
.

Planning under uncertainty
Markov decision processes

Christos Dimitrakakis

Chalmers

August 31, 2014

.

Contents
Subjective probability and utility

Subjective probability
Rewards and preferences

Bandit problems
Introduction
Bernoulli bandits

Markov decision processes and reinforcement learning
Markov processes
Markov decision processes
Value functions
Examples

Episodic problems
Policy evaluation
Backwards induction

Continuing, discounted problems
Markov chain theory for discounted problems
Infinite horizon MDP Algorithms

Bayesian reinforcement learning
Reinforcement learning
Bounds on the utility
Properties of ABC

.

Objective Probability

x

P
θ

Figure: The double slit experiment

.

Objective Probability

Figure: The double slit experiment

.

Objective Probability

Figure: The double slit experiment

.

What about everyday life?

.

Subjective probability

▶ Making decisions requires making predictions.

▶ Outcomes of decisions are uncertain.

▶ How can we represent this uncertainty?

Subjective probability

▶ Describe which events we think are more likely.

▶ We quantify this with probability.

Why probability?

▶ Quantifies uncertainty in a “natural” way.

▶ A framework for drawing conclusions from data.

▶ Computationally convenient for decision making.

.

Subjective probability

▶ Making decisions requires making predictions.

▶ Outcomes of decisions are uncertain.

▶ How can we represent this uncertainty?

Subjective probability

▶ Describe which events we think are more likely.

▶ We quantify this with probability.

Why probability?

▶ Quantifies uncertainty in a “natural” way.

▶ A framework for drawing conclusions from data.

▶ Computationally convenient for decision making.

.

Subjective probability

▶ Making decisions requires making predictions.

▶ Outcomes of decisions are uncertain.

▶ How can we represent this uncertainty?

Subjective probability

▶ Describe which events we think are more likely.

▶ We quantify this with probability.

Why probability?

▶ Quantifies uncertainty in a “natural” way.

▶ A framework for drawing conclusions from data.

▶ Computationally convenient for decision making.

.

Subjective probability

▶ Making decisions requires making predictions.

▶ Outcomes of decisions are uncertain.

▶ How can we represent this uncertainty?

Subjective probability

▶ Describe which events we think are more likely.

▶ We quantify this with probability.

Why probability?

▶ Quantifies uncertainty in a “natural” way.

▶ A framework for drawing conclusions from data.

▶ Computationally convenient for decision making.

.

Assumptions about our beliefs

Our beliefs must be consistent. This can be achieved if they satisfy some
assumptions:

Assumption 1 (SP1)

It is always possible to say whether one event is more likely than the other.

Assumption 2 (SP2)

If we can split events A,B in such a way that each part of A is less likely than
its counterpart in B, then A is less likely than B.

There also a couple of technical assumptions..

.

Assumptions about our beliefs

Our beliefs must be consistent. This can be achieved if they satisfy some
assumptions:

Assumption 1 (SP1)

It is always possible to say whether one event is more likely than the other.

Assumption 2 (SP2)

If we can split events A,B in such a way that each part of A is less likely than
its counterpart in B, then A is less likely than B.

There also a couple of technical assumptions..

.

Assumptions about our beliefs

Our beliefs must be consistent. This can be achieved if they satisfy some
assumptions:

Assumption 1 (SP1)

It is always possible to say whether one event is more likely than the other.

Assumption 2 (SP2)

If we can split events A,B in such a way that each part of A is less likely than
its counterpart in B, then A is less likely than B.

There also a couple of technical assumptions..

.

Resulting properties of relative likelihoods

Theorem 1 (Transitivity)

If A,B,D such that A ≾ B and B ≾ D, then A ≾ D.

Theorem 2 (Complement)

For any A,B: A ≾ B iff A∁ ≿ B∁.

Theorem 3 (Fundamental property of relative likelihoods)

If A ⊂ B then A ≾ B. Furthermore, ∅ ≾ A ≾ S for any event A.

Theorem 4

For a given likelihood relation between events, there exists a unique probability
distribution P such that

P(A) ≥ P(B)⇔ A ≿ B

Similar results can be derived for conditional likelihoods and probabilities.

.

Rewards

▶ We are going to receive a reward r from a set R of possible rewards.

▶ We prefer some rewards to others.

Example 5 (Possible sets of rewards R)

▶ R is a set of tickets to different musical events.

▶ R is a set of financial commodities.

.

When we cannot select rewards directly

▶ In most problems, we cannot just choose which reward to receive.

▶ We can only specify a distribution on rewards.

Example 6 (Route selection)

▶ Each reward r ∈ R is the time it takes to travel from A to B.

▶ Route P1 is faster than P2 in heavy traffic and vice-versa.

▶ Which route should be preferred, given a certain probability for heavy
traffic?

In order to choose between random rewards, we use the concept of utility.

.

When we cannot select rewards directly

▶ In most problems, we cannot just choose which reward to receive.

▶ We can only specify a distribution on rewards.

Example 6 (Route selection)

▶ Each reward r ∈ R is the time it takes to travel from A to B.

▶ Route P1 is faster than P2 in heavy traffic and vice-versa.

▶ Which route should be preferred, given a certain probability for heavy
traffic?

In order to choose between random rewards, we use the concept of utility.

.

When we cannot select rewards directly

▶ In most problems, we cannot just choose which reward to receive.

▶ We can only specify a distribution on rewards.

Example 6 (Route selection)

▶ Each reward r ∈ R is the time it takes to travel from A to B.

▶ Route P1 is faster than P2 in heavy traffic and vice-versa.

▶ Which route should be preferred, given a certain probability for heavy
traffic?

In order to choose between random rewards, we use the concept of utility.

.

Utility

Definition 7 (Utility)

The utility is a function U : R → R, such that for all a, b ∈ R

a ≿∗ b iff U(a) ≥ U(b), (1.1)

The expected utility of a distribution P on R is:

EP(U) =

∫
R

U(r) dP(r) (1.2)

Assumption 3 (The expected utility hypothesis)

The utility of P is equal to the expected utility of the reward under P.
Consequently,

P ≿∗ Q iff EP(U) ≥ EQ(U). (1.3)

.

Utility

Definition 7 (Utility)

The utility is a function U : R → R, such that for all a, b ∈ R

a ≿∗ b iff U(a) ≥ U(b), (1.1)

The expected utility of a distribution P on R is:

EP(U) =

∫
R

U(r) dP(r) (1.2)

Assumption 3 (The expected utility hypothesis)

The utility of P is equal to the expected utility of the reward under P.
Consequently,

P ≿∗ Q iff EP(U) ≥ EQ(U). (1.3)

.

Utility

Definition 7 (Utility)

The utility is a function U : R → R, such that for all a, b ∈ R

a ≿∗ b iff U(a) ≥ U(b), (1.1)

The expected utility of a distribution P on R is:

EP(U) =

∫
R

U(r) dP(r) (1.2)

Assumption 3 (The expected utility hypothesis)

The utility of P is equal to the expected utility of the reward under P.
Consequently,

P ≿∗ Q iff EP(U) ≥ EQ(U). (1.3)

.

Example 8

r U(r) P Q
did not enter 0 1 0

paid 1 CU and lost −1 0 0.99
paid 1 CU and won 10 9 0 0.01

Table: A simple gambling problem

P Q
E(U | ·) 0 −0.9

Table: Expected utility for the gambling problem

.

The St. Petersburg Paradox

A simple game [Bernoulli, 1713]

▶ A fair coin is tossed until a head is obtained.

▶ If the first head is obtained on the n-th toss, our reward will be 2n

currency units.

How much are you willing to pay, to play this game once?

▶ The probability to stop at round n is 2−n.

▶ Thus, the expected monetary gain of the game is

∞∑
n=1

2n2−n =∞.

▶ If your utility function were linear you’d be willing to pay any amount to
play.

.

The St. Petersburg Paradox

A simple game [Bernoulli, 1713]

▶ A fair coin is tossed until a head is obtained.

▶ If the first head is obtained on the n-th toss, our reward will be 2n

currency units.

How much are you willing to pay, to play this game once?

▶ The probability to stop at round n is 2−n.

▶ Thus, the expected monetary gain of the game is

∞∑
n=1

2n2−n =∞.

▶ If your utility function were linear you’d be willing to pay any amount to
play.

.

The St. Petersburg Paradox

A simple game [Bernoulli, 1713]

▶ A fair coin is tossed until a head is obtained.

▶ If the first head is obtained on the n-th toss, our reward will be 2n

currency units.

How much are you willing to pay, to play this game once?

▶ The probability to stop at round n is 2−n.

▶ Thus, the expected monetary gain of the game is

∞∑
n=1

2n2−n =∞.

▶ If your utility function were linear you’d be willing to pay any amount to
play.

.

The St. Petersburg Paradox

A simple game [Bernoulli, 1713]

▶ A fair coin is tossed until a head is obtained.

▶ If the first head is obtained on the n-th toss, our reward will be 2n

currency units.

How much are you willing to pay, to play this game once?

▶ The probability to stop at round n is 2−n.

▶ Thus, the expected monetary gain of the game is

∞∑
n=1

2n2−n =∞.

▶ If your utility function were linear you’d be willing to pay any amount to
play.

.

The St. Petersburg Paradox

A simple game [Bernoulli, 1713]

▶ A fair coin is tossed until a head is obtained.

▶ If the first head is obtained on the n-th toss, our reward will be 2n

currency units.

How much are you willing to pay, to play this game once?

▶ The probability to stop at round n is 2−n.

▶ Thus, the expected monetary gain of the game is

∞∑
n=1

2n2−n =∞.

▶ If your utility function were linear you’d be willing to pay any amount to
play.

.

Summary

▶ We can subjectively indicate which events we think are more likely.

▶ Using relative likelihoods, we can define a subjective probability P for all
events.

▶ Similarly, we can subjectively indicate preferences for rewards.

▶ We can determine a utility function for all rewards.

▶ Hypothesis: we prefer the probability distribution (over rewards) with the
highest expected utility.

▶ Concave utility functions imply risk aversion (and convex, risk-taking).

.

Experimental design and Markov decision processes

The following problems

▶ Shortest path problems.

▶ Optimal stopping problems.

▶ Reinforcement learning problems.

▶ Experiment design (clinical trial) problems

▶ Advertising.

can be all formalised as Markov decision processes.

Applications

▶ Robotics.

▶ Economics.

▶ Automatic control.

▶ Resource allocation

.

Contents
Subjective probability and utility

Subjective probability
Rewards and preferences

Bandit problems
Introduction
Bernoulli bandits

Markov decision processes and reinforcement learning
Markov processes
Markov decision processes
Value functions
Examples

Episodic problems
Policy evaluation
Backwards induction

Continuing, discounted problems
Markov chain theory for discounted problems
Infinite horizon MDP Algorithms

Bayesian reinforcement learning
Reinforcement learning
Bounds on the utility
Properties of ABC

.

Bandit problems

.

Bandit problems

Applications

▶ Efficient optimisation.

▶ Online advertising.

▶ Clinical trials.

▶ Robot scientist.

..

-1

.

-0.5

.

0

.

0.5

.

1

.

1.5

.

2

.
0

.
0.5

.
1

.
1.5

.
2

.
2.5

.
3

.
3.5

.
4

.

Bandit problems

Applications

▶ Efficient optimisation.

▶ Online advertising.

▶ Clinical trials.

▶ Robot scientist.

..

-1

.

-0.5

.

0

.

0.5

.

1

.

1.5

.

2

.
0

.
0.5

.
1

.
1.5

.
2

.
2.5

.
3

.
3.5

.
4

.

Bandit problems

Applications

▶ Efficient optimisation.

▶ Online advertising.

▶ Clinical trials.

▶ Robot scientist.

..

-1

.

-0.5

.

0

.

0.5

.

1

.

1.5

.

2

.
0

.
0.5

.
1

.
1.5

.
2

.
2.5

.
3

.
3.5

.
4

.

Bandit problems

Applications

▶ Efficient optimisation.

▶ Online advertising.

▶ Clinical trials.

▶ Robot scientist.

.

Bandit problems

Applications

▶ Efficient optimisation.

▶ Online advertising.

▶ Clinical trials.

▶ Robot scientist.

Ultrasound

.

Bandit problems

Applications

▶ Efficient optimisation.

▶ Online advertising.

▶ Clinical trials.

▶ Robot scientist.

.

The stochastic n-armed bandit problem

Actions and rewards

▶ A set of actions A = {1, . . . , n}.
▶ Each action gives you a random reward with distribution P(rt | at = i).

▶ The expected reward of the i-th arm is ρi ≜ E(rt | at = i).

Utility

The utility is the sum of the rewards obtained

U ≜
∑
t

rt .

.

Policy

Definition 9 (Policies)

A policy π is an algorithm for taking actions given the observed history.

Pπ(at+1 | a1, r1, . . . , at , rt)

is the probability of the next action at+1.

.

Bernoulli bandits

Example 10 (Bernoulli bandits)

Consider n Bernoulli distributions with parameters ωi (i = 1, . . . , n) such that
rt | at = i ∼ Bern(ωi). Then,

P(rt = 1 | at = i) = ωi P(rt = 0 | at = i) = 1− ωi (2.1)

Then the expected reward for the i-th bandit is ρi ≜ E(rt | at = i) = ?.

Exercise 1 (The optimal policy under perfect knowledge)

If we know ωi for all i , what is the best policy?

A At every step, play the bandit i with the greatest ωi .

B At every step, play the bandit i with probability increasing with ωi .

C There is no right answer. It depends on the horizon T .

D It is too complicated.

.

Bernoulli bandits

Example 10 (Bernoulli bandits)

Consider n Bernoulli distributions with parameters ωi (i = 1, . . . , n) such that
rt | at = i ∼ Bern(ωi). Then,

P(rt = 1 | at = i) = ωi P(rt = 0 | at = i) = 1− ωi (2.1)

Then the expected reward for the i-th bandit is ρi ≜ E(rt | at = i) = ωi .

Exercise 1 (The optimal policy under perfect knowledge)

If we know ωi for all i , what is the best policy?

A At every step, play the bandit i with the greatest ωi .

B At every step, play the bandit i with probability increasing with ωi .

C There is no right answer. It depends on the horizon T .

D It is too complicated.

.

Bernoulli bandits

Example 10 (Bernoulli bandits)

Consider n Bernoulli distributions with parameters ωi (i = 1, . . . , n) such that
rt | at = i ∼ Bern(ωi). Then,

P(rt = 1 | at = i) = ωi P(rt = 0 | at = i) = 1− ωi (2.1)

Then the expected reward for the i-th bandit is ρi ≜ E(rt | at = i) = ωi .

Exercise 1 (The optimal policy under perfect knowledge)

If we know ωi for all i , what is the best policy?

A At every step, play the bandit i with the greatest ωi .

B At every step, play the bandit i with probability increasing with ωi .

C There is no right answer. It depends on the horizon T .

D It is too complicated.

.

The unknown reward case

Say you keep a running average of the reward obtained by each arm

ρ̂t,i = Rt,i/nt,i

where nt,i is the number of times you played arm i and Rt,i the total reward
received from i so that whenever you play at = i :

Rt+1,i = Rt,i + rt , nt+1,i = nt,i + 1.

You could then choose to play the strategy

at = argmax
i

ρ̂t,i .

What should the initial values n0,i ,R0,i be?

.

The uniform policy

..

0

.

0.2

.

0.4

.

0.6

.

0.8

.

1

.
0

.
100

.
200

.
300

.
400

.
500

.
600

.
700

.
800

.
900

.
1000

.

ρ1

.

ρ2

.

ρ̂1

.

ρ̂2

.

∑t
k=1 rk/t

.

The greedy policy

..

0

.

0.2

.

0.4

.

0.6

.

0.8

.

1

.
0

.
100

.
200

.
300

.
400

.
500

.
600

.
700

.
800

.
900

.
1000

.

ρ1

.

ρ2

.

ρ̂1

.

ρ̂2

.

∑t
k=1 rk/t

For n0,i = R0,i = 0

.

The greedy policy

..

0

.

0.2

.

0.4

.

0.6

.

0.8

.

1

.
0

.
100

.
200

.
300

.
400

.
500

.
600

.
700

.
800

.
900

.
1000

.

ρ1

.

ρ2

.

ρ̂1

.

ρ̂2

.

∑t
k=1 rk/t

For n0,i = R0,i = 1

.

The greedy policy

..

0

.

0.2

.

0.4

.

0.6

.

0.8

.

1

.
0

.
100

.
200

.
300

.
400

.
500

.
600

.
700

.
800

.
900

.
1000

.

ρ1

.

ρ2

.

ρ̂1

.

ρ̂2

.

∑t
k=1 rk/t

For
n0,i = R0,i = 10

.

Contents
Subjective probability and utility

Subjective probability
Rewards and preferences

Bandit problems
Introduction
Bernoulli bandits

Markov decision processes and reinforcement learning
Markov processes
Markov decision processes
Value functions
Examples

Episodic problems
Policy evaluation
Backwards induction

Continuing, discounted problems
Markov chain theory for discounted problems
Infinite horizon MDP Algorithms

Bayesian reinforcement learning
Reinforcement learning
Bounds on the utility
Properties of ABC

.

A Markov processes

.

Markov process

..st−1. st. st+1

Definition 11 (Markov Process – or Markov Chain)

The sequence {st | t = 1, . . .} of random variables st : Ω → S is a Markov
process if

P(st+1 | st , . . . , s1) = P(st+1 | st). (3.1)

▶ st is state of the Markov process at time t.

▶ P(st+1 | st) is the transition kernel of the process.

The state of an algorithm

Observe that the R, n vectors of our greedy bandit algorithm form a Markov
process. They also summarise our belief about which arm is the best.

.

Reinforcement learning

The reinforcement learning problem.

Learning to act in an unknown environment, by interaction and reinforcement.

▶ The environment has a changing state st .

▶ The agents observes the state st (simplest case).

▶ The agent takes action at .

▶ It receives rewards rt .

The goal (informally)

Maximise total reward
∑

t rt

Types of environments

▶ Markov decision processes (MDPs).

▶ Partially observable MDPs (POMDPs).

▶ (Partially observable) Markov games.

First deal with the case when µ is known.

.

Markov decision processes

Markov decision processes (MDP).

At each time step t:

▶ We observe state st ∈ S.
▶ We take action at ∈ A.
▶ We receive a reward rt ∈ R. .. at.

st

.

st+1

.

rt

Markov property of the reward and state distribution

Pµ(st+1 | st , at) (Transition distribution)

Pµ(rt | st , at) (Reward distribution)

.

The agent

The agent’s policy π

Pπ(at | st , . . . , s1, at−1, . . . , a1) (history-dependent policy)

Pπ(at | st) (Markov policy)

Definition 12 (Utility)

Given a horizon T , the utility can be defined as

Ut ≜
T−t∑
k=0

rt+k (3.2)

The agent wants to to find π maximising the expected total future reward

Eπ
µ Ut = Eπ

µ

T−t∑
k=0

rt+k . (expected utility)

.

State value function

V π
µ,t(s) ≜ Eπ

µ(Ut | st = s) (3.3)

The optimal policy π∗

π∗(µ) : V
π∗(µ)
t,µ (s) ≥ V π

t,µ(s) ∀π, t, s (3.4)

dominates all other policies π everywhere in S.
The optimal value function V ∗

V ∗
t,µ(s) ≜ V

π∗(µ)
t,µ (s), (3.5)

is the value function of the optimal policy π∗.

.

Deterministic shortest-path problems

X

Properties

▶ T →∞.

▶ rt = −1 unless st = X , in which case
rt = 0.

▶ Pµ(st+1 = X |st = X) = 1.

▶ A = {North, South,East,West}
▶ Transitions are deterministic and walls

block.

.

14 13 12 11 10 9 8 7

15 13 6

16 15 14 4 3 4 5

17 2

18 19 20 2 1 2

19 21 1 0 1

20 22

21 23 24 25 26 27 28

Properties

▶ γ = 1, T →∞.

▶ rt = −1 unless st = X , in which case
rt = 0.

▶ The length of the shortest path from s
equals the negative value of the optimal
policy.

▶ Also called cost-to-go.

.

Stochastic shortest path problem with a pit

O X

Properties

▶ T →∞.

▶ rt = −1, but rt = 0 at X and −100 at O
and the problem ends.

▶ Pµ(st+1 = X |st = X) = 1.

▶ A = {North, South,East,West}
▶ Moves to a random direction with

probability ω. Walls block.

.

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

(a) ω = 0.1

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

(b) ω = 0.5

0.5
1

1.5
2

2.5

-120 -100 -80 -60 -40 -20 0

(c) value

Figure: Pit maze solutions for two values of ω.

Exercise 2

▶ Why should we only take the shortcut in (a)?

▶ Why does the agent commit suicide at the bottom?

.

Contents
Subjective probability and utility

Subjective probability
Rewards and preferences

Bandit problems
Introduction
Bernoulli bandits

Markov decision processes and reinforcement learning
Markov processes
Markov decision processes
Value functions
Examples

Episodic problems
Policy evaluation
Backwards induction

Continuing, discounted problems
Markov chain theory for discounted problems
Infinite horizon MDP Algorithms

Bayesian reinforcement learning
Reinforcement learning
Bounds on the utility
Properties of ABC

.

How to evaluate a policy

V π
µ,t(s) ≜ Eπ

µ(Ut | st = s) (4.1)

(4.2)

This derivation directly gives a number of policy evaluation algorithms.

.

How to evaluate a policy

V π
µ,t(s) ≜ Eπ

µ(Ut | st = s) (4.1)

=
T−t∑
k=0

Eπ
µ(rt+k | st = s) (4.2)

(4.3)

This derivation directly gives a number of policy evaluation algorithms.

.

How to evaluate a policy

V π
µ,t(s) ≜ Eπ

µ(Ut | st = s) (4.1)

=
T−t∑
k=0

Eπ
µ(rt+k | st = s) (4.2)

= Eπ
µ(rt | st = s) + Eπ

µ(Ut+1 | st = s) (4.3)

(4.4)

This derivation directly gives a number of policy evaluation algorithms.

.

How to evaluate a policy

V π
µ,t(s) ≜ Eπ

µ(Ut | st = s) (4.1)

=
T−t∑
k=0

Eπ
µ(rt+k | st = s) (4.2)

= Eπ
µ(rt | st = s) + Eπ

µ(Ut+1 | st = s) (4.3)

= Eπ
µ(rt | st = s) +

∑
i∈S

V π
µ,t+1(i)Pπ

µ(st+1 = i |st = s). (4.4)

This derivation directly gives a number of policy evaluation algorithms.

.

Monte-Carlo Policy evaluation

for s ∈ S do

for k = 1, . . . ,K do
Execute policy π and record total reward K times:

R̂k(s) =
T∑
t=1

rt,k .

end for
Calculate estimate:

v1(s) =
1

K

K∑
k=1

R̂k(s).

end for

.

Monte-Carlo Policy evaluation

for s ∈ S do
for k = 1, . . . ,K do

Execute policy π and record total reward K times:

R̂k(s) =
T∑
t=1

rt,k .

end for

Calculate estimate:

v1(s) =
1

K

K∑
k=1

R̂k(s).

end for

.

Monte-Carlo Policy evaluation

for s ∈ S do
for k = 1, . . . ,K do

Execute policy π and record total reward K times:

R̂k(s) =
T∑
t=1

rt,k .

end for
Calculate estimate:

v1(s) =
1

K

K∑
k=1

R̂k(s).

end for

.

Backwards induction policy evaluation

for State s ∈ S , t = T , . . . , 1 do
Update values

vt(s) = Eπ
µ(rt | st = s) +

∑
j∈S

Pπ
µ(st+1 = j | st = s)vt+1(j), (4.5)

end for

..

st

.

at

.

rt

.

st+1

.?.

?

.

?

.

1

.

0

.

1

.

0

.
0.5

.

0.5

.
0.7

.

0.3

.

0.4

. 0.6

.

Backwards induction policy evaluation

for State s ∈ S , t = T , . . . , 1 do
Update values

vt(s) = Eπ
µ(rt | st = s) +

∑
j∈S

Pπ
µ(st+1 = j | st = s)vt+1(j), (4.5)

end for

..

st

.

at

.

rt

.

st+1

.?.

0.7

.

?

.

1

.

0

.

1

.

0

.
0.5

.

0.5

.
0.7

.

0.3

.

0.4

. 0.6

.

Backwards induction policy evaluation

for State s ∈ S , t = T , . . . , 1 do
Update values

vt(s) = Eπ
µ(rt | st = s) +

∑
j∈S

Pπ
µ(st+1 = j | st = s)vt+1(j), (4.5)

end for

..

st

.

at

.

rt

.

st+1

.?.

0.7

.

1.4

.

1

.

0

.

1

.

0

.
0.5

.

0.5

.
0.7

.

0.3

.

0.4

. 0.6

.

Backwards induction policy evaluation

for State s ∈ S , t = T , . . . , 1 do
Update values

vt(s) = Eπ
µ(rt | st = s) +

∑
j∈S

Pπ
µ(st+1 = j | st = s)vt+1(j), (4.5)

end for

..

st

.

at

.

rt

.

st+1

.1.05.

0.7

.

1.4

.

1

.

0

.

1

.

0

.
0.5

.

0.5

.
0.7

.

0.3

.

0.4

. 0.6

.

Backwards induction policy optimization

for State s ∈ S , t = T , . . . , 1 do
Update values

vt(s) = max
a

Eµ(rt | st = s, at = a)+
∑
j∈S

Pµ(st+1 = j | st = s, at = a)vt+1(j),

(4.6)
end for

..

st

.

at

.

rt

.

st+1

.?.

0.7

.

1.4

.

1

.

0

.

1

.

0

.
?

.

?

.
0.7

.

0.3

.

0.4

. 0.6

.

Backwards induction policy optimization

for State s ∈ S , t = T , . . . , 1 do
Update values

vt(s) = max
a

Eµ(rt | st = s, at = a)+
∑
j∈S

Pµ(st+1 = j | st = s, at = a)vt+1(j),

(4.6)
end for

..

st

.

at

.

rt

.

st+1

.1.4.

0.7

.

1.4

.

1

.

0

.

1

.

0

.
0

.

1

.
0.7

.

0.3

.

0.4

. 0.6

.

Contents
Subjective probability and utility

Subjective probability
Rewards and preferences

Bandit problems
Introduction
Bernoulli bandits

Markov decision processes and reinforcement learning
Markov processes
Markov decision processes
Value functions
Examples

Episodic problems
Policy evaluation
Backwards induction

Continuing, discounted problems
Markov chain theory for discounted problems
Infinite horizon MDP Algorithms

Bayesian reinforcement learning
Reinforcement learning
Bounds on the utility
Properties of ABC

.

Discounted total reward.

Ut = lim
T→∞

T∑
k=t

γk rk , γ ∈ (0, 1)

Definition 13

A policy π is stationary if π(at | st) does not depend on t.

Remark 1

We can use the Markov chain kernel Pµ,π to write the expected utility vector as

vπ =
∞∑
t=0

γtP t
µ,πr (5.1)

.

Theorem 14

For any stationary policy π, vπ is the unique solution of

v = r + γPµ,πv. ← fixed point (5.2)

In addition, the solution is:

vπ = (I − γPµ,π)
−1r. (5.3)

Example 15

Similar to the geometric series:

∞∑
t=0

αt =
1

1− α

.

Backward induction for discounted infinite horizon problems

▶ We can also apply backwards induction to the infinite case.

▶ The resulting policy is stationary.

▶ So memory does not grow with T .

Value iteration

for n = 1, 2, . . . and s ∈ S do
vn(s) = maxa r(s, a) + γ

∑
s′∈S Pµ(s

′ | s, a)vn−1(s
′)

end for

.

Policy Iteration

Input µ, S.
Initialise v0.
for n = 1, 2, . . . do

πn+1 = argmaxπ {r + γPπvn} // policy improvement

vn+1 = V
πn+1
µ // policy evaluation

break if πn+1 = πn.
end for
Return πn,vn.

.

Summary

▶ Markov decision processes model controllable dynamical systems.
▶ Optimal policies maximise expected utility can be found with:

▶ Backwards induction / value iteration.
▶ Policy iteration.

▶ The MDP state can be seen as
▶ The state of a dynamic controllable process.
▶ The internal state of an agent.

.

Contents
Subjective probability and utility

Subjective probability
Rewards and preferences

Bandit problems
Introduction
Bernoulli bandits

Markov decision processes and reinforcement learning
Markov processes
Markov decision processes
Value functions
Examples

Episodic problems
Policy evaluation
Backwards induction

Continuing, discounted problems
Markov chain theory for discounted problems
Infinite horizon MDP Algorithms

Bayesian reinforcement learning
Reinforcement learning
Bounds on the utility
Properties of ABC

.

The reinforcement learning problem

Learning to act in an unknown world, by interaction and reinforcement.

World µ; Policy π; at time t

▶ µ generates observation xt ∈ X .
▶ We take action at ∈ A using π.

▶ µ gives us reward rt ∈ R.

Definition 16 ()

Eπ
µ

Ut =

Eπ
µ

T∑
k=t

rk

.

The reinforcement learning problem

Learning to act in an unknown world, by interaction and reinforcement.

World µ; Policy π; at time t

▶ µ generates observation xt ∈ X .
▶ We take action at ∈ A using π.

▶ µ gives us reward rt ∈ R.

Definition 16 ()

Eπ
µ

Ut =

Eπ
µ

T∑
k=t

rk

.

The reinforcement learning problem

Learning to act in an unknown world, by interaction and reinforcement.

World µ; Policy π; at time t

▶ µ generates observation xt ∈ X .
▶ We take action at ∈ A using π.

▶ µ gives us reward rt ∈ R.

Definition 16 (Utility)

Eπ
µ

Ut =

Eπ
µ

T∑
k=t

rk

.

The reinforcement learning problem

Learning to act in an unknown world, by interaction and reinforcement.

World µ; Policy π; at time t

▶ µ generates observation xt ∈ X .
▶ We take action at ∈ A using π.

▶ µ gives us reward rt ∈ R.

Definition 16 (Expected utility)

Eπ
µ Ut = Eπ

µ

T∑
k=t

rk

When µ is known, calculate maxπ Eπ
µ U.

.

The reinforcement learning problem

Learning to act in an unknown world, by interaction and reinforcement.

World µ; Policy π; at time t

▶ µ generates observation xt ∈ X .
▶ We take action at ∈ A using π.

▶ µ gives us reward rt ∈ R.

Definition 16 (Expected utility)

Eπ
µ Ut = Eπ

µ

T∑
k=t

rk

Knowing µ is contrary to the problem definition

.

When µ is not known

Bayesian idea: use a subjective belief ξ(µ) on M

▶ Initial belief ξ(µ).

▶ The probability of observing history h is Pπ
µ(h).

▶ We can use this to adjust our belief via Bayes’ theorem:

ξ(µ | h, π) ∝ Pπ
µ(h)ξ(µ)

▶ We can thus conclude which µ is more likely.

The subjective expected utility

U∗
ξ ≜ max

π

Eπ
ξ U

=

max
π

∑
µ

(
Eπ

µ U
)
ξ(µ).

Integrates planning and learning, and the exploration-exploitation trade-off

.

When µ is not known

Bayesian idea: use a subjective belief ξ(µ) on M

▶ Initial belief ξ(µ).

▶ The probability of observing history h is Pπ
µ(h).

▶ We can use this to adjust our belief via Bayes’ theorem:

ξ(µ | h, π) ∝ Pπ
µ(h)ξ(µ)

▶ We can thus conclude which µ is more likely.

The subjective expected utility

U∗
ξ ≜ max

π

Eπ
ξ U

=

max
π

∑
µ

(
Eπ

µ U
)
ξ(µ).

Integrates planning and learning, and the exploration-exploitation trade-off

.

When µ is not known

Bayesian idea: use a subjective belief ξ(µ) on M

▶ Initial belief ξ(µ).

▶ The probability of observing history h is Pπ
µ(h).

▶ We can use this to adjust our belief via Bayes’ theorem:

ξ(µ | h, π) ∝ Pπ
µ(h)ξ(µ)

▶ We can thus conclude which µ is more likely.

The subjective expected utility

U∗
ξ ≜ max

π

Eπ
ξ U

=

max
π

∑
µ

(
Eπ

µ U
)
ξ(µ).

Integrates planning and learning, and the exploration-exploitation trade-off

.

When µ is not known

Bayesian idea: use a subjective belief ξ(µ) on M

▶ Initial belief ξ(µ).

▶ The probability of observing history h is Pπ
µ(h).

▶ We can use this to adjust our belief via Bayes’ theorem:

ξ(µ | h, π) ∝ Pπ
µ(h)ξ(µ)

▶ We can thus conclude which µ is more likely.

The subjective expected utility

U∗
ξ ≜ max

π

Eπ
ξ U

=

max
π

∑
µ

(
Eπ

µ U
)
ξ(µ).

Integrates planning and learning, and the exploration-exploitation trade-off

.

When µ is not known

Bayesian idea: use a subjective belief ξ(µ) on M

▶ Initial belief ξ(µ).

▶ The probability of observing history h is Pπ
µ(h).

▶ We can use this to adjust our belief via Bayes’ theorem:

ξ(µ | h, π) ∝ Pπ
µ(h)ξ(µ)

▶ We can thus conclude which µ is more likely.

The subjective expected utility

U∗
ξ ≜ max

π

Eπ
ξ U =

max
π

∑
µ

(
Eπ

µ U
)
ξ(µ).

Integrates planning and learning, and the exploration-exploitation trade-off

.

When µ is not known

Bayesian idea: use a subjective belief ξ(µ) on M

▶ Initial belief ξ(µ).

▶ The probability of observing history h is Pπ
µ(h).

▶ We can use this to adjust our belief via Bayes’ theorem:

ξ(µ | h, π) ∝ Pπ
µ(h)ξ(µ)

▶ We can thus conclude which µ is more likely.

The subjective expected utility

U∗
ξ ≜ max

π
Eπ

ξ U = max
π

∑
µ

(
Eπ

µ U
)
ξ(µ).

Integrates planning and learning, and the exploration-exploitation trade-off

.

Bounds on the ξ-optimal utility U∗
ξ ≜ maxπ Eπ

ξ U

..

EU

. ξ.

U∗
µ1
: No trap

.

U∗
µ2
: Trap

.

Bounds on the ξ-optimal utility U∗
ξ ≜ maxπ Eπ

ξ U

..

EU

. ξ.

U∗
µ1
: No trap

.

U∗
µ2
: Trap

.

π1

.

Bounds on the ξ-optimal utility U∗
ξ ≜ maxπ Eπ

ξ U

..

EU

. ξ.

U∗
µ1
: No trap

.

U∗
µ2
: Trap

.

π1

.

π2

.

Bounds on the ξ-optimal utility U∗
ξ ≜ maxπ Eπ

ξ U

..

EU

. ξ.

U∗
µ1
: No trap

.

U∗
µ2
: Trap

.

π1

.

π2

.

ξ1

.

Bounds on the ξ-optimal utility U∗
ξ ≜ maxπ Eπ

ξ U

..

EU

. ξ.

U∗
µ1
: No trap

.

U∗
µ2
: Trap

.

π1

.

π2

.

π∗
ξ1

.

U∗
ξ1

.

ξ1

.

Bounds on the ξ-optimal utility U∗
ξ ≜ maxπ Eπ

ξ U

..

EU

. ξ.

U∗
µ1
: No trap

.

U∗
µ2
: Trap

.

π1

.

π2

.

π∗
ξ1

.

U∗
ξ1

.

ξ1

.

U∗
ξ

.

Bounds on the ξ-optimal utility U∗
ξ ≜ maxπ Eπ

ξ U

..

EU

. ξ.

U∗
µ1
: No trap

.

U∗
µ2
: Trap

.

π1

.

π2

.

π∗
ξ1

.

U∗
ξ1

.

ξ1

.

U∗
ξ

.

ABC (Approximate Bayesian Computation) RL1

How to deal with an arbitrary model space M

▶ The models µ ∈M may be non-probabilistic simulators.

▶ We may not know how to choose the simulator parameters.

Overview of the approach

▶ Place a prior on the simulator parameters.

▶ Observe some data h on the real system.

▶ Approximate the posterior by statistics on simulated data.

▶ Calculate a near-optimal policy for the posterior.

Results

▶ We prove soundness with general properties on the statistics.

▶ In practice, can require much less data than a general model.

1Dimitrakakis, Tziortiotis. ABC Reinforcement Learning: ICML 2013

.

ABC (Approximate Bayesian Computation) RL1

How to deal with an arbitrary model space M

▶ The models µ ∈M may be non-probabilistic simulators.

▶ We may not know how to choose the simulator parameters.

Overview of the approach

▶ Place a prior on the simulator parameters.

▶ Observe some data h on the real system.

▶ Approximate the posterior by statistics on simulated data.

▶ Calculate a near-optimal policy for the posterior.

Results

▶ We prove soundness with general properties on the statistics.

▶ In practice, can require much less data than a general model.

1Dimitrakakis, Tziortiotis. ABC Reinforcement Learning: ICML 2013

.

ABC (Approximate Bayesian Computation) RL1

How to deal with an arbitrary model space M

▶ The models µ ∈M may be non-probabilistic simulators.

▶ We may not know how to choose the simulator parameters.

Overview of the approach

▶ Place a prior on the simulator parameters.

▶ Observe some data h on the real system.

▶ Approximate the posterior by statistics on simulated data.

▶ Calculate a near-optimal policy for the posterior.

Results

▶ We prove soundness with general properties on the statistics.

▶ In practice, can require much less data than a general model.

1Dimitrakakis, Tziortiotis. ABC Reinforcement Learning: ICML 2013

.

ABC (Approximate Bayesian Computation) RL1

How to deal with an arbitrary model space M

▶ The models µ ∈M may be non-probabilistic simulators.

▶ We may not know how to choose the simulator parameters.

Overview of the approach

▶ Place a prior on the simulator parameters.

▶ Observe some data h on the real system.

▶ Approximate the posterior by statistics on simulated data.

▶ Calculate a near-optimal policy for the posterior.

Results

▶ We prove soundness with general properties on the statistics.

▶ In practice, can require much less data than a general model.

1Dimitrakakis, Tziortiotis. ABC Reinforcement Learning: ICML 2013

.

Cover tree Bayesian reinforcement learning

The model idea

▶ Cover the space using a cover
tree.

▶ A linear model for each set.

▶ The tree defines a distribution on
piecewise-linear models.

Algorithm overview

▶ Build the tree online

▶ Do Bayesian inference on the tree.

▶ Sample a model from the tree.

▶ Get a policy for the model.

..c0.

c1

.

c2

.

c3

.

c4

.

Cover tree Bayesian reinforcement learning

The model idea

▶ Cover the space using a cover
tree.

▶ A linear model for each set.

▶ The tree defines a distribution on
piecewise-linear models.

Algorithm overview

▶ Build the tree online

▶ Do Bayesian inference on the tree.

▶ Sample a model from the tree.

▶ Get a policy for the model.

..c0.

c1

.

c2

.

c3

.

c4

..st. st+1.

at

.

ct

.

θt

.

Cover tree Bayesian reinforcement learning

The model idea

▶ Cover the space using a cover
tree.

▶ A linear model for each set.

▶ The tree defines a distribution on
piecewise-linear models.

Algorithm overview

▶ Build the tree online

▶ Do Bayesian inference on the tree.

▶ Sample a model from the tree.

▶ Get a policy for the model.

..c0.

c1

.

c2

.

c3

.

c4

.....
−4

.
−2

.
0

.
2

.
4

.
−1
.

0

.

1

.

st

.
s
t+

1
.

104 samples

.

Cover tree Bayesian reinforcement learning

The model idea

▶ Cover the space using a cover
tree.

▶ A linear model for each set.

▶ The tree defines a distribution on
piecewise-linear models.

Algorithm overview

▶ Build the tree online

▶ Do Bayesian inference on the tree.

▶ Sample a model from the tree.

▶ Get a policy for the model.

...

..

101

.

102

.

103

.

102

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

A comparison

ABC RL

▶ Any simulator can be used ⇒ enables detailed prior knowledge

▶ Our theoretical results prove soundness of ABC.

▶ Downside: Computationally intensive.

Cover Tree Bayesian RL

▶ Very general model.

▶ Inference in logarithmic time due to the tree strcuture.

▶ Downside: Hard to insert domain-specific prior knowledge.

Future work

Advanced algorithms (e.g. tree or gradient methods) for policy optimisation.

.

▶ Unknown MDPs can be handled in a Bayesian framework.
▶ This defines a belief-augmented MDP with

▶ A state for the MDP.
▶ A state for the agent’s belief.

▶ The Bayes-optimal utility is convex, enabling approximations.

▶ A big problem in specifying the “right” prior.

Questions?

.

ABC (Approximate Bayesian Computation)

When there is no probabilistic model (Pµ is not available): ABC!

▶ A prior ξ on a class of simulatorsM
▶ History h ∈ H from policy π.

▶ Statistic f : H → (W, ∥ · ∥)
▶ Threshold ϵ > 0.

ABC-RL using Thompson sampling

▶ do µ̂ ∼ ξ, h′ ∼ Pπ
µ̂ // sample a model and history

▶ until ∥f (h′)− f (h)∥ ≤ ϵ // until the statistics are close

▶ µ(k) = µ̂ // approximate posterior sample µ(k) ∼ ξϵ(· | ht)
▶ π(k) ≈ argmaxEπ

µ(k) Ut // approximate optimal policy for sample

.

ABC (Approximate Bayesian Computation)

When there is no probabilistic model (Pµ is not available): ABC!

▶ A prior ξ on a class of simulatorsM
▶ History h ∈ H from policy π.

▶ Statistic f : H → (W, ∥ · ∥)
▶ Threshold ϵ > 0.

ABC-RL using Thompson sampling

▶ do µ̂ ∼ ξ, h′ ∼ Pπ
µ̂ // sample a model and history

▶ until ∥f (h′)− f (h)∥ ≤ ϵ // until the statistics are close

▶ µ(k) = µ̂ // approximate posterior sample µ(k) ∼ ξϵ(· | ht)
▶ π(k) ≈ argmaxEπ

µ(k) Ut // approximate optimal policy for sample

.

ABC (Approximate Bayesian Computation)

When there is no probabilistic model (Pµ is not available): ABC!

▶ A prior ξ on a class of simulatorsM
▶ History h ∈ H from policy π.

▶ Statistic f : H → (W, ∥ · ∥)
▶ Threshold ϵ > 0.

Example 17 (Cumulative features)

Feature function ϕ : X → Rk .

f (h) ≜
∑
t

ϕ(xt)

ABC-RL using Thompson sampling

▶ do µ̂ ∼ ξ, h′ ∼ Pπ
µ̂ // sample a model and history

▶ until ∥f (h′)− f (h)∥ ≤ ϵ // until the statistics are close

▶ µ(k) = µ̂ // approximate posterior sample µ(k) ∼ ξϵ(· | ht)
▶ π(k) ≈ argmaxEπ

µ(k) Ut // approximate optimal policy for sample

.

ABC (Approximate Bayesian Computation)

When there is no probabilistic model (Pµ is not available): ABC!

▶ A prior ξ on a class of simulatorsM
▶ History h ∈ H from policy π.

▶ Statistic f : H → (W, ∥ · ∥)
▶ Threshold ϵ > 0.

Example 17 (Utility)

f (h) ≜
∑
t

rt

ABC-RL using Thompson sampling

▶ do µ̂ ∼ ξ, h′ ∼ Pπ
µ̂ // sample a model and history

▶ until ∥f (h′)− f (h)∥ ≤ ϵ // until the statistics are close

▶ µ(k) = µ̂ // approximate posterior sample µ(k) ∼ ξϵ(· | ht)
▶ π(k) ≈ argmaxEπ

µ(k) Ut // approximate optimal policy for sample

.

ABC (Approximate Bayesian Computation)

When there is no probabilistic model (Pµ is not available): ABC!

▶ A prior ξ on a class of simulatorsM
▶ History h ∈ H from policy π.

▶ Statistic f : H → (W, ∥ · ∥)
▶ Threshold ϵ > 0.

ABC-RL using Thompson sampling

▶ do µ̂ ∼ ξ, h′ ∼ Pπ
µ̂ // sample a model and history

▶ until ∥f (h′)− f (h)∥ ≤ ϵ // until the statistics are close

▶ µ(k) = µ̂ // approximate posterior sample µ(k) ∼ ξϵ(· | ht)
▶ π(k) ≈ argmaxEπ

µ(k) Ut // approximate optimal policy for sample

.

ABC (Approximate Bayesian Computation)

When there is no probabilistic model (Pµ is not available): ABC!

▶ A prior ξ on a class of simulatorsM
▶ History h ∈ H from policy π.

▶ Statistic f : H → (W, ∥ · ∥)
▶ Threshold ϵ > 0.

ABC-RL using Thompson sampling

▶ do µ̂ ∼ ξ, h′ ∼ Pπ
µ̂ // sample a model and history

▶ until ∥f (h′)− f (h)∥ ≤ ϵ // until the statistics are close

▶ µ(k) = µ̂ // approximate posterior sample µ(k) ∼ ξϵ(· | ht)
▶ π(k) ≈ argmaxEπ

µ(k) Ut // approximate optimal policy for sample

.

ABC (Approximate Bayesian Computation)

When there is no probabilistic model (Pµ is not available): ABC!

▶ A prior ξ on a class of simulatorsM
▶ History h ∈ H from policy π.

▶ Statistic f : H → (W, ∥ · ∥)
▶ Threshold ϵ > 0.

ABC-RL using Thompson sampling

▶ do µ̂ ∼ ξ, h′ ∼ Pπ
µ̂ // sample a model and history

▶ until ∥f (h′)− f (h)∥ ≤ ϵ // until the statistics are close

▶ µ(k) = µ̂ // approximate posterior sample µ(k) ∼ ξϵ(· | ht)
▶ π(k) ≈ argmaxEπ

µ(k) Ut // approximate optimal policy for sample

.

ABC (Approximate Bayesian Computation)

When there is no probabilistic model (Pµ is not available): ABC!

▶ A prior ξ on a class of simulatorsM
▶ History h ∈ H from policy π.

▶ Statistic f : H → (W, ∥ · ∥)
▶ Threshold ϵ > 0.

ABC-RL using Thompson sampling

▶ do µ̂ ∼ ξ, h′ ∼ Pπ
µ̂ // sample a model and history

▶ until ∥f (h′)− f (h)∥ ≤ ϵ // until the statistics are close

▶ µ(k) = µ̂ // approximate posterior sample µ(k) ∼ ξϵ(· | ht)
▶ π(k) ≈ argmaxEπ

µ(k) Ut // approximate optimal policy for sample

.

ABC (Approximate Bayesian Computation)

When there is no probabilistic model (Pµ is not available): ABC!

▶ A prior ξ on a class of simulatorsM
▶ History h ∈ H from policy π.

▶ Statistic f : H → (W, ∥ · ∥)
▶ Threshold ϵ > 0.

ABC-RL using Thompson sampling

▶ do µ̂ ∼ ξ, h′ ∼ Pπ
µ̂ // sample a model and history

▶ until ∥f (h′)− f (h)∥ ≤ ϵ // until the statistics are close

▶ µ(k) = µ̂ // approximate posterior sample µ(k) ∼ ξϵ(· | ht)
▶ π(k) ≈ argmaxEπ

µ(k) Ut // approximate optimal policy for sample

.

The approximate posterior ξϵ(· | h)

Corollary 17

If f is a sufficient statistic and ϵ = 0, then ξ(· | h) = ξϵ(· | h).

Assumption 4 (A1. Lipschitz log-probabilities)

For the policy π, ∃L > 0 s.t. ∀h, h′ ∈ H and ∀µ ∈M∣∣ln [Pπ
µ(h)/Pπ

µ(h
′)
]∣∣ ≤ L∥f (h)− f (h′)∥

Theorem 18 (The approximate posterior ξϵ(· | h) is close to ξ(· | h))
If A1 holds then ∀ϵ > 0:

D (ξ(· | h) ∥ ξϵ(· | h)) ≤ 2Lϵ+ ln |Ah
ϵ|, (6.1)

where Ah
ϵ ≜ {z ∈ H | ∥f (z)− f (h)∥ ≤ ϵ}.

.

The approximate posterior ξϵ(· | h)

Corollary 17

If f is a sufficient statistic and ϵ = 0, then ξ(· | h) = ξϵ(· | h).

Assumption 4 (A1. Lipschitz log-probabilities)

For the policy π, ∃L > 0 s.t. ∀h, h′ ∈ H and ∀µ ∈M∣∣ln [Pπ
µ(h)/Pπ

µ(h
′)
]∣∣ ≤ L∥f (h)− f (h′)∥

Theorem 18 (The approximate posterior ξϵ(· | h) is close to ξ(· | h))
If A1 holds then ∀ϵ > 0:

D (ξ(· | h) ∥ ξϵ(· | h)) ≤ 2Lϵ+ ln |Ah
ϵ|, (6.1)

where Ah
ϵ ≜ {z ∈ H | ∥f (z)− f (h)∥ ≤ ϵ}.

.

The approximate posterior ξϵ(· | h)

Corollary 17

If f is a sufficient statistic and ϵ = 0, then ξ(· | h) = ξϵ(· | h).

Assumption 4 (A1. Lipschitz log-probabilities)

For the policy π, ∃L > 0 s.t. ∀h, h′ ∈ H and ∀µ ∈M∣∣ln [Pπ
µ(h)/Pπ

µ(h
′)
]∣∣ ≤ L∥f (h)− f (h′)∥

Theorem 18 (The approximate posterior ξϵ(· | h) is close to ξ(· | h))
If A1 holds then ∀ϵ > 0:

D (ξ(· | h) ∥ ξϵ(· | h)) ≤ 2Lϵ+ ln |Ah
ϵ|, (6.1)

where Ah
ϵ ≜ {z ∈ H | ∥f (z)− f (h)∥ ≤ ϵ}.

.

The approximate posterior ξϵ(· | h)

Corollary 17

If f is a sufficient statistic and ϵ = 0, then ξ(· | h) = ξϵ(· | h).

Assumption 4 (A1. Lipschitz log-probabilities)

For the policy π, ∃L > 0 s.t. ∀h, h′ ∈ H and ∀µ ∈M∣∣ln [Pπ
µ(h)/Pπ

µ(h
′)
]∣∣ ≤ L∥f (h)− f (h′)∥

Theorem 18 (The approximate posterior ξϵ(· | h) is close to ξ(· | h))
If A1 holds then ∀ϵ > 0:

D (ξ(· | h) ∥ ξϵ(· | h)) ≤ 2Lϵ+ ln |Ah
ϵ|, (6.1)

where Ah
ϵ ≜ {z ∈ H | ∥f (z)− f (h)∥ ≤ ϵ}.

.

[1] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite time analysis of
the multiarmed bandit problem. Machine Learning, 47(2/3):235–256,
2002.

[2] Dimitri P. Bertsekas. Dynamic Programming and Optimal Control.
Athena Scientific, 2001.

[3] Dimitri P. Bertsekas and John N. Tsitsiklis. Neuro-Dynamic
Programming. Athena Scientific, 1996.

[4] Herman Chernoff. Sequential design of experiments. Annals of
Mathematical Statistics, 30(3):755–770, 1959.

[5] Herman Chernoff. Sequential Models for Clinical Trials. In Proceedings of
the Fifth Berkeley Symposium on Mathematical Statistics and Probability,
Vol.4, pages 805–812. Univ. of Calif Press, 1966.

[6] Morris H. DeGroot. Optimal Statistical Decisions. John Wiley & Sons,
1970.

[7] Milton Friedman and Leonard J. Savage. The expected-utility hypothesis
and the measurability of utility. The Journal of Political Economy,
60(6):463, 1952.

[8] Marting L. Puterman. Markov Decision Processes : Discrete Stochastic
Dynamic Programming. John Wiley & Sons, New Jersey, US, 1994.

[9] Leonard J. Savage. The Foundations of Statistics. Dover Publications,
1972.

[10] Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias Seeger.
Gaussian process optimization in the bandit setting: No regret and
experimental design. In ICML 2010, 2010.

.

[11] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An
Introduction. MIT Press, 1998.

	Subjective probability and utility
	Subjective probability
	Rewards and preferences

	Bandit problems
	Introduction
	Bernoulli bandits

	Markov decision processes and reinforcement learning
	Markov processes
	Markov decision processes
	Value functions
	Examples

	Episodic problems
	Policy evaluation
	Backwards induction

	Continuing, discounted problems
	Markov chain theory for discounted problems
	Infinite horizon MDP Algorithms

	Bayesian reinforcement learning
	Reinforcement learning
	Bounds on the utility
	Properties of ABC

