EXERCISES ON CONVEX ALGEBRAIC GEOMETRY

Exercise 1

Give an example of a convex semi-algebraic body in \mathbb{R}^{3} with zero-dimensional faces with each of one, two, and three-dimensional normal cones.

Exercise 2

Consider the convex cone of univariate polynomials of degree ≤ 4 that are nonnegative on the interval $[-1,1]$:
$P=\left\{(a, b, c, d, e) \in \mathbb{R}^{5}\right.$ such that $a t^{4}+b t^{3}+c t^{2}+d t+e \geq 0$ for all $\left.t \in[-1,1]\right\}$.

- What is the algebraic boundary of P ? What are its extreme rays?
- What are the faces and algebraic boundary of the convex hull of

$$
C=\left(\left\{\left(t, t^{2}, t^{3}, t^{4}\right) \text { such that } t \in[-1,1]\right\}\right) ?
$$

- How is $\operatorname{conv}(C)$ related to P ?
- Are either of P or $\operatorname{conv}(C)$ a spectrahedron? Or the projection of one?

Exercise 3

Consider the convex semi-algebraic set

$$
C=\left\{(x, y) \in \mathbb{R}^{2}: f(x, y) \geq 0 \text { and } 2 \geq x^{2}+y^{2}\right\}
$$

where $f(x, y)=x^{4}-x^{2} y^{2}-4 x^{2}+y^{4}-5 y^{2}+4$.

- Calculate the algebraic boundary of the convex dual of C.
- For $c=(3,1)$ and $c=(1,3)$, calculate the minimal polynomial over \mathbb{Q} of

$$
c^{*}=\max c_{1} x+c_{2} y \text { such that }(x, y) \in C .
$$

- For each, write the optimal point (x, y) using the field extension $\mathbb{Q}\left(c^{*}\right)$. That is, find polynomials $p, q, r \in \mathbb{Q}[t]$ for which the optimal point is $\left(\frac{p\left(c^{*}\right)}{r\left(c^{*}\right)}, \frac{q\left(c^{*}\right)}{r\left(c^{*}\right)}\right)$.

Exercise 4

What can we say about the convex hull of the curve $F_{2 k}=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1}^{2 k}+x_{2}^{2 k}=1\right\}$,
for $k \geq 3$? Can you construct an explicit semidefinite lift for the convex hull of $F_{2^{k}}, k \geq 2$, whose sizeis linear in k ? And what about the limit $Q:=\lim _{k \rightarrow \infty} F_{2 k}$?

Exercise 5

Is a stadium (the convex hull of the union of two circles of the same radius in \mathbb{R}^{2}) a spectrahedron and/or a spectrahedral shadow? What if one allows for two different radius $R>r$?

Exercise 6

Show that the unit ball in \mathbb{R}^{n} with respect to the Euclidean norm is a spectrahedron. What is the smallest possible size of matrices in the spectrahedral description for $n=1,2,3$?

Exercise 7

Show that a hyperbolicity cone is a basic closed semi-algebraic set.

Exercise 8

Let A be an \mathbb{R}-algebra which is finite dimensional as an \mathbb{R}-vector space. Every element $a \in A$ defines an endomorphism $m_{a}: A \rightarrow A, x \mapsto a \cdot x$. We write $\operatorname{tr}_{A / \mathbb{R}}(a):=\operatorname{tr}\left(m_{a}\right)$. Furthermore, we consider the symmetric bilinear form $B: A \times A \rightarrow \mathbb{R},(a, b) \mapsto \operatorname{tr}_{A / \mathbb{R}}(a \cdot b)$. Show the following:
a) Let A be a local ring with maximal ideal \mathfrak{m}. What is the rank and the signature of B when $A / \mathfrak{m} \cong \mathbb{R}$ resp. $A / \mathfrak{m} \cong \mathbb{C}$?
b) Now let $A=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right] / I$ where I is the ideal generated by polynomials f_{1}, \ldots, f_{r} which have only finitely many common complex zeros. Then the number of complex zeros of f_{1}, \ldots, f_{r} is the rank of B and the number of real zeros is the signature of B.

Exercise 9

Let X be a noetherian integral separated regular scheme of dimension one with function field K. The narrow class group $\mathrm{Cl}^{+}(X)$ is the group of Weil divisors divided by the subgroup of all principal divisors of the form $\left(g_{1}^{2}+\ldots+g_{r}^{2}\right)$ with $g_{i} \in K^{*}$.
a) The kernel of the natural homomorphism $\mathrm{Cl}^{+}(X) \rightarrow \mathrm{Cl}(X)$ is a 2-torsion group.
b) Compute $\mathrm{Cl}^{+}(X)$ when $X=\operatorname{Spec}(\mathbb{Z}[\sqrt{n}])$ for $n=1,2,3$.
c) Let X be a projective curve over \mathbb{R} and let $D \in \mathrm{Cl}^{+}(X)$. Show that $D=2 E$ for some $E \in \mathrm{Cl}^{+}(X)$ if and only if the multiplicity of D is even in every real point of X.
Exercise $10 \quad$ (1) Let $M \subset \mathbb{R}^{n}$ be a spectrahedral shadow, show that M^{*} is a spectrahedral shadow.
(2) Show that the dual convex cone $\Sigma_{2 d}^{*}$ of the cone of sums of squares of homogeneous polynomials of degree d is a spectrahedron.
(3) Show that the cone $\Sigma_{2 d} \subset \mathbb{R}\left[x_{1}, \cdots, x_{n}\right]_{2 d}$ of sums of squares of homogeneous polynomials of degree d is a spectrahedral shadow, but not a spectrahedron if $n, d>1$.

Special thanks to Alperen Ergur, Mario Kummer, Simone Naldi, Cynthia Vinzant, and Mengyuan Zhang for coming up with the exercises!

