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Autonomous Robotics has become a Disruptive Technology

Disruptive technologies =
technologies that will transform life, business, and the global economy

source: Report from McKinsey Global Institute, May 2013

Disruptive Technologies 1-6

1. Mobile Internet
2. Automation of knowledge work
3. The Internet of Things
4. Cloud technology
5. Advanced robotics
6. (Near-)autonomous vehicles

Disruptive Technologies 7-12

7. Next-generation genomics
8. Energy storage
9. 3D printing
10. Advanced materials
11. Advanced oil/gas exploration/recovery
12. Renewable energy
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Disruptive Technology Systems

Autonomous Driving

[Google]

Watson

[IBM]

Siri Agent

[Siri/Apple]

• Google glasses: knowing everything about what you see (Google goggles)

• Interactive virtual reality games: Oculus Rift, Kinect 2, Leap motion sensor, etc

• . . .
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The Google Disruptive Technology Robot

• application???
– warehouse robot??? picking items on an

order list and loading them in packages???
– delivery robot??? delivering items to

people’s homes

• expected capability
– capable perception-guided autonomous

manipulation
– longterm autonomy

Research Field Problem Plan Design Learning Conclusions

Michael Beetz
September, 2014

BAYCOGROB
6



The Research Problem:

Human-scale Manipulation Tasks



Artificial 
Intelligence

Autonomous Robotic Agents
Where we are, where we are going
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The Holy Grail: Goal-directed Object Manipulation

evolution of cognitive
capabilities:

• representation

• language

• cultural learning
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Classical AI Answer

given:

initial state
ingredients

& tools

goal:
have(pancakes)

compute plan:

pour (pancakemix, bottle,
oven)

wait (3min)

flip (pancake)

wait (3min)

put (pancake,plate)

intelligence lies in the sequencing of actions
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Instructions and Actions

tools: ingredients:
• frying pan

• spatula

• pancake mix

• milk

Steps:

• Take the mix from the refrigerator.

• Add 400ml of milk; shake the bottle head down for
1 Minute. Let the pancake-mix sit for 2-3 minutes,
shake again.

• Pour the mix into the frying pan.

• Wait for 3 minutes.

• Flip the pancake around.

• Wait for 3 minutes.

• Place the pancake onto a plate.
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Key Concept: Action Descriptions

Action descriptions represent attributes of actions, objects, etc. that are expected to
be important for the skillful execution of actions.

pour stuff from pot

grasp the pot by the handles

hold the pot horizontally

tilt the pot around the axis between the handles

hold the lid while pouring

etc

descriptions can be incomplete, ambiguous, inaccurate, and inconsistent.
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Mastering Everyday Manipulation is Knowledge-intensive!

information in parameterized plans

- vague instruction (eg, set table, clean up)

= knowledge required by robotic agents
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How much Knowledge Does a Robotic Agent Need?
Knowledge for Mastering Pancake Making

Making a Pancake
A robot pours a ready-made pancake mix onto a preheated pancake maker. Properly performed, the mix is poured onto the center of the pancake
maker without spilling where it forms a round shape. The robot lets it cook until the underside of the pancake is golden brown and its edges are dry.
Then, the robot carefully pushes a spatula under the pancake, lifts the spatula with the pancake on top, and quickly turns its wrist to put the pancake
upside down back onto the pancake maker. The robot waits for the other side of the pancake to cook fully. Finally, it places the pancake using the
spatula onto an upturned dinner plate.

What happens if: the robot pours too much pancake mix onto the pancake maker?
too little? the robot pours the mix close to the edge of the pancake maker? the robot
flips the pancake too soon? too late? the robot pushes only half of the spatula’s blade
under the pancake? the robot turns its wrist too slow? the robot uses a
knife/fork/spoon to flip the pancake? the pancake mix is too thick? too thin? the
ingredients of the mix are not homogeneously mixed?
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Where Does the Knowledge Come From?
Everyday Activity =

• a complex task that is both common and mundane to the agent performing it;

• one about which an agent has a great deal of knowledge, which comes as a result
of the activity being common, and is the primary contributor to its mundane
nature; and

• one at which adequate or satisficing performance rather than expert or optimal
performance is required.

adopted from [Anderson, 1995]
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Everyday manipulation is really hard
Picking up an object

decide on

• where to stand?

• which hand(s) to use?

• how to reach? . . .

• which grasp? where?

• how much force/lift force?

• how to lift? how to hold?

based on context:

• object, object states,
environment, task, . . .

Challenge

• doing the appropriate thing

• to the appropriate object

• in the appropriate way
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Manipulation Actions
AI vs control engineering view

AI: symbolic goals, qualitative
relations between objects

Control: continuous geometric
relations between coordinate

frames
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Assessment of the Research Problem

Autonomous Learning for Human-scale Manipulation Tasks

• robot control is knowledge intensive

• most knowledge/learning is needed for how actions are to be executed

• hypothesis: autonomous robot learning of human-scale manipulation tasks is not
possible without robots that:

1. know what they are doing
2. can read, watch, and play games

• lifelong learning

• learning everything
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We investigate 3 aspects

1. the memorization of execution episodes

2. the design of plans

3. the learning of structured joint probability distributions
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III

Memories for Autonomous Learning:

Robots that know what they are doing
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Memories for Autonomous Learning

III.1 Memories as Query Answering Systems

III.2 Learning Scenarios

III.3 “Big Data” from Manipulation Episodes

III.4 Data Sources for Manipulation Episodes

III.5 KR lite & Data Analytics

III.6 Open-EASE
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Memorizing Experiences for Autonomous Learning

robots that know what they are doing

• can answer queries about
– what they did,
– why,
– what happened,
– what the effects were,
– what they saw,
– what they reasoned,
– . . .
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Reasoning about Specific Situations
“Is an object in the assumed field of view?”

Yields explanations for:

• objects not found

• objects possibly occluded

?− t a s k s t a r t ( l o g : ’ CRAMPerceive uocvmivw ’ , S t ) ,
o w l i n d i v i d u a l o f ( pr2 : p r 2 h e a d m o u n t k i n e c t r g b l i n k , s rd l2comp : ’ Camera ’ ) ,
o b j v i s i b l e i n c a m e r a ( l o g : ’ V i s u a l P e r c e p t i o n Z 9 f X h E a e o b j e c t 0 ’ ,

pr2 : p r 2 h e a d m o u n t k i n e c t r g b l i n k , S t ) .
t r u e .

?− t a s k s t a r t ( l o g : ’ CRAMPerceive uocvmivw ’ , S t ) ,
o w l i n d i v i d u a l o f (Cam, s rd l2comp : ’ Camera ’ ) ,
o b j v i s i b l e i n c a m e r a ( l o g : ’ V i s u a l P e r c e p t i o n Z 9 f X h E a e o b j e c t 0 ’ ,

Cam, S t ) .
Cam = pr2 : p r 2 h i g h d e f f r a m e ;
Cam = pr2 : p r 2 h e a d m o u n t k i n e c t i r l i n k ;
Cam = pr2 : p r 2 h e a d m o u n t k i n e c t r g b l i n k ;
[ . . . ]
f a l s e .
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Objects occluded by robot parts

?− t a s k s t a r t ( l o g : ’ CRAMPerceive uocvmivw ’ , S t ) ,
sub component ( pr2 : p r 2 r i g h t a r m , Part ) ,
o b j b l o c k e d b y i n c a m e r a ( l o g : ’ V i s u a l P e r c e p t i o n Z 9 f X h E a e o b j e c t 0 ’ ,

Part ,
pr2 : p r 2 h e a d m o u n t k i n e c t r g b l i n k , S t ) .

Part = pr2 : p r 2 r w r i s t r o l l l i n k ;
Part = pr2 : p r 2 r f o r e a r m c a m o p t i c a l f r a m e ;
Part = pr2 : p r 2 r g r i p p e r p a l m l i n k ;
[ . . . ]
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Memories for Autonomous Learning

III.1 Memories as Query Answering Systems

III.2 Learning Scenarios
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Example learning Scenarios

• learning prediction models

• learning perception capabilities

• learning places from which objects can be perceive and reached

• . . .
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Learning Architecture

Expected Failures,
Sensor Values,

Time Spans

Sensor Readings

Active Parameters

Symbolic Plan Events
Continuous Sensor Data

Modelling Internal
Plan Structure

S
up

pl
yi

ng

Logging {
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Memory System Overview
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Symbolic Plan Data

Task: Approach and pick up an object from the kitchen counter

( l e t ∗ ( ( l o c−d e s i g ( a l o c a t i o n ‘ ( ( on Cupboard ) ( name k i t c h e n i s l a n d ) ) ) ) )
( o b j−d e s i g ( an o b j e c t ‘ ( ( t y p e c o n t a i n e r ) ( a t , l o c−d e s i g ) ) ) )

( a c h i e v e ‘ ( object− in−hand , o b j−d e s i g ) ) ) )Research Field Problem Plan Design Learning Conclusions

Michael Beetz
September, 2014
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OpenEASE Architecture
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Predicates on Experiences

Meta-Predicates (belief state or ground truth) Reasoning about events
holds(occ,Ti ) Occasions in the real world loc change(Obj) Object changed its location
belief at(event,Ti ) Occasions in the belief state object perceived(Obj) Object has been perceived
occurs(event,Ti ) Events in the belief state Reasoning about occasions

Reasoning about the logged task tree loc(obj, Loc) Location of an object
task(Task) Tasks on interpretation

stack
object visible(Obj) Object is visible to the robot

task class(Task, Class) Class of task object placed at(Obj, loc) Object was placed at location
task goal(Task, Goal) Goal of task Reasoning about logged poses and designators
task start(task,T ) Start time of task designator type(Desig,Type) Type of designator
task end(Task,T ) End time of task designator props(Desig, Prop, Val) Property values of designator
task status(Task, Status) Status of task (not started,

ongoing or finalized)
subtask(Task, Subtask) Task is a parent of Subtask obj pose by desig(Obj, Pose) Object pose from perceived

designator

subtask+(Task, Subtask) Task is an ancestor of Sub-
task

lookup transform(Src,Tgt,T ,Tf ) Logged transform from Src

returned value(Task, Result) Result of task (success or
fail)

to Tgt at time T

failure task(Error, Class) Failure of task transform pose(Pi , Src,Tgt,T , Po ) Transform Pi from frame Src
to frame Tgt at time T

failure class(Error, Class) Class of failures visible in cam(Obj, Cam,T ) At time T, Obj was in the
field of view of Cam

failure attribute(Err,Name, Val) Attribute of failure blocked by in cam(Obj, Blk, Cam,T ) At time T, Blk was blocking
the view of Cam on Obj
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Queries based on Experiences

“Which objects were believed to be on the table?”

“Object occluded by the robot’s arm?”

“What are common failures during pick and place?”

“How probable is success of pick and place after n fails?”
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A Web interface to KnowRob
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Implementation using ROS components
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Dockerizing KnowRob
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Plan Design
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Motivation

Focus:

• human-scale everyday manipulation activities

• lifelong learning and adaptation

• “smart” and general plans

Example Plan: Fetch and Place

Plan schema Generalized fetch and place (partial object description)

• find an object matching the partial object description
– go to the place where you believe the object to be
– look for it; if necessary make it visible

• position yourself in order to grasp the object properly

• ...
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An Example Plan Acquisition Episode

plan library

fluidTransfer
(stuff from to)

pour (stuff
container
destination)

pour
(pancakemix
bottle oven)

fill (stuff
device
container)

TurningInPlace
(object)

flip (food
tool)

flip (switch)

fetch
object

place (object
destination)

place (object
destination)

pour ( 〈stuff〉 : (some stuff)
〈from〉 : (an object

(type container)
(contains 〈stuff〉)
(affordance (an action

(type pick-up))))
〈to〉 : (a location))

1. take( 〈from〉)
2. hold( 〈from〉) (a location (above 〈to〉))
3. tilt( 〈from〉)

until (amount (some stuff (at 〈to〉))
≥ (amount 〈stuff〉)

fill ( 〈stuff〉 : (some stuff)
〈from〉 : (an object

(type device)
(contains 〈stuff〉)

〈to〉 : (a location (inside container))
1. take( 〈to〉)
2. hold( 〈to〉) (a location (under 〈from〉))
3. open( 〈from〉)

until (amount (some stuff (at 〈to〉))
> (amount 〈stuff〉)

pour ( 〈stuff〉 : (some stuff (type pancake-mix))
〈from〉 : (an object

(type bottle)
(contains 〈stuff〉)
(label “Mondamin”)

〈to〉 : (a location (on (an object-part
(type surface))))

:context (an activity
(type pancake-making)))

1. perform(an action
(type pick-up)
(object-acted-on 〈from〉)
(grasp (a grasp

(type wrap-grasp)
(gripper-placement ...))))

2. hold( 〈from〉) (a location (above 〈to〉))
3. tilt( 〈from〉)

until (amount (some stuff (at 〈to〉))
> (amount 〈stuff〉)

Action Core

Generic

Plan Sche-

mata

“pour the mix into the frying pan”
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(stuff from to)
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container
destination)
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bottle oven)
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1. take( 〈to〉)
2. hold( 〈to〉) (a location (under 〈from〉))
3. open( 〈from〉)

until (amount (some stuff (at 〈to〉))
> (amount 〈stuff〉)

pour ( 〈stuff〉 : (some stuff (type pancake-mix))
〈from〉 : (an object

(type bottle)
(contains 〈stuff〉)
(label “Mondamin”)

〈to〉 : (a location (on (an object-part
(type surface))))

:context (an activity
(type pancake-making)))

1. perform(an action
(type pick-up)
(object-acted-on 〈from〉)
(grasp (a grasp

(type wrap-grasp)
(gripper-placement ...))))

2. hold( 〈from〉) (a location (above 〈to〉))
3. tilt( 〈from〉)

until (amount (some stuff (at 〈to〉))
> (amount 〈stuff〉)

Action Core

Generic

Plan Sche-

mata

“pour the mix into the frying pan”
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An Example Plan Acquisition Episode

plan library

fluidTransfer
(stuff from to)

pour (stuff
container
destination)

pour
(pancakemix
bottle oven)

fill (stuff
device
container)

TurningInPlace
(object)

flip (food
tool)

flip (switch)

fetch
object

place (object
destination)

place (object
destination)

pour ( 〈stuff〉 : (some stuff)
〈from〉 : (an object

(type container)
(contains 〈stuff〉)
(affordance (an action

(type pick-up))))
〈to〉 : (a location))

1. take( 〈from〉)
2. hold( 〈from〉) (a location (above 〈to〉))
3. tilt( 〈from〉)

until (amount (some stuff (at 〈to〉))
≥ (amount 〈stuff〉)

fill ( 〈stuff〉 : (some stuff)
〈from〉 : (an object

(type device)
(contains 〈stuff〉)

〈to〉 : (a location (inside container))
1. take( 〈to〉)
2. hold( 〈to〉) (a location (under 〈from〉))
3. open( 〈from〉)

until (amount (some stuff (at 〈to〉))
> (amount 〈stuff〉)

pour ( 〈stuff〉 : (some stuff (type pancake-mix))
〈from〉 : (an object

(type bottle)
(contains 〈stuff〉)
(label “Mondamin”)

〈to〉 : (a location (on (an object-part
(type surface))))

:context (an activity
(type pancake-making)))

1. perform(an action
(type pick-up)
(object-acted-on 〈from〉)
(grasp (a grasp

(type wrap-grasp)
(gripper-placement ...))))

2. hold( 〈from〉) (a location (above 〈to〉))
3. tilt( 〈from〉)

until (amount (some stuff (at 〈to〉))
> (amount 〈stuff〉)

Action Core

Generic

Plan Sche-

mata

“pour the mix into the frying pan”
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An Example Plan Acquisition Episode

plan library

fluidTransfer
(stuff from to)

pour (stuff
container
destination)

pour
(pancakemix
bottle oven)

fill (stuff
device
container)

TurningInPlace
(object)

flip (food
tool)

flip (switch)

fetch
object

place (object
destination)

place (object
destination)

pour ( 〈stuff〉 : (some stuff)
〈from〉 : (an object

(type container)
(contains 〈stuff〉)
(affordance (an action

(type pick-up))))
〈to〉 : (a location))

1. take( 〈from〉)
2. hold( 〈from〉) (a location (above 〈to〉))
3. tilt( 〈from〉)

until (amount (some stuff (at 〈to〉))
≥ (amount 〈stuff〉)

fill ( 〈stuff〉 : (some stuff)
〈from〉 : (an object

(type device)
(contains 〈stuff〉)

〈to〉 : (a location (inside container))
1. take( 〈to〉)
2. hold( 〈to〉) (a location (under 〈from〉))
3. open( 〈from〉)

until (amount (some stuff (at 〈to〉))
> (amount 〈stuff〉)

pour ( 〈stuff〉 : (some stuff (type pancake-mix))
〈from〉 : (an object

(type bottle)
(contains 〈stuff〉)
(label “Mondamin”)

〈to〉 : (a location (on (an object-part
(type surface))))

:context (an activity
(type pancake-making)))

1. perform(an action
(type pick-up)
(object-acted-on 〈from〉)
(grasp (a grasp

(type wrap-grasp)
(gripper-placement ...))))

2. hold( 〈from〉) (a location (above 〈to〉))
3. tilt( 〈from〉)

until (amount (some stuff (at 〈to〉))
> (amount 〈stuff〉)

Action Core

Generic

Plan Sche-

mata

plan acquisition process
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Intelligence

An Example Plan Acquisition Episode

plan library

fluidTransfer
(stuff from to)

pour (stuff
container
destination)

pour
(pancakemix
bottle oven)

fill (stuff
device
container)

TurningInPlace
(object)

flip (food
tool)

flip (switch)

fetch
object

place (object
destination)

place (object
destination)

pour ( 〈stuff〉 : (some stuff)
〈from〉 : (an object

(type container)
(contains 〈stuff〉)
(affordance (an action

(type pick-up))))
〈to〉 : (a location))

1. take( 〈from〉)
2. hold( 〈from〉) (a location (above 〈to〉))
3. tilt( 〈from〉)

until (amount (some stuff (at 〈to〉))
≥ (amount 〈stuff〉)

fill ( 〈stuff〉 : (some stuff)
〈from〉 : (an object

(type device)
(contains 〈stuff〉)

〈to〉 : (a location (inside container))
1. take( 〈to〉)
2. hold( 〈to〉) (a location (under 〈from〉))
3. open( 〈from〉)

until (amount (some stuff (at 〈to〉))
> (amount 〈stuff〉)

pour ( 〈stuff〉 : (some stuff (type pancake-mix))
〈from〉 : (an object

(type bottle)
(contains 〈stuff〉)
(label “Mondamin”)

〈to〉 : (a location (on (an object-part
(type surface))))

:context (an activity
(type pancake-making)))

1. perform(an action
(type pick-up)
(object-acted-on 〈from〉)
(grasp (a grasp

(type wrap-grasp)
(gripper-placement ...))))

2. hold( 〈from〉) (a location (above 〈to〉))
3. tilt( 〈from〉)

until (amount (some stuff (at 〈to〉))
> (amount 〈stuff〉)

Action Core

Generic

Plan Sche-

mata

“spacing”
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An Example Plan Acquisition Episode

plan library

fluidTransfer
(stuff from to)

pour (stuff
container
destination)

pour
(pancakemix
bottle oven)

fill (stuff
device
container)

TurningInPlace
(object)

flip (food
tool)

flip (switch)

fetch
object

place (object
destination)

place (object
destination)

pour ( 〈stuff〉 : (some stuff)
〈from〉 : (an object

(type container)
(contains 〈stuff〉)
(affordance (an action

(type pick-up))))
〈to〉 : (a location))

1. take( 〈from〉)
2. hold( 〈from〉) (a location (above 〈to〉))
3. tilt( 〈from〉)

until (amount (some stuff (at 〈to〉))
≥ (amount 〈stuff〉)

fill ( 〈stuff〉 : (some stuff)
〈from〉 : (an object

(type device)
(contains 〈stuff〉)

〈to〉 : (a location (inside container))
1. take( 〈to〉)
2. hold( 〈to〉) (a location (under 〈from〉))
3. open( 〈from〉)

until (amount (some stuff (at 〈to〉))
> (amount 〈stuff〉)

pour ( 〈stuff〉 : (some stuff (type pancake-mix))
〈from〉 : (an object

(type bottle)
(contains 〈stuff〉)
(label “Mondamin”)

〈to〉 : (a location (on (an object-part
(type surface))))

:context (an activity
(type pancake-making)))

1. perform(an action
(type pick-up)
(object-acted-on 〈from〉)
(grasp (a grasp

(type wrap-grasp)
(gripper-placement ...))))

2. hold( 〈from〉) (a location (above 〈to〉))
3. tilt( 〈from〉)

until (amount (some stuff (at 〈to〉))
> (amount 〈stuff〉)

Action Core

Generic

Plan Sche-

mata

“spacing”
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Result of the Instruction Interpretation Step

plan schema pour( st : (some stuff (type pancake-mix))
c : (an object (type container) (contains st))
dest : (a location (in frying pan)))

(with-roles ((stuff st)
(container c)
(destination dest))

(with-subactions ((take-container (an action
(type take)
(object-acted-on container)))

(pouring-action (an action
(type pouring)
. . . ))

. . . )
(perform take-container)
(perform pouring-action)))
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Step 2: Refinement of Action Descriptions

WP1, WP2, WP5 pour the pancake mix into the frying pan

given:

(an action
(type pouring)
(some stuff

(type pancake-mix))
(destination

(a location
(in frying pan))))

compute:

additional attributes that might be
necessary to ensure successful execution,
such as

• how the container is grasped

• how the container is held

• the pose of the container while the
pouring event occurs

• the effect of pouring: amount? shape?

• movement phases and constraints
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Context-directed Plan Parameterization
Put the pancake mix away

(perform (an action
(type put-away)
(object ?obj = (the object

(type pancake-mix)))
(destination ?loc = (a location

(on counter)
(stable ?obj)
(reachable t)
(visible-for James)
(not (hindering (the activity

(type pancake-making))))))))
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An Example of Context-directed Plan Parameterization

setof ?Pose On(Counter, ?Pose) ?Poses ∧ member(?P, ?Poses)
∧ Pose(Cup, ?P) ∧ stable(Cup)

• setof ?Pose On(Counter, ?Pose)
?Poses

• member(?P, ?Poses)

• Pose(Cup, ?P)

• stable(Cup)
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An Example of Context-directed Plan Parameterization

setof ?Pose On(Counter, ?Pose) ?Poses ∧ member(?P, ?Poses)
∧ Pose(Cup, ?P) ∧ stable(Cup)

• setof ?Pose On(Counter, ?Pose)
?Poses

• member(?P, ?Poses)

• Pose(Cup, ?P)

• stable(Cup)

Create distribution for sampling poses
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An Example of Context-directed Plan Parameterization

setof ?Pose On(Counter, ?Pose) ?Poses ∧ member(?P, ?Poses)
∧ Pose(Cup, ?P) ∧ stable(Cup)

• setof ?Pose On(Counter, ?Pose)
?Poses

• member(?P, ?Poses)

• Pose(Cup, ?P)

• stable(Cup)

Draw a pose sample

Research Field Problem Plan Design Learning Conclusions

Michael Beetz
September, 2014

BAYCOGROB
66



Artificial 
Intelligence

An Example of Context-directed Plan Parameterization

setof ?Pose On(Counter, ?Pose) ?Poses ∧ member(?P, ?Poses)
∧ Pose(Cup, ?P) ∧ stable(Cup)

• setof ?Pose On(Counter, ?Pose)
?Poses

• member(?P, ?Poses)

• Pose(Cup, ?P)

• stable(Cup)

Place the mug
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An Example of Context-directed Plan Parameterization

setof ?Pose On(Counter, ?Pose) ?Poses ∧ member(?P, ?Poses)
∧ Pose(Cup, ?P) ∧ stable(Cup)

• setof ?Pose On(Counter, ?Pose)
?Poses

• member(?P, ?Poses)

• Pose(Cup, ?P)

• stable(Cup)

Simulate for 50ms, fail!
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An Example of Context-directed Plan Parameterization

setof ?Pose On(Counter, ?Pose) ?Poses ∧ member(?P, ?Poses)
∧ Pose(Cup, ?P) ∧ stable(Cup)

• setof ?Pose On(Counter, ?Pose)
?Poses

• member(?P, ?Poses)

• Pose(Cup, ?P)

• stable(Cup)

Backtrack, draw another pose sample
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An Example of Context-directed Plan Parameterization

setof ?Pose On(Counter, ?Pose) ?Poses ∧ member(?P, ?Poses)
∧ Pose(Cup, ?P) ∧ stable(Cup)

• setof ?Pose On(Counter, ?Pose)
?Poses

• member(?P, ?Poses)

• Pose(Cup, ?P)

• stable(Cup)

Place the mug
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An Example of Context-directed Plan Parameterization

setof ?Pose On(Counter, ?Pose) ?Poses ∧ member(?P, ?Poses)
∧ Pose(Cup, ?P) ∧ stable(Cup)

• setof ?Pose On(Counter, ?Pose)
?Poses

• member(?P, ?Poses)

• Pose(Cup, ?P)

• stable(Cup)

Simulate for 50ms, succeed!
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Plan Structure of the Fetch Plan
?obj ← Description of an object to grasp

Achieve in-hand (?obj)

?locs ← mostLikelyPlaces(?obj)

For each place ?loc in ?locs until ?obj in hand

At-Location (a loc (to see ?obj) (at ?loc))

Perceive(?obj)

Call low-level perception routine

Object found?
y n

Try n times at different ?loc-grasp (a loc (to grasp ?obj))

At-Location (?loc-grasp)

Perform (an action (to grasp) (obj-acted-on ?obj))

Object grasped?
y n

Finish Backtrack to new ?loc-
grasp

Backtrack to new
?loc

∅
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Plan Model
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Learning First-order Probabilistic Model
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Research Goal of BayCogRob

Answer the Research Question

Can we design plans and provide a computational infrastructure such that plans can
autonomously learn a joint probability distribution P(I, P, A, T , E , R) over

• their interpretation I
• the percepts P they receive and the effects E they cause

• and the relations R between I, P, and E

Given P(I, P, A, T , E , R)

the robot can compute:

• P(Q | TaskOutcome(success,T) ∧ Context)

• P(E | P, context)

• . . .
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Case Study 1: Learning Models of Perceive Plans
RoboSherlock [ICRA’14 (subm.)]

Research Field Problem Plan Design Learning Conclusions

Michael Beetz
September, 2014

BAYCOGROB
76



Artificial 
Intelligence

Case Study 1: Learning Models of Perceive Plans
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Case Study 1: Learning Models of Perceive Plans

annotator annotates if annotation
Color always color(c,col)
Size always size(c,s)
Goggles if Google goggles returns text or lo-

gos
logo(c,logo) text(c,text) tex-
ture(c,t)

FlatObject if there are objects that are too flat
to be found by the general 3D clus-
tering

shape(c,flat)

PrimShape always shape(c,shp)
LineMod confidence that c is one of the ob-

jects looked for exceeeds threshold
identity(c,i)

SACmodel if enough inliers for a model are
found

shape(c,sac)

Location always scene(c,loc)

Tabelle: Description of the annotators how they work, and what are the resulting annotations.
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Case Study 1: Learning Models of Perceive Plans

Prediction/Truth B
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T
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Bowl 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Cereal 0 8 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
Chips 0 0 5 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
Coffee 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Cup 0 0 2 2 20 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0
Fork 0 0 0 0 0 1 0 0 7 0 0 0 0 0 0 0 0 0 0 3 0
Juice 0 1 0 0 0 0 12 0 0 1 0 1 0 0 0 1 0 0 0 0 0
Ketchup 0 0 0 1 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0
Knife 0 0 0 0 0 9 0 0 6 0 0 0 0 0 0 0 0 0 1 5 0
Milk 0 0 0 0 0 0 3 0 0 10 0 0 0 0 0 0 0 0 0 0 0
Mondamin 0 0 0 0 0 0 0 0 0 1 7 1 0 0 0 0 0 0 2 0 0
Oil 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 2 0 0
Pancake maker 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0
Pitcher 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0
Plate 0 0 0 0 0 2 0 0 0 0 0 0 0 0 23 0 0 0 3 2 0
Popcorn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 5 0 0 0 0 0
Pot 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 1 1 0 0
Salt 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 3 0 0 0
Spatula 0 0 0 0 0 0 0 0 0 0 0 1 0 0 3 0 0 0 10 0 0
Spoon 0 0 0 0 0 3 0 0 6 0 0 0 0 0 0 0 0 0 2 6 0
Toaster 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 4
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Case Study 1: Learning Models of Perceive Plans

Google goggles shape annotators
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Bowl 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Cereal 0 8 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
Chips 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Coffee 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Cup 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Fork 10 0 4 9 20 15 0 1 19 7 4 8 6 3 28 5 6 4 16 16 4
Juice 0 2 2 0 0 0 14 0 0 3 1 2 0 0 0 1 0 0 3 0 0
Ketchup 0 0 1 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0
Knife 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Milk 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0
Mondamin 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0
Oil 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
Pancake maker 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Pitcher 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Plate 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Popcorn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Pot 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Salt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Spatula 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 3 0 0
Spoon 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Toaster 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Bowl 10 0 0 3 6 0 0 4 0 2 2 4 0 3 4 0 5 3 13 0 0
Cereal 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Chips 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Coffee 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Cup 0 0 7 0 14 0 0 3 0 0 5 7 0 0 0 0 0 0 1 0 0
Fork 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Juice 0 10 0 9 0 0 17 0 0 13 0 0 6 0 0 6 1 1 1 0 4
Ketchup 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Knife 0 0 0 0 0 11 0 0 12 0 0 0 0 0 13 0 0 0 2 9 0
Milk 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Mondamin 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Oil 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Pancake maker 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Pitcher 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Plate 0 0 0 0 0 4 0 0 7 0 0 0 0 0 11 0 0 0 5 7 0
Popcorn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Pot 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Salt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Spatula 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Spoon 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Toaster 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

• high categorization accuracy

• exploiting background knowledge

• exploiting co-occurrence of objects in scenes

• additional kinds of inference tasks
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Case Study 2: Learning Models for Toy Pick-and-Place

TUM-James performing a pick and place task:
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Case Study 2: Learning Models for Toy Pick-and-Place

Bayesian logic network trained on execution trace data (manually defined structure):
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Case Study 2: Learning Models for Toy Pick-and-Place

Query (parametrisation): Which manipulator to use, so that success is more likely for
picking up an object from the front-left position?

P(pickTask hand(H) | task hasGoal(T,G) = True ∧
task outcome(T) = SUCCEEDED ∧
hlTask ofTask(H,T) = True ∧
hlTaskType(H) = Pick ∧ pickTask field(H,F) = True ∧
field name(F) = FrontLeft)

≈ 〈 LEFT: 0.58, RIGHT: 0.42 〉
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Case Study 2: Learning Models for Toy Pick-and-Place

Query (prediction): What is the probability of being able to successfully place an
object at the back-middle position with the right manipulator?

P(task outcome(T) | task hasGoal(T, G) = True ∧
hlTask ofTask(H, T) = True ∧
hlTaskType(H) = Place ∧
placeTask field(H, F) = True ∧
pickTask hand(H) = Right ∧
field name(F) = BackMiddle)

≈ 〈 SUCCEEDED: 0.80, FAILED: 0.20 〉
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Case Study 3: PRACS — Probabilistic Action Cores
“Flip the pancake!” [IROS’12]

Probabilistic reasoning for disambiguation and filling information gaps

Probabilistic Robot Action Cores (PRAC) Web-enabled

Knowledge Acquisition

Probabilistic

First-Order Models 

Prediction/Envisioning

of Effects

Learning

from Experience
Interpretation

of Human Behavior

Learning from

Computer Games

c є T

argmax P    (isa(i, c) | isa(p, Pancake), 

                                   ObjectActedOn(p), 

                                   Instrument(i))

                  = Spatula

Flip
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Case Study 3: PRACS — Probabilistic Action Cores

Ground

ThemeBodypartOfAgent

Entity

part-of

is-a

Push the spatula under the pancake
Place

is-a

Ground
LocativeRelation

ActionVerb Instrument Agent

Spatula

FoodTurner

UsingUtensil

Pushing

Blade

KitchenUtensil

Pancake

BeingLocated

LocativeRelation

UnderneathHolding

Hand

Handle

IntentionallyAffect

CNI

is-a

Agent Purpose

part-of

is-a

ThemeInstrumentBodyPart

PlaceAgent

is-a

is-a Location

(Constructional-Null-Instantiation)

Research Field Problem Plan Design Learning Conclusions

Michael Beetz
September, 2014

BAYCOGROB
86



Artificial 
Intelligence

Conclusions

• Bayesian Cognitive Robotics =
plans that learn probabilistic models of themselves

– BayCogRob so far: understanding by building
– tremendous potential (demonstration examples with substantial impact)
– tip of the iceberg
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Outlook

• framework for Bayesian Cognitive Robotics

• longterm fetch and place (under realistic conditions)

• learning algorithms that can exploit problem structure

• incremental learning

• query and plan specialization
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