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What about everyday life?
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Subjective probability

▶ Making decisions requires making predictions.

▶ Outcomes of decisions are uncertain.

▶ How can we represent this uncertainty?

Subjective probability

▶ Describe which events we think are more likely.

▶ We quantify this with probability.

Why probability?

▶ Quantifies uncertainty in a “natural” way.

▶ A framework for drawing conclusions from data.

▶ Computationally convenient for decision making.
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Assumptions about our beliefs

Our beliefs must be consistent. This can be achieved if they satisfy some
assumptions:

Assumption 1 (SP1)

It is always possible to say whether one event is more likely than the other.

Assumption 2 (SP2)

If we can split events A,B in such a way that each part of A is less likely than
its counterpart in B, then A is less likely than B.

There also a couple of technical assumptions..
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Resulting properties of relative likelihoods

Theorem 1 (Transitivity)

If A,B,D such that A ≾ B and B ≾ D, then A ≾ D.

Theorem 2 (Complement)

For any A,B: A ≾ B iff A∁ ≿ B∁.

Theorem 3 (Fundamental property of relative likelihoods)

If A ⊂ B then A ≾ B. Furthermore, ∅ ≾ A ≾ S for any event A.

Theorem 4

For a given likelihood relation between events, there exists a unique probability
distribution P such that

P(A) ≥ P(B)⇔ A ≿ B

Similar results can be derived for conditional likelihoods and probabilities.
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Rewards

▶ We are going to receive a reward r from a set R of possible rewards.

▶ We prefer some rewards to others.

Example 5 (Possible sets of rewards R)

▶ R is a set of tickets to different musical events.

▶ R is a set of financial commodities.
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When we cannot select rewards directly

▶ In most problems, we cannot just choose which reward to receive.

▶ We can only specify a distribution on rewards.

Example 6 (Route selection)

▶ Each reward r ∈ R is the time it takes to travel from A to B.

▶ Route P1 is faster than P2 in heavy traffic and vice-versa.

▶ Which route should be preferred, given a certain probability for heavy
traffic?

In order to choose between random rewards, we use the concept of utility.
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Utility

Definition 7 (Utility)

The utility is a function U : R → R, such that for all a, b ∈ R

a ≿∗ b iff U(a) ≥ U(b), (1.1)

The expected utility of a distribution P on R is:

EP(U) =

∫
R

U(r) dP(r) (1.2)

Assumption 3 (The expected utility hypothesis)

The utility of P is equal to the expected utility of the reward under P.
Consequently,

P ≿∗ Q iff EP(U) ≥ EQ(U). (1.3)
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Example 8

r U(r) P Q
did not enter 0 1 0

paid 1 CU and lost −1 0 0.99
paid 1 CU and won 10 9 0 0.01

Table: A simple gambling problem

P Q
E(U | ·) 0 −0.9

Table: Expected utility for the gambling problem
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The St. Petersburg Paradox

A simple game [Bernoulli, 1713]

▶ A fair coin is tossed until a head is obtained.

▶ If the first head is obtained on the n-th toss, our reward will be 2n

currency units.

How much are you willing to pay, to play this game once?

▶ The probability to stop at round n is 2−n.

▶ Thus, the expected monetary gain of the game is

∞∑
n=1

2n2−n =∞.

▶ If your utility function were linear you’d be willing to pay any amount to
play.
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Summary

▶ We can subjectively indicate which events we think are more likely.

▶ Using relative likelihoods, we can define a subjective probability P for all
events.

▶ Similarly, we can subjectively indicate preferences for rewards.

▶ We can determine a utility function for all rewards.

▶ Hypothesis: we prefer the probability distribution (over rewards) with the
highest expected utility.

▶ Concave utility functions imply risk aversion (and convex, risk-taking).
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Experimental design and Markov decision processes

The following problems

▶ Shortest path problems.

▶ Optimal stopping problems.

▶ Reinforcement learning problems.

▶ Experiment design (clinical trial) problems

▶ Advertising.

can be all formalised as Markov decision processes.

Applications

▶ Robotics.

▶ Economics.

▶ Automatic control.

▶ Resource allocation
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Bandit problems
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Bandit problems

Applications

▶ Efficient optimisation.

▶ Online advertising.

▶ Clinical trials.

▶ Robot scientist.
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The stochastic n-armed bandit problem

Actions and rewards

▶ A set of actions A = {1, . . . , n}.
▶ Each action gives you a random reward with distribution P(rt | at = i).

▶ The expected reward of the i-th arm is ρi ≜ E(rt | at = i).

Utility

The utility is the sum of the rewards obtained

U ≜
∑
t

rt .
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Policy

Definition 9 (Policies)

A policy π is an algorithm for taking actions given the observed history.

Pπ(at+1 | a1, r1, . . . , at , rt)

is the probability of the next action at+1.



. . . . . .

Bernoulli bandits

Example 10 (Bernoulli bandits)

Consider n Bernoulli distributions with parameters ωi (i = 1, . . . , n) such that
rt | at = i ∼ Bern(ωi ). Then,

P(rt = 1 | at = i) = ωi P(rt = 0 | at = i) = 1− ωi (2.1)

Then the expected reward for the i-th bandit is ρi ≜ E(rt | at = i) = ?.

Exercise 1 (The optimal policy under perfect knowledge)

If we know ωi for all i , what is the best policy?

A At every step, play the bandit i with the greatest ωi .

B At every step, play the bandit i with probability increasing with ωi .

C There is no right answer. It depends on the horizon T .

D It is too complicated.
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The unknown reward case

Say you keep a running average of the reward obtained by each arm

ρ̂t,i = Rt,i/nt,i

where nt,i is the number of times you played arm i and Rt,i the total reward
received from i so that whenever you play at = i :

Rt+1,i = Rt,i + rt , nt+1,i = nt,i + 1.

You could then choose to play the strategy

at = argmax
i

ρ̂t,i .

What should the initial values n0,i ,R0,i be?
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The uniform policy

..

0

.

0.2

.

0.4

.

0.6

.

0.8

.

1

.
0

.
100

.
200

.
300

.
400

.
500

.
600

.
700

.
800

.
900

.
1000

.

ρ1

.

ρ2

.

ρ̂1

.

ρ̂2

.

∑t
k=1 rk/t



. . . . . .

The greedy policy
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A Markov processes
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Markov process

..st−1. st. st+1

Definition 11 (Markov Process – or Markov Chain)

The sequence {st | t = 1, . . .} of random variables st : Ω → S is a Markov
process if

P(st+1 | st , . . . , s1) = P(st+1 | st). (3.1)

▶ st is state of the Markov process at time t.

▶ P(st+1 | st) is the transition kernel of the process.

The state of an algorithm

Observe that the R, n vectors of our greedy bandit algorithm form a Markov
process. They also summarise our belief about which arm is the best.
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Reinforcement learning

The reinforcement learning problem.

Learning to act in an unknown environment, by interaction and reinforcement.

▶ The environment has a changing state st .

▶ The agents observes the state st (simplest case).

▶ The agent takes action at .

▶ It receives rewards rt .

The goal (informally)

Maximise total reward
∑

t rt

Types of environments

▶ Markov decision processes (MDPs).

▶ Partially observable MDPs (POMDPs).

▶ (Partially observable) Markov games.

First deal with the case when µ is known.
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Markov decision processes

Markov decision processes (MDP).

At each time step t:

▶ We observe state st ∈ S.
▶ We take action at ∈ A.
▶ We receive a reward rt ∈ R. .. at.

st

.

st+1

.

rt

Markov property of the reward and state distribution

Pµ(st+1 | st , at) (Transition distribution)

Pµ(rt | st , at) (Reward distribution)
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The agent

The agent’s policy π

Pπ(at | st , . . . , s1, at−1, . . . , a1) (history-dependent policy)

Pπ(at | st) (Markov policy)

Definition 12 (Utility)

Given a horizon T , the utility can be defined as

Ut ≜
T−t∑
k=0

rt+k (3.2)

The agent wants to to find π maximising the expected total future reward

Eπ
µ Ut = Eπ

µ

T−t∑
k=0

rt+k . (expected utility)
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State value function

V π
µ,t(s) ≜ Eπ

µ(Ut | st = s) (3.3)

The optimal policy π∗

π∗(µ) : V
π∗(µ)
t,µ (s) ≥ V π

t,µ(s) ∀π, t, s (3.4)

dominates all other policies π everywhere in S.
The optimal value function V ∗

V ∗
t,µ(s) ≜ V

π∗(µ)
t,µ (s), (3.5)

is the value function of the optimal policy π∗.
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Deterministic shortest-path problems

X

Properties

▶ T →∞.

▶ rt = −1 unless st = X , in which case
rt = 0.

▶ Pµ(st+1 = X |st = X ) = 1.

▶ A = {North, South,East,West}
▶ Transitions are deterministic and walls

block.
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14 13 12 11 10 9 8 7

15 13 6

16 15 14 4 3 4 5

17 2

18 19 20 2 1 2

19 21 1 0 1

20 22

21 23 24 25 26 27 28

Properties

▶ γ = 1, T →∞.

▶ rt = −1 unless st = X , in which case
rt = 0.

▶ The length of the shortest path from s
equals the negative value of the optimal
policy.

▶ Also called cost-to-go.
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Stochastic shortest path problem with a pit

O X

Properties

▶ T →∞.

▶ rt = −1, but rt = 0 at X and −100 at O
and the problem ends.

▶ Pµ(st+1 = X |st = X ) = 1.

▶ A = {North, South,East,West}
▶ Moves to a random direction with

probability ω. Walls block.
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Figure: Pit maze solutions for two values of ω.

Exercise 2

▶ Why should we only take the shortcut in (a)?

▶ Why does the agent commit suicide at the bottom?
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How to evaluate a policy

V π
µ,t(s) ≜ Eπ

µ(Ut | st = s) (4.1)

(4.2)

This derivation directly gives a number of policy evaluation algorithms.
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Monte-Carlo Policy evaluation

for s ∈ S do

for k = 1, . . . ,K do
Execute policy π and record total reward K times:

R̂k(s) =
T∑
t=1

rt,k .

end for
Calculate estimate:

v1(s) =
1

K

K∑
k=1

R̂k(s).

end for
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Backwards induction policy evaluation

for State s ∈ S , t = T , . . . , 1 do
Update values

vt(s) = Eπ
µ(rt | st = s) +

∑
j∈S

Pπ
µ(st+1 = j | st = s)vt+1(j), (4.5)

end for
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Backwards induction policy optimization

for State s ∈ S , t = T , . . . , 1 do
Update values

vt(s) = max
a
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∑
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(4.6)
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Discounted total reward.

Ut = lim
T→∞

T∑
k=t

γk rk , γ ∈ (0, 1)

Definition 13

A policy π is stationary if π(at | st) does not depend on t.

Remark 1

We can use the Markov chain kernel Pµ,π to write the expected utility vector as

vπ =
∞∑
t=0

γtP t
µ,πr (5.1)
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Theorem 14

For any stationary policy π, vπ is the unique solution of

v = r + γPµ,πv. ← fixed point (5.2)

In addition, the solution is:

vπ = (I − γPµ,π)
−1r. (5.3)

Example 15

Similar to the geometric series:

∞∑
t=0

αt =
1

1− α
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Backward induction for discounted infinite horizon problems

▶ We can also apply backwards induction to the infinite case.

▶ The resulting policy is stationary.

▶ So memory does not grow with T .

Value iteration

for n = 1, 2, . . . and s ∈ S do
vn(s) = maxa r(s, a) + γ

∑
s′∈S Pµ(s

′ | s, a)vn−1(s
′)

end for
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Policy Iteration

Input µ, S.
Initialise v0.
for n = 1, 2, . . . do

πn+1 = argmaxπ {r + γPπvn} // policy improvement

vn+1 = V
πn+1
µ // policy evaluation

break if πn+1 = πn.
end for
Return πn,vn.
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Summary

▶ Markov decision processes model controllable dynamical systems.
▶ Optimal policies maximise expected utility can be found with:

▶ Backwards induction / value iteration.
▶ Policy iteration.

▶ The MDP state can be seen as
▶ The state of a dynamic controllable process.
▶ The internal state of an agent.
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The reinforcement learning problem

Learning to act in an unknown world, by interaction and reinforcement.

World µ; Policy π; at time t

▶ µ generates observation xt ∈ X .
▶ We take action at ∈ A using π.

▶ µ gives us reward rt ∈ R.

Definition 16 ()

Eπ
µ

Ut =

Eπ
µ

T∑
k=t

rk
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World µ; Policy π; at time t

▶ µ generates observation xt ∈ X .
▶ We take action at ∈ A using π.

▶ µ gives us reward rt ∈ R.

Definition 16 (Expected utility)

Eπ
µ Ut = Eπ

µ

T∑
k=t

rk

When µ is known, calculate maxπ Eπ
µ U.



. . . . . .

The reinforcement learning problem

Learning to act in an unknown world, by interaction and reinforcement.

World µ; Policy π; at time t

▶ µ generates observation xt ∈ X .
▶ We take action at ∈ A using π.

▶ µ gives us reward rt ∈ R.

Definition 16 (Expected utility)

Eπ
µ Ut = Eπ

µ

T∑
k=t

rk

Knowing µ is contrary to the problem definition
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When µ is not known

Bayesian idea: use a subjective belief ξ(µ) on M

▶ Initial belief ξ(µ).

▶ The probability of observing history h is Pπ
µ(h).

▶ We can use this to adjust our belief via Bayes’ theorem:

ξ(µ | h, π) ∝ Pπ
µ(h)ξ(µ)

▶ We can thus conclude which µ is more likely.

The subjective expected utility

U∗
ξ ≜ max

π

Eπ
ξ U

=

max
π

∑
µ

(
Eπ

µ U
)
ξ(µ).

Integrates planning and learning, and the exploration-exploitation trade-off
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Bounds on the ξ-optimal utility U∗
ξ ≜ maxπ Eπ

ξ U

..

EU

. ξ.

U∗
µ1
: No trap

.

U∗
µ2
: Trap
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ABC (Approximate Bayesian Computation) RL1

How to deal with an arbitrary model space M

▶ The models µ ∈M may be non-probabilistic simulators.

▶ We may not know how to choose the simulator parameters.

Overview of the approach

▶ Place a prior on the simulator parameters.

▶ Observe some data h on the real system.

▶ Approximate the posterior by statistics on simulated data.

▶ Calculate a near-optimal policy for the posterior.

Results

▶ We prove soundness with general properties on the statistics.

▶ In practice, can require much less data than a general model.

1Dimitrakakis, Tziortiotis. ABC Reinforcement Learning: ICML 2013



. . . . . .

ABC (Approximate Bayesian Computation) RL1

How to deal with an arbitrary model space M

▶ The models µ ∈M may be non-probabilistic simulators.

▶ We may not know how to choose the simulator parameters.

Overview of the approach

▶ Place a prior on the simulator parameters.

▶ Observe some data h on the real system.

▶ Approximate the posterior by statistics on simulated data.

▶ Calculate a near-optimal policy for the posterior.

Results

▶ We prove soundness with general properties on the statistics.

▶ In practice, can require much less data than a general model.

1Dimitrakakis, Tziortiotis. ABC Reinforcement Learning: ICML 2013



. . . . . .

ABC (Approximate Bayesian Computation) RL1

How to deal with an arbitrary model space M

▶ The models µ ∈M may be non-probabilistic simulators.

▶ We may not know how to choose the simulator parameters.

Overview of the approach

▶ Place a prior on the simulator parameters.

▶ Observe some data h on the real system.

▶ Approximate the posterior by statistics on simulated data.

▶ Calculate a near-optimal policy for the posterior.

Results

▶ We prove soundness with general properties on the statistics.

▶ In practice, can require much less data than a general model.

1Dimitrakakis, Tziortiotis. ABC Reinforcement Learning: ICML 2013



. . . . . .

ABC (Approximate Bayesian Computation) RL1

How to deal with an arbitrary model space M

▶ The models µ ∈M may be non-probabilistic simulators.

▶ We may not know how to choose the simulator parameters.

Overview of the approach

▶ Place a prior on the simulator parameters.

▶ Observe some data h on the real system.

▶ Approximate the posterior by statistics on simulated data.

▶ Calculate a near-optimal policy for the posterior.

Results

▶ We prove soundness with general properties on the statistics.

▶ In practice, can require much less data than a general model.

1Dimitrakakis, Tziortiotis. ABC Reinforcement Learning: ICML 2013



. . . . . .

Cover tree Bayesian reinforcement learning

The model idea

▶ Cover the space using a cover
tree.

▶ A linear model for each set.

▶ The tree defines a distribution on
piecewise-linear models.

Algorithm overview

▶ Build the tree online

▶ Do Bayesian inference on the tree.

▶ Sample a model from the tree.

▶ Get a policy for the model.

..c0.

c1

.

c2

.

c3

.

c4
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Cover tree Bayesian reinforcement learning

The model idea

▶ Cover the space using a cover
tree.

▶ A linear model for each set.

▶ The tree defines a distribution on
piecewise-linear models.

Algorithm overview

▶ Build the tree online

▶ Do Bayesian inference on the tree.

▶ Sample a model from the tree.

▶ Get a policy for the model.
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A comparison

ABC RL

▶ Any simulator can be used ⇒ enables detailed prior knowledge

▶ Our theoretical results prove soundness of ABC.

▶ Downside: Computationally intensive.

Cover Tree Bayesian RL

▶ Very general model.

▶ Inference in logarithmic time due to the tree strcuture.

▶ Downside: Hard to insert domain-specific prior knowledge.

Future work

Advanced algorithms (e.g. tree or gradient methods) for policy optimisation.
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▶ Unknown MDPs can be handled in a Bayesian framework.
▶ This defines a belief-augmented MDP with

▶ A state for the MDP.
▶ A state for the agent’s belief.

▶ The Bayes-optimal utility is convex, enabling approximations.

▶ A big problem in specifying the “right” prior.

Questions?
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ABC (Approximate Bayesian Computation)

When there is no probabilistic model (Pµ is not available): ABC!

▶ A prior ξ on a class of simulatorsM
▶ History h ∈ H from policy π.

▶ Statistic f : H → (W, ∥ · ∥)
▶ Threshold ϵ > 0.

ABC-RL using Thompson sampling

▶ do µ̂ ∼ ξ, h′ ∼ Pπ
µ̂ // sample a model and history

▶ until ∥f (h′)− f (h)∥ ≤ ϵ // until the statistics are close

▶ µ(k) = µ̂ // approximate posterior sample µ(k) ∼ ξϵ(· | ht)
▶ π(k) ≈ argmaxEπ

µ(k) Ut // approximate optimal policy for sample
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ABC (Approximate Bayesian Computation)

When there is no probabilistic model (Pµ is not available): ABC!

▶ A prior ξ on a class of simulatorsM
▶ History h ∈ H from policy π.

▶ Statistic f : H → (W, ∥ · ∥)
▶ Threshold ϵ > 0.

Example 17 (Cumulative features)

Feature function ϕ : X → Rk .

f (h) ≜
∑
t

ϕ(xt)

ABC-RL using Thompson sampling

▶ do µ̂ ∼ ξ, h′ ∼ Pπ
µ̂ // sample a model and history

▶ until ∥f (h′)− f (h)∥ ≤ ϵ // until the statistics are close

▶ µ(k) = µ̂ // approximate posterior sample µ(k) ∼ ξϵ(· | ht)
▶ π(k) ≈ argmaxEπ

µ(k) Ut // approximate optimal policy for sample
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The approximate posterior ξϵ(· | h)

Corollary 17

If f is a sufficient statistic and ϵ = 0, then ξ(· | h) = ξϵ(· | h).

Assumption 4 (A1. Lipschitz log-probabilities)

For the policy π, ∃L > 0 s.t. ∀h, h′ ∈ H and ∀µ ∈M∣∣ln [Pπ
µ(h)/Pπ

µ(h
′)
]∣∣ ≤ L∥f (h)− f (h′)∥

Theorem 18 (The approximate posterior ξϵ(· | h) is close to ξ(· | h))
If A1 holds then ∀ϵ > 0:

D (ξ(· | h) ∥ ξϵ(· | h)) ≤ 2Lϵ+ ln |Ah
ϵ|, (6.1)

where Ah
ϵ ≜ {z ∈ H | ∥f (z)− f (h)∥ ≤ ϵ}.
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