.
Kapoor, Grauman, Urtasun & Darrell, ICCV 2007.
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Active Learning
• In standard ML, a data set Dt = {(xs, ys)}t-1s=1 is given.

In active learning, the learning agent sequencially decides on each xt
– where to collect data

• Generally, the aim of the learner should be to learn as fast as possible,
e.g. minimize predictive error

• Finite horizon T predictive error problem:
Given P (x∗), find a policy π : Dt 7→ xt that

min 〈− logP (y∗|x∗, DT )〉y∗,x∗,DT ;π

This also can be expressed as predictive entropy:

〈− logP (y∗|x∗, DT )〉y∗,x∗ =
〈
−
∫
y∗
P (y∗|x∗, DT ) logP (y∗|x∗, DT )

〉
x∗

= 〈H(y∗|x∗, DT )〉x∗ =: H(f |DT )

• Find a policy that min 〈H(f |DT )〉DT ;π 30/53



Gaussian Processes as belief

• Again, the unknown “world property” is the function θ = f

• We can use a Gaussian Process to represent the belief

bt(f) = P (f |Dt) = GP(f |Dt, µ, C)
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Optimal Active Learning via belief planning

• The only difference to global optimization is the reward.
In active learning it is the predictive entropy: −H(f |DT )

• Dynamic Programming:

VT (bT ) = −H(bT ) , H(b) := 〈H(y∗|x∗, b)〉x∗
Vt-1(bt-1) = max

xt

∫
yt
P (yt|xt, bt-1) Vt(bt-1[xt, yt])

• Computationally intractable
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Greedy 1-step heuristic
• The simplest greedy policy is 1-step Dynamic Programming:

Directly maximize immediate expected reward, i.e., minimizes H(bt+1).

π : bt(f) 7→ argmin
xt

∫
yt
P (yt|xt, bt) H(bt[xt, yt])

• For GPs, you reduce the entropy most if you choose xt where the
current predictive variance is highest:

Var(f(x)) = k(x, x)− κ(x)(K + σ2In)-1κ(x)

This is referred to as uncertainty sampling

• Note, if we fix hyperparameters:
– This variance is independent of the observations yt, only the set Dt

matters!

– The order of data points also does not matter

– You can pre-optimize a set of “grid-points” for the kernel – and play them
in any order 33/53



Further reading

• Active learning literature survey. Settles, Computer Sciences Technical
Report 1648, University of Wisconsin-Madison, 2009.

• Bayesian experimental design: A review. Chaloner & Verdinelli,
Statistical Science, 1995.

• Active learning with statistical models. Cohn, Ghahramani & Jordan,
JAIR 1996.

• ICML 2009 Tutorial on Active Learning, Sanjoy Dasgupta and John
Langford http://hunch.net/~active_learning/
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Bayesian Reinforcement Learning
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Markov Decision Process

• Other than the previous cases, actions now influence a world state

s0 s1 s2 s3

a1 a2

r0 r1 r2

a0

– initial state distribution P (s0)

– transition probabilities P (s′|s, a)

– reward probabilities P (r|s, a)

– agent’s policy P (a|s;π)

• Planning in MDPs: Given knowledge of P (s′|s, a), P (r|s, a) and
P (y|s, a), find a policy π : st 7→ at that maximizes the discounted
infinite horizon return 〈

∑∞
t=0 γ

trt〉:

V (s) = max
a

[
E(r|s, a) + γ

∑
s′ P (s′ | s, a) V (s′)

]
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Bayesian RL: The belief state
• In Reinforcement Learning we do not know the world

Unknown MDP parameters θ = (θs, θs′sa, θrsa)
(for P (s0), P (s′|s, a), P (r|s, a))

• “Knowledge” can be represented in two ways:
– as the full history

ht = [(s0, a0, r0), ..., (st-1, at-1, rt-1), (st)]

– as the belief
bt(θ) = P (θ|ht)

where θ are all the unknown parameters

• In the case of discrete MDPs
– θ are CPTs (conditional probability tables)

– Assuming Dirichlet priors over CPTs, the exact posterior is a Dirichlet

– Amounts to counting transitions 37/53



Optimal policies
• The process can be modelled as (omitting rewards)

a0 a1 a2

θ θ θ θ

s0 s1 s2 s3

or as Belief MDP

s0 s1 s2 s3

b0 b1 b2 b3

a0 a1 a2

P (b′|s′, s, a, b) =

1 if b′ = b[s′, s, a]

0 otherwise
, P (s′|s, a, b) =

∫
θ
b(θ) P (s′|s, a, θ)

V (b, s) = max
a

[
E(r|s, a, b) +

∑
s′ P (s′|a, s, b) V (s′, b′)

]
• Dynamic programming can be approximated (Poupart et al.) 38/53



Heuristics
• As with UCB, choose estimators for R∗, P ∗ that are

optimistic/over-confident

Vt(s) = max
a

[
R∗ +

∑
s′ P

∗(s′|s, a) Vt+1(s′)
]

• Rmax:

– R∗(s, a) =

Rmax if #s,a < n

θ̂rsa otherwise
, P ∗(s′|s, a) =

δs′s∗ if #s,a < n

θ̂s′sa otherwise

– Guarantees over-estimation of values, polynomial PAC results!

– Read about “KWIK-Rmax”! (Li, Littman, Walsh, Strehl, 2011)

• Bayesian Exploration Bonus (BEB), Kolter & Ng (ICML 2009)
– Choose P ∗(s′|s, a) = P (s′|s, a, b) integrating over the current belief b(θ)

(non-over-confident)

– But choose R∗(s, a) = θ̂rsa +
β

1+α0(s,a)
with a hyperparameter α0(s, a),

over-estimating return

• Confidence intervals for V -/Q-function (Kealbling ’93, Dearden et al.
’99) 39/53



Further reading

• ICML-07 Tutorial on Bayesian Methods for Reinforcement Learning
https://cs.uwaterloo.ca/~ppoupart/ICML-07-tutorial-Bayes-RL.html

Esp. part 3: Model-based Bayesian RL (Pascal Poupart); and the
methods cited on slide 22

• Optimal learning: Computational procedures for Bayes-adaptive
Markov decision processes. Duff, Doctoral dissertation, University of
Massassachusetts Amherst, 2002.

• An analytic solution to discrete Bayesian reinforcement learning.
Poupart, Vlassis, Hoey, & Regan (ICML 2006)

• KWIK-Rmax: Knows what it knows: a framework for self-aware
learning. Li, Littman, Walsh & Strehl, Machine learning, 2011.

• Bayesian Exploration Bonus: Near-Bayesian exploration in polynomial
time. Kolter & Ng, ICML 2009.

• The “interval exploration method” described in Reinforcement learning:
A survey. Kaelbling, Littman & Moore, arXiv preprint cs/9605103, 1996.
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Monte Carlo Tree Search (MCTS)
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Monte Carlo Tree Search (MCTS)

• MCTS triggered a little revolution...

• MCTS is very successful on Computer Go and other games

• MCTS is rather simple to implement

• MCTS is very general: applicable on any discrete domain

• Key paper:
Kocsis & Szepesvári: Bandit based Monte-Carlo Planning, ECML
2006.

• Survey paper:
Browne et al.: A Survey of Monte Carlo Tree Search Methods, 2012.

• POMDPs:
Silver & Veness: Monte-Carlo Planning in Large POMDPs, NIPS 2010

• Tutorial presentation:
http://web.engr.oregonstate.edu/~afern/icaps10-MCP-tutorial.ppt
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Basic MCTS scheme

from Browne et al.

1: start tree V = {v0}
2: while within computational budget do
3: vl ← TREEPOLICY(V ) chooses a leaf of V
4: append vl to V
5: ∆← ROLLOUTPOLICY(V ) rolls out a full simulation, with return ∆

6: BACKUP(vl,∆) updates the values of all parents of vl
7: end while
8: return best child of v0

43/53



Growing the tree as a sequential decision problem

• We talk here about the internal planning process!

• Deciding to allocate resources to grow the tree in a certain direction
(the TREEPOLICY) is a decision!
Growing the full tree a sequential decision problem

• What would be the optimal way to make growing decisions?
→ A problem of planning within the planning algorithm...

• The optimal solution is of course infeasible, but...
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Upper Confidence Tree (UCT)

• UCT uses UCB to realize the TreePolicy, i.e. to decide where to
expand the tree

• BACKUP updates all parents of vl as
n(v)← n(v) + 1 (count how often has it been played)
Q(v)← Q(v) + ∆ (sum of rewards received)

• TREEPOLICY chooses child nodes based on UCB:

argmax
v′∈∂(v)

Q(v′)

n(v′)
+ β

√
2 lnn(v)

n(v′)

or choose v′ if n(v′) = 0

• In games use a “negamax” backup: While iterating upward, flip sign
∆← −∆ in each iteration
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Issues when applying MCTS ideas to POMDPs
• key paper:

Silver & Veness: Monte-Carlo Planning in Large POMDPs, NIPS 2010

• MCTS is based on generating rollouts using a simulator
– Rollouts need to start at a specific state st
→ Nodes in our tree need to have states associated, to start rollouts
from

• At any point in time, the agent has only the history ht = (y0:t, a0:t-1) to
decide on an action
– The agent wants to estimate the Q-funcion Q(ht, at)

→ Nodes in our tree need to have a history associated

→ Nodes in the search tree will
– maintain n(v) and Q(v) as before

– have a history h(v) attached

– have a set of states S(v) attached 46/53



MCTS applied to POMDPs

from Silver & Veness
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MCTS applied to POMDPs

• For each rollout:

– Choose a random world state s0 ∼ S(v0) from the set of states associated
to the root v0; initialize the simulator with this s0

– Use a TREEPOLICY to traverse the current tree; during this, update the
state sets S(v) to contain the world state simulated by the simulator

– Use a ROLLOUTPOLICY to simulate a full rollout

– Append a new leaf vl with novel history h(vl) and a single state S(vl)

associated
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Discussion
3 points to make
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Point 1: Common ground

What bandits, global optimization, active learning, Bayesian RL &
POMDPs share

– Sequential decisions

– Markovian w.r.t. belief

– Decisions influence the knowledge as well as rewards/states

– Sometimes described as “exploration/exploitation problems”
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Point 2: Optimality

• In all cases, belief planning would yield optimal solutions
→ Optimal Optimization, Optimal Active Learning, etc...

• Even if it may be computationally infeasible, it is important to know
conceptually

• Optimal policies “navigate through belief space”

– This automatically implies/combines “exploration” and “exploitation”

– There is no need to explicitly address “exploration vs. exploitation” or
decide for one against the other. Policies that maximize the single
objective of future returns will automatically do this.
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Point 3: Greedy (1-step) heuristics

• Also the optimal policy is greedy – w.r.t. the value function!

• “Greedy heuristics” replace the value function by something simpler
and more direct to compute, typically 1-step criteria

– UCB

– Probability of Improvement, Expected Improvement

– Expected immediate reward, expected predictive entropy

• Typically they reflect optimism in the face of uncertainty

• Regret bounds for UCB on bandits and optimization (Auer et al.;
Srinivas et al.)

• Theory on submodularity very stongly motivates greedy heuristics

• In RL: Optimism w.r.t. θ, but planning w.r.t. s

– Bayesian Exploration Bonus (BEB), Rmax, interval exploration method
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Thanks
for your attention!

53/53


