EXERCISES ON CONVEX ALGEBRAIC GEOMETRY

Exercise 1

Give an example of a convex semi-algebraic body in \mathbb{R}^3 with zero-dimensional faces with each of one, two, and three-dimensional normal cones.

Exercise 2

Consider the convex cone of univariate polynomials of degree ≤ 4 that are nonnegative on the interval [-1, 1]:

 $P = \{(a, b, c, d, e) \in \mathbb{R}^5 \text{ such that } at^4 + bt^3 + ct^2 + dt + e \ge 0 \text{ for all } t \in [-1, 1] \}.$

- What is the algebraic boundary of *P*? What are its extreme rays?
- What are the faces and algebraic boundary of the convex hull of

$$C = (\{(t, t^2, t^3, t^4) \text{ such that } t \in [-1, 1]\})?$$

- How is $\operatorname{conv}(C)$ related to P?
- Are either of P or conv(C) a spectrahedron? Or the projection of one?

Exercise 3

Consider the convex semi-algebraic set

$$C = \{(x, y) \in \mathbb{R}^2 : f(x, y) \ge 0 \text{ and } 2 \ge x^2 + y^2\}$$

where $f(x, y) = x^4 - x^2y^2 - 4x^2 + y^4 - 5y^2 + 4$.

- Calculate the algebraic boundary of the convex dual of C.
- For c = (3, 1) and c = (1, 3), calculate the minimal polynomial over \mathbb{Q} of

 $c^* = \max c_1 x + c_2 y$ such that $(x, y) \in C$.

• For each, write the optimal point (x, y) using the field extension $\mathbb{Q}(c^*)$. That is, find polynomials $p, q, r \in \mathbb{Q}[t]$ for which the optimal point is $\left(\frac{p(c^*)}{r(c^*)}, \frac{q(c^*)}{r(c^*)}\right)$.

Exercise 4

What can we say about the convex hull of the curve $F_{2k} = \{(x_1, x_2) \in \mathbb{R}^2 : x_1^{2k} + x_2^{2k} = 1\},\$

for $k \ge 3$? Can you construct an explicit semidefinite lift for the convex hull of F_{2^k} , $k \ge 2$, whose size is linear in k? And what about the limit $Q := \lim_{k \mapsto \infty} F_{2k}$?

Exercise 5

Is a stadium (the convex hull of the union of two circles of the same radius in \mathbb{R}^2) a spectrahedron and/or a spectrahedral shadow? What if one allows for two different radius R > r?

Exercise 6

Show that the unit ball in \mathbb{R}^n with respect to the Euclidean norm is a spectrahedron. What is the smallest possible size of matrices in the spectrahedral description for n = 1, 2, 3?

Exercise 7

Show that a hyperbolicity cone is a basic closed semi-algebraic set.

Exercise 8

Let A be an \mathbb{R} -algebra which is finite dimensional as an \mathbb{R} -vector space. Every element $a \in A$ defines an endomorphism $m_a : A \to A, x \mapsto a \cdot x$. We write $\operatorname{tr}_{A/\mathbb{R}}(a) := \operatorname{tr}(m_a)$. Furthermore, we consider the symmetric bilinear form $B : A \times A \to \mathbb{R}, (a, b) \mapsto \operatorname{tr}_{A/\mathbb{R}}(a \cdot b)$. Show the following:

- a) Let A be a local ring with maximal ideal \mathfrak{m} . What is the rank and the signature of B when $A/\mathfrak{m} \cong \mathbb{R}$ resp. $A/\mathfrak{m} \cong \mathbb{C}$?
- b) Now let $A = \mathbb{R}[x_1, \ldots, x_n]/I$ where I is the ideal generated by polynomials f_1, \ldots, f_r which have only finitely many common complex zeros. Then the number of complex zeros of f_1, \ldots, f_r is the rank of B and the number of real zeros is the signature of B.

Exercise 9

Let X be a noetherian integral separated regular scheme of dimension one with function field K. The narrow class group $\operatorname{Cl}^+(X)$ is the group of Weil divisors divided by the subgroup of all principal divisors of the form $(g_1^2 + \ldots + g_r^2)$ with $g_i \in K^*$.

- a) The kernel of the natural homomorphism $\operatorname{Cl}^+(X) \to \operatorname{Cl}(X)$ is a 2-torsion group.
- b) Compute $\operatorname{Cl}^+(X)$ when $X = \operatorname{Spec}(\mathbb{Z}[\sqrt{n}])$ for n = 1, 2, 3.
- c) Let X be a projective curve over \mathbb{R} and let $D \in \mathrm{Cl}^+(X)$. Show that D = 2E for some $E \in \mathrm{Cl}^+(X)$ if and only if the multiplicity of D is even in every real point of X.
- **Exercise 10** (1) Let $M \subset \mathbb{R}^n$ be a spectrahedral shadow, show that M^* is a spectrahedral shadow.
 - (2) Show that the dual convex cone Σ_{2d}^* of the cone of sums of squares of homogeneous polynomials of degree d is a spectrahedron.
 - (3) Show that the cone $\Sigma_{2d} \subset \mathbb{R}[x_1, \cdots, x_n]_{2d}$ of sums of squares of homogeneous polynomials of degree d is a spectrahedral shadow, but not a spectrahedron if n, d > 1.

Special thanks to Alperen Ergur, Mario Kummer, Simone Naldi, Cynthia Vinzant, and Mengyuan Zhang for coming up with the exercises!