
Exercise Session on Random Real Algebraic Geometry

Exercise 1. Let A = (ai,j) ∈ Rn×n be a random matrix where the ai,j are all independent random
variables with ai,j ∼ N(0, 1) for all i, j. Prove that

(1) Edet(A) = 0.
(2) Edet(A)2 = n!.

Suppose now that ai,j ∼ N(0, σ2
i,j) and let S = (σ2

i,j) denote the matrix having the σ2
i,j as entries. Show

(3) Edet(A)2 = per(S).

Exercise 2. Let A = (ai,j) ∈ Rn×n be a random matrix with a1,1, . . . , an,n
iid∼ N(0, 1). Use Vitale’s

theorem (Theorem 1 below) to show that

E |det(A)| = n!
√

2
n
Γ
(
n
2 + 1

) .
Hint: The volume of an n-dimensional ball1 with radius r is

√
π
n
rnΓ(n2 + 1)−1.

Exercise 3 (Probabilistic Bézout-Theorem). Put Rd := R[x0, . . . , xn]d. Let us write f ∼ G(d), if f ∈ Rd
is the following random homogeneous polynomials of degree d:

f =
∑

α0+...+αn=d

λ(α0,...,αn)

√
d!

α0!···αn!
xα0
1 · · ·xαn

n ; λ(α0,...,αn)
iid∼ N(0, 1).

One says that f is standard Gaussian w.r.t. the Bombieri norm ‖f‖ := (
∑
α0+...+αn=d

(λ(α0,...,αn))
2)

1
2 .

The orthogonal group O(n) acts on Rd via U.f := f ◦ U−1. The Bombieri norm has the property that
‖U.f‖ = ‖f‖ for all U and f .
Let d := (d1, . . . , dn) be an n-tuple of degrees and define the random ideal

Id := (f1, . . . , fn), fi ∼ G(di), all fi are independent.

In this exercise we show that E := E[ #V (Id) ] =
√
d1 · · · dn (here V (·) means the zero set in RPn).

(1) Write down the joint density of the coefficients of the fi in terms of the Bombieri norm. Conclude
that the density ϕ(f) of f = (f1, . . . , fn) is invariant under coordinate change.

(2) Interpret f as a function S(Rn+1)→ Rn. Use the Kac-Rice formula (Theorem 2 below) to write
E as an integral over S(Rn+1).

(3) Step (2) yields the nested integral E = 1
2

∫
S(Rn+1)

[ ∫
{f |f(x)=0} |det f ′(x)| ϕ(f) df

]
dx. Use the

orthogonal invariance of the Bombieri norm to show that the inner integral is independent of x.
(4) Let e := (1, 0, . . . , 0). Show that

f ′(e) =


f1,1 · · · f1,n
...

...

fn,1 · · · fn,n

 ,

where fi,j = coefficient of xdi−10 xj in fi.
Hint: The tangent space of S(Rn+1) at e is e⊥ =

{
x ∈ Rn+1 | eTx = 0

}
.

(5) Conclude that

E =
vol(S(Rn+1))

2
√

2π
n E

A
|det(diag(

√
d1, . . . ,

√
dn)A)|,

where A = (ai,j) ∈ Rn×n is a random matrix with a1,1, . . . , an,n
iid∼ N(0, 1).

(6) Use Exercise 2 to compute E.
Hint: The volume of S(Rn+1) is 2n+1

√
π
n
Γ(n2 + 1)(n!)−1.

1See http://dlmf.nist.gov/5.19#iii

1

http://dlmf.nist.gov/5.19#iii


Exercise 4. The projective spaces RPn,CPn are given a riemannian structure for which the canonical
projections Sn → RPn,S2n+1 → CPn are riemannian submersions. Here Sn is endowed with the standard
metric. Given a real degree d hypersurface X ⊂ CPn we denote by |X| and |XR| the volume of X and
its real part XR ⊂ RPn respectively. Prove that

|XR|
|RPn−1|

≤ |X|
|CPn−1|

Hint: Use Theorem 3.

Exercise 5. Prove that for a random degree d hypersurface X = {f = 0} ⊂ RPn defined by f ∼ G(d)

(G(d) as in Exercise 3) the following formula holds

E |X| =
√
d |RPn−1|

Hint: Use Theorem 3 and orthogonal invariance of the distribution.

Exercise 6. (Expected number of critical rank-one approximations to a random symmetric tensor) In
[3, Theorem 1.5] we find the following statement: When a symmetric tensor v ∈ (Rn)⊗p is standard
Gaussian w.r.t. the Bombieri norm, the expected number of critical rank-one approximations to v is

C(n)

∫
λ1≤...≤λn−1

∫
w∈R

n−1∏
i=1

∣∣∣√p
2 w −

√
p− 1λi

∣∣∣ ∏
i<j

(λj − λi) exp
(
− w2

4 −
n−1∑
i=1

−λ2
i

4

)
dwdλ1 . . . dλn−1.

where C(n)−1 = 2(n
2+3n)/4

∏n
i=1 Γ

(
i
2

)
. Show that for p = 2 this integral evaluates to n. There is an

argument why for p = 2 this integral necessarily must equal n. Can you find it?
Hint: This integral looks pretty scary. In fact, evaluating the integral directly is hard, so we don’t want
to do that. Instead, we will employ symmetries of the integrand. Show that for p = 2 the integrand is
invariant under permutations of the variables λ1, . . . , λn−1, w and deduce that you can write the integral
above in the form

∫
λ1≤...≤λn

∏
i<j(λj−λi) exp(−

∑n
i=1

−λ2
i

4 ) dλ1 . . . dλn. Then, use the following corollary

of [4, Theorem 3.2.17], that says C(n)
∫
λ1≤...≤λn

∏
i<j(λj − λi) exp(−

∑n
i=1

−λ2
i

4 ) dλ1 . . . dλn = 1.

The following two exercises are not concerned with randomness, but instead are meant to give a better
understanding of critical rank-one approximations of tensors.

Exercise 7. Let e1 = (1, 0), e2 = (0, 1) ∈ R2 and d1 = (1, 0, 0), d2 = (0, 1, 0) ∈ R2. Compute the real
critical rank-one approximations of the tensor T = e1 ⊗ d1 ⊗ d1 + e2 ⊗ d2 ⊗ d2 ∈ R2 ⊗ R3 ⊗ R3.

Exercise 8. Let e1, e2, e3 be the three standard basis vectors in R3. Compute all the real symmetric
rank-one approximations of the following symmetric tensors.

(1) T1 = e⊗31 + e⊗32 + e⊗33 ∈ S3(R3).

(2) T2 = e⊗41 + e⊗42 + e⊗43 ∈ S4(R3).

Hint: It can be useful to consider the tensors as polynomials, because critical rank-one approximations
correspond to critical points on the unit sphere of those polynomials. Can you show why?
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Supplementary Material

A standard Gaussian random variable x has the density ϕ(x) =
√

2π
−1

exp(− 1
2 x

2). One also writes
x ∼ N(0, 1) (N for ’normal distribution’). Consequently, the random vector x = (x1, . . . , xn) with
x1, . . . , xn

iid∼ N(0, 1) has the density
∏n
i=1 ϕ(xi) =

√
2π
−n

exp(− 1
2 x

Tx).

Theorem 1 (Vitale’s theorem [5, Theorem 3.2]). Let Y ∈ Rn be a random vector and let MY ∈ Rn×n

be a random matrix whose columns are iid copies of Y . Consider the function

hY (x) := E
Y

max {〈x, tY 〉 | 0 ≤ t ≤ 1} .

The function hY is a support function, to which is associated some convex body B ⊂ Rn. Then, we have

E|det(MY )| = n! vol(B)

(in fact, B is a zonoid, and it is called the expected zonoid of Y ).

Theorem 2 (Kac-Rice formula for Gaussian polynomial functions [1, Theorem 12.1]). LetM be a compact
oriented, n-dimensional C1 manifold with a C1 Riemannian metric g (for instance the unit sphere). Let

f = (f1, . . . , fn) : M → Rn

be random polynomials, whose coefficients are Gaussian random variables und let u ∈ Rn. We denote
by ϕ(f) the density of f and put

Nu := # {x ∈M | f(x) = u}

Then
E
f
Nu =

∫
M

[ ∫
{f |f(x)=u}

|det f ′(x)| ϕ(f) df

]
dx.

Remark. Theorem 2 holds in much more generality, where the multivariate function f can have any
distribution that satisfies certain variance constraints and whose density p is sufficiently continuous.

Theorem 3 (A corollary of the Poincaré formula [2, Theorem 20.9]). Let O(n+ 1) and U(n+ 1) denote
the orthogonal and unitary group, respectively. The following holds.

(1) Let V,W ⊂ RPn be smooth irreducible projective varieties of dimensions m and n−m. Then, we
have

E
u∈O(n+1)

#(V ∩ uW ) =
|V |
|RPm|

|W |
|RPn−m|

(2) Let V,W ⊂ CPn be smooth irreducible projective varieties of dimensions m and n−m. Then, we
have

E
u∈U(n+1)

#(V ∩ uW ) =
|V |
|CPm|

|W |
|CPn−m|

.

Here projective spaces RPn,CPn are given a riemannian structure for which the canonical projections
Sn → RPn,S2n+1 → CPn are riemannian submersions and Sk is given the standard metric.
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