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Topics

Convexity, non-convexity, and tractability

Convex sets with algebraic descriptions

Semidefinite programming and sums of squares

Unifying idea: convex hull of algebraic varieties

Examples and applications throughout

Discuss results, but also open questions

Computational considerations

Connections with other areas of mathematics
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Outline

Part I

Motivation, Basic notions
Convexity vs. non-convexity
Linear and Semidefinite programming

Part II

Sums of squares
Convex hull of algebraic varieties
General constructions and approximation guarantees

Part III

Applications and extensions
Rank minimization via nuclear norm
Estimation and synchronization over SO(n)
Algorithmic aspects
Recap and conclusions
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Motivation: what problems can we solve efficiently?

Many questions in applied mathematics can be formulated in terms of
polynomials (sometimes, after nontrivial modeling!)

Global optimization (e.g., binary, constrained, etc.)

Stability of dynamical systems (e.g., Lyapunov analysis)

Quantum information (e.g., entanglement)

Some have “nice” solutions.
Others, we are still struggling with after many years...

Why this difference?
What are the underlying mathematical reasons?

4 / 73



Motivation: what problems can we solve efficiently?

Many questions in applied mathematics can be formulated in terms of
polynomials (sometimes, after nontrivial modeling!)

Global optimization (e.g., binary, constrained, etc.)

Stability of dynamical systems (e.g., Lyapunov analysis)

Quantum information (e.g., entanglement)

Some have “nice” solutions.
Others, we are still struggling with after many years...

Why this difference?
What are the underlying mathematical reasons?

4 / 73



Motivation: what problems can we solve efficiently?

Many questions in applied mathematics can be formulated in terms of
polynomials (sometimes, after nontrivial modeling!)

Global optimization (e.g., binary, constrained, etc.)

Stability of dynamical systems (e.g., Lyapunov analysis)

Quantum information (e.g., entanglement)

Some have “nice” solutions.
Others, we are still struggling with after many years...

Why this difference?
What are the underlying mathematical reasons?

4 / 73



Motivation: what problems can we solve efficiently?

A (rough) first classification: convex vs. non-convex

Extremely valuable insights! (e.g., Boyd-Vandenberghe)

But, the full answer is a bit more subtle...

Convexity is “relative,” may depend on modeling/parameterization

If not convex, may perhaps be tractable (e.g., PCA, deep learning)

Even if convex, may not be efficiently tractable! (e.g., nonnegative
polynomials)

Why? Difference between:
“Geometric” vs. “computational” convexity

Need to enrich convexity theory with a computational twist.
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Convex sets: geometry vs. algebra

The geometric theory of convex sets (e.g., Minkowski, Carathéodory,
Fenchel) is very rich and well-understood.

Enormous importance in applied mathematics and engineering, in
particular in optimization.

But, what if we are concerned with the representation of these geometric
objects? For instance, basic semialgebraic sets?

How do the algebraic, geometric, and computational aspects interact?

Ex: Convex optimization is not always “easy”.
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The polyhedral case

Consider first the case of polyhedra, which are described by finitely many
linear inequalities {x ∈ Rn : aTi x ≤ bi}.

Behave well under projections (Fourier-Motzkin)

Farkas’ lemma (or duality) gives emptiness certificates

Good associated computational techniques

Optimization over polyhedra is linear programming (LP)

Great. But how to move away from linearity? For instance, if we want
convex sets described by polynomial inequalities?

Claim: semidefinite programming is an essential tool.
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Linear programming

LP in standard (primal) form:

min cT x s.t. Ax = b, x ≥ 0.

A geometric view: if L is an affine subspace of Rn,

min cT x s.t. x ∈ L ∩ Rn
+

Minimize a linear function, over the intersection of an affine subspace and
a polyhedral cone (nonnegative orthant).

In semidefinite programming, x will now be a symmetric matrix...
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Semidefinite programming (SDP, LMIs)

A broad generalization of LP to symmetric matrices

minTrCX s.t. X ∈ L ∩ Sn+

PSD cone

O

L

Intersection of an affine subspace L and the cone of positive
semidefinite matrices.

Feasible set is called spectrahedron

Lots of applications. A true “revolution” in computational methods
for engineering applications

Convex finite dimensional optimization. Nice duality theory.

Essentially, solvable in polynomial time (interior point, etc.)
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SDPs in standard form

Standard (primal) form of a semidefinite program:

minTrCX s.t.

{
TrAiX = bi

X � 0,

where X ∈ Rn×n is the (matrix) decision variable and
A1, . . . ,Am ∈ Rn×n are given symmetric matrices.

PSD cone

O

L

The inequality A � 0 means that A is positive semidefinite (psd):

A � 0 ⇔ zTAz ≥ 0 ∀z ∈ Rn ⇔ λi (A) ≥ 0 i = 1, . . . , n.

By Sylvester’s criterion, also equivalent to nonnegativity of all principal
minors:

detAS ,S ≥ 0 ∀S ⊂ {1, . . . , n}.

Thus, feasible set is defined by polynomial inequalities.
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Convexity

Recall that a set S is convex if

x , y ∈ S ⇒ αx + (1− α)y ∈ S

for all α ∈ [0, 1].

Lemma: The cone of positive semidefinite matrices is convex.

Let A and B be psd, and C = αA + (1− α)B with α ∈ [0, 1].
Then, for all z ∈ Rn,

zTCz = zT (αA + (1− α)B)z = α zTAz︸ ︷︷ ︸
≥0

+(1− α) zTBz︸ ︷︷ ︸
≥0

≥ 0,

and thus C is also psd.
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Example (I)

Consider the spectrahedron given by the SDP:x 0 y
0 1 −x
y −x 1

 � 0. -6 -5 -4 -3 -2 -1 1 2
x
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x
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y

Convex, but not necessarily polyhedral

In general, boundary is piecewise-smooth

Determinant vanishes on the boundary

In this example, the determinant is the elliptic curve x − x3 = y2.
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Example (II)

Consider the spectrahedron:

Xii = 1 X � 0

PSD matrices of unit diagonal

Interpretation: set of correlation matrices

Known as the elliptope.

M =

1 a b
a 1 c
b c 1

 � 0

Boundary is the Cayley cubic

detM = 1− (a2 + b2 + c2) + 2abc
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Symbolic vs. numerical computation

An ongoing discussion. Clearly, both have advantages/disadvantages.

“Exact solutions” vs. “approximations”

“Input data often inexact”

“Global” vs. “local”. One vs. all solutions.

Computational models: bits vs. reals. Encoding of solutions.

“Best” method depends on the context. Hybrid symbolic-numeric
methods are an interesting possibility.

SDP bring some interesting new twists.

For LP, “numerical” algorithms (ellipsoid, interior-point) are polytime,
while “symbolic” or “combinatorial” ones (e.g. simplex) are not.

Worse for SDP.
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Algebraic aspects of SDP

In LPs with rational data, the optimal solution is rational. Not so for SDP.

Optimal solutions of relatively small SDPs generically have minimum
defining polynomials of very high degree.

Example (von Bothmer and Ranestad): For n = 20, m = 105, the
algebraic degree of the optimal solution is ≈ 1.67× 1041.

Explicit algebraic representations are absolutely impossible to
compute (even without worrying about coefficient size!).

Nevertheless, interior point methods yield arbitrary precision
numerical approximations!

SDP provides an efficient, and numerically convenient encoding.
Representation does not pay the price of high algebraic complexity.
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Application: binary quadratic optimization

Consider the maximization problem

max
x

xTQx s.t. xi ∈ {−1, 1}.

A quadratic function, on the vertices of the hypercube. Difficult in theory
(NP-hard), and also in practice. Very important in applications.

Can we produce “strong” upper bounds on the optimal value q?? (e.g., for
branch and bound)

Let γ? be the optimal value of the SDP:

minTrD Q � D, D diagonal.

Then, for any x ∈ {−1, 1}n, and any feasible D we have:

xTQx ≤ xTDx =
n∑

i=1

Diix
2
i = TrD

and thus q? ≤ γ?. The upper bound γ? can be efficiently computed.
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Application: binary quadratic optimization (II)

How good is this upper bound? How to quantify this?

Different cases, depending on properties of the cost function Q:

Q is diagonally dominant (Qii ≥
∑

i 6=j Qij). This is the case of
MAX-CUT, where Q is the Laplacian of a graph. Goemans and
Williamson showed that

0.878 γ? ≤ f ∗ ≤ γ?

Q is positive semidefinite (Q � 0). By results of Nesterov (and
earlier, in very different form, Grothendieck)

2

π
γ? ≤ f ∗ ≤ γ?

Q has a bipartite structure. Then, Grothendieck’s inequality (and
Krivine’s bound) yields

0.5611 γ? ≤ f ∗ ≤ γ?
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Semidefinite representations

Natural question in convex optimization:

What sets can be represented using semidefinite programming?

Equivalently, can I solve this problem using SDP?

In the LP case, well-understood question: finite number of extreme
points/rays (polyhedral sets, Minkowski-Weyl)

Are there “obstructions” to SDP representability?
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Known SDP-representable sets

Many interesting sets are known to be
SDP-representable (e.g., polyhedra, convex
quadratics, matrix norms, etc.)

Preserved by “natural” properties: affine
transformations, convex hull, polarity, etc.

Several known structural results (e.g., facial
exposedness)

Work of Nesterov-Nemirovski, Ben-Tal, Ramana,
Tunçel, Güler, Renegar, Chua, etc.
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A few examples of SDP-representable sets

Sums of eigenvalues of symmetric matrices

Convex envelope of univariate polynomials

Multivariate polynomials that are sums of squares

Unit ball of matrix operator and nuclear norms

Geometric and harmonic means

(Some) orbitopes – convex hulls of group orbits

Lyapunov functions of (non)linear systems

Optimal decentralized controllers (under certain
information structures)

-1
-0.5

0
0.5

1

-1
-0.5

0

0.5

1

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

Often, clever and non-obvious reformulations.
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Existing results

Obvious necessary conditions: S must be convex and semialgebraic.

Several versions of the problem:

Exact vs. approximate representations.

“Direct” (non-lifted) representations: no additional variables.

x ∈ S ⇔ A0 +
∑
i

xiAi � 0

“Lifted” representations: can use extra variables (projection)

x ∈ S ⇔ ∃y s.t. A0 +
∑
i

xiAi +
∑

yjBj � 0

Projection helps a lot!
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Liftings and projections

Often, “simpler” descriptions of convex sets from higher-dimensions.

Ex: The n-dimensional crosspolytope (`1 unit ball). Requires
2n linear inequalities, of the form

±x1 ± x2 ± · · · ± xn ≤ 1.

However, can efficiently represent it as a projection:

{(x , y) ∈ R2n,
n∑

i=1

yi = 1, −yi ≤ xi ≤ yi i = 1, . . . , n}

Only 2n variables, and 2n + 1 constraints!
In convexity, elimination is not always a good idea.
Quite the opposite, it is often advantageous to go to higher-dimensional
spaces, where descriptions (can) become simpler.
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Aside: representability of convex sets

Existence and efficiency:

When is a convex set representable by conic optimization?

How to quantify the number of additional variables that are needed?

Given a convex set C , is it possible to repre-
sent it as

C = π(K ∩ L)

where K is a cone, L is an affine subspace,
and π is a linear map?

A beatiful story, much of it in progress. But not today...
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Example: facility location and k-ellipses

Consider the facility location problem: given k customer locations
(ui , vi ) ∈ R2, decide where to build a new facility in such a way that total
shipping costs are minimized:

min
(x ,y)

k∑
i=1

f ((x , y), (ui , vi )),

where f (·, ·) models the shipping costs.

If f is the Euclidean distance, this is the classical Fermat-Weber problem.

Simple and natural SOCP/SDP representation (w/extra variables):

min
k∑

i=1

di s.t.

[
x − ui + di y − vi

y − vi x − ui − di

]
� 0

(constraints are ‖(x , y)− (ui , vi )‖ ≤ di )
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Example: k-ellipse

Fix a positive real number d and fix k distinct points (ui , vi ) in R2. The
k-ellipse with foci (ui , vi ) and radius d is the following curve in the plane:{

(x , y) ∈ R2 :
k∑

i=1

√
(x − ui )2 + (y − vi )2 = d

}
.

Thm:(Nie-P.-Sturmfels 07) The k-ellipse has degree 2k if k is odd and
degree 2k−

( k
k/2

)
if k is even. It has an explicit 2k × 2k SDP representation.

25 / 73



5-ellipse
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Results on exact SDP representations

Direct representations:

Necessary condition: rigid convexity. Helton & Vinnikov (2004) showed
that in R2, rigid convexity is also sufficient.
Related to hyperbolic polynomials and the Lax conjecture (Güler,
Renegar, Lewis-P.-Ramana 2005)
For higher dimensions the problem is open.

Lifted representations:

Does every convex basic SA set have a lifted exact SDP representation?
(Helton & Nie 2007): Under strict positive curvature assumptions on
the boundary, this is true.
No known nontrivial obstructions – until recently...
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Exact representations: direct case

x ∈ S ⇔ A0 +
∑
i

xiAi � 0

Necessary condition: “rigid convexity.” Every line through the set must
intersect the Zariski closure of the boundary a constant number of times
(equal to the degree of the curve).

[Assume A0 � 0, and let xi = tβi . Then the univariate polynomial

q(t) := det(A0 +
∑

xiAi ) = det(A0 + t ·
∑
βiAi ) has all its d roots real.]

Can use it to show, for instance, that the convex set
S = {(x , y) : x4 + y4 ≤ 1} does not have a direct SDP representation.
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Exact representations: lifted case

Very active research topic, both in qualitative and quantitative flavors.
Recent exciting progress, on several fronts!

Gouveia-P.-Thomas (arXiv:1111.3164): PSD rank of a convex set,
extension of Yannakakis’ LP theory to SDP extension complexity.

Lee-Raghavendra-Steurer (arXiv:1411.6317, STOC2015):
exponential lower bounds on SDP relaxations of cut polytope.

Fawzi (arXiv:1610.04901): S3
+ is not SOCP-representable.

SOCP-rank + Turán’s theorem

Scheiderer (arXiv:1612.07048): nonnegative polynomials (for
d ≥ 4, n ≥ 2) are not SDP-representable. Real algebraic-geometric
tools (real spectrum, Tarski’s transfer principle, . . . )
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Summary

SDP is a natural generalization of linear
programming

Rich algebraic-geometric structure

Many applications, efficient numerical solvers

Some fundamental aspects not fully understood yet

End of Part I
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Part II
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Recap

Motivation: convexity, with computational content

SDP as a natural generalization of LP

Understanding the power and limitations of SDP
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Lyapunov stability analysis

A linear system ẋ = Ax , quadratic Lyapunov function V (x) = xTPx

P � 0, ATP + PA ≺ 0

More generally, for a nonlinear system ẋ = f (x),

V (x) > 0 x 6= 0, V̇ (x) =
(
∂V
∂x

)T
f (x) < 0, x 6= 0

(locally, or globally if V is radially unbounded).

Many variations: H2 and/or H∞ analysis, parameter-dependent
Lyapunov functions, etc.

The problem is clearly convex in V (x). But, how to solve this?

33 / 73



Lyapunov stability analysis
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Nonnegativity is hard

What is the issue?

Structure of V is unclear in general. Differentiable? Algebraic?
Polynomial?

More importantly, even if we nicely parameterize V (x) (e.g.,
polynomials), how to verify the nonnegativity conditions?

V (x) > 0 x 6= 0, V̇ (x) =

(
∂V

∂x

)T

f (x) < 0, x 6= 0

Unfortunately, given a polynomial p(x1, . . . , xn), verifying if

p(x1, . . . , xn) ≥ 0 ∀x ∈ Rn

is NP-hard (and also difficult in practice)

What to do about this?
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Sum of squares

A multivariate polynomial p(x) is a sum of squares (SOS) if

p(x) =
∑

i q
2
i (x), qi (x) ∈ R[x ].

If p(x) is SOS, then clearly p(x) ≥ 0 for all x ∈ Rn.

Converse not true, in general (Hilbert). Counterexamples exist.

For univariate or quadratics, nonnegativity is equivalent to SOS.

Let Pn,2d be the set of nonnegative polynomials in n variables of degree
less than or equal to 2d , and Σn,2d the corresponding set of SOS. Clearly,

Σn,2d ⊆ Pn,2d
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Nonnegativity and sum of squares

In 1888, Hilbert showed that Pn,2d = Σn,2d iff:

2d = 2. Quadratic forms. SOS decomposition follows from
eigenvalue/eigenvector, square root, or Cholesky decomposition.

n = 2. Equivalent to polynomials in one variable.

2d = 4, n = 3. Quartic forms in three variables.

Also, a nonconstructive proof of the nonequivalence in all other cases.

Years later, Motzkin gave an explicit counterexample:

M(x , y , z) = x2y4 + x4y2 + z6 − 3x2y2z2

Is positive semidefinite. Apply the AGI to (x2y4, x4y2, z6).

Is not a sum of squares.

How do we check the sums of squares condition?
36 / 73



Checking the SOS condition

Basic “Gram matrix” method (Shor 87, Choi-Lam-Reznick 95,
Powers-Wörmann 98, Nesterov, Lasserre, P., etc.)

A polynomial F (x) is SOS if and only if

F (x) = w(x)TQw(x),

where w(x) is a vector of monomials, and Q � 0.

(If F ∈ R[x]n,2d , it is sufficient to choose for w(x) all
(n+d

d

)
monomials of degree less than or

equal to d .)

This is a semidefinite program!
Let’s see an example, and then the general formulation...
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SOS Example

F (x , y) = 2x4 + 5y4 − x2y2 + 2x3y

=

 x2

y2

xy

T  q11 q12 q13

q12 q22 q23

q13 q23 q33

 x2

y2

xy


= q11x

4 + q22y
4 + (q33 + 2q12)x2y2 + 2q13x

3y + 2q23xy
3

An SDP with equality constraints. Solving, we obtain:

Q =

 2 −3 1
−3 5 0
1 0 5

 = LTL, L =
1√
2

[
2 −3 1
0 1 3

]

And therefore F (x , y) = 1
2 (2x2 − 3y2 + xy)2 + 1

2 (y2 + 3xy)2
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Checking SOS via SDP

Let F (x) =
∑

fαx
α. Index rows and columns of Q by monomials. Then,

F (x) = w(x)TQw(x) ⇔ fα =
∑

β+γ=α

Qβγ

Thus, we have the SDP feasibility problem

fα =
∑

β+γ=α

Qβγ , Q � 0

Factorize Q = LTL. The SOS is given by F (x) = ‖Lw(x)‖2.

(Can exploit sparsity, symmetry, etc. — more on this later).

And, we can actually search over such polynomials!
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Nonlinear Lyapunov

For ẋ = f (x), a Lyapunov function must satisfy

V (x) ≥ 0,

(
∂V

∂x

)T

f (x) ≤ 0

Jet engine model (derived from Moore-Greitzer), with
controller:

ẋ = −y +
3

2
x2 − 1

2
x3

ẏ = 3x − y

Postulate a generic 4th order polynomial Lyapunov function:

V (x , y) =
∑

0≤j+k≤4

cjk x
jyk

Find a V (x , y) by solving the SOS program:

V (x , y) is SOS, −∇V (x , y) · f (x , y) is SOS.
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Lyapunov example (cont.)

After solving, we obtain a Lyapunov function.

−5 −4 −3 −2 −1 0 1 2 3 4 5

−5

−4

−3

−2

−1

0

1

2

3

4

5

x

y
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From feasibility to optimization

SOS directly yields lower bounds for optimization!

F (x)− γ is SOS ⇒ F (x) ≥ γ for all x

−2
−1

0
1

2

−1.5

−1

−0.5

0

0.5

1

1.5
−2

−1

0

1

2

3

4

5

6

xy

F
(x

,y
)

Finding the best such γ is also an SDP

Typically, very high-quality bounds

If exact, can recover exact solution

Natural extensions to constrained case
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Polynomial systems over R

When do equations and inequalities have real solutions?

A remarkable answer: the Positivstellensatz.

Centerpiece of real algebraic geometry (Stengle 1974).

Common generalization of Hilbert’s Nullstellensatz and LP duality.

Guarantees the existence of algebraic infeasibility certificates for real
solutions of systems of polynomial equations.

Sums of squares are a fundamental ingredient.

How does it work?
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P-satz and SOS

Given {x ∈ Rn | fi (x) ≥ 0, hi (x) = 0}, want to prove that it is empty.
Define:

Cone(fi ) =
∑

si · (
∏

j fj), Ideal(hi ) =
∑

ti · hi ,

where the si , ti ∈ R[x ] and the si are sums of squares.
What is this? What’s the idea?
Want to capture the algebraic structure of the allowable operations among
constraints (alternatively, how to generate new constraints from old ones):

If fi (x) ≥ 0, fj(x) ≥ 0, then fi (x)fj(x) ≥ 0.

If fi (x) ≥ 0, then s(x)fi (x) ≥ 0, where s(x) is SOS.

If hi (x) = 0, then t(x)hi (x) = 0.

Describes all valid constraints that can be “easily” generated.
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P-satz and SOS

Given {x ∈ Rn | fi (x) ≥ 0, hi (x) = 0}, want to prove that it is empty.
Define:

Cone(fi ) =
∑

si · (
∏

j fj), Ideal(hi ) =
∑

ti · hi ,

where the si , ti ∈ R[x ] and the si are sums of squares.
To prove infeasibility, find f ∈ Cone(fi ), h ∈ Ideal(hi ) such that

f + h = −1.

Can find certificates by solving SOS programs!

Complete SOS hierarchy, by certificate degree (P. 2000).

Directly provides hierarchies of bounds for optimization.
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Convex hulls of algebraic varieties

Back to SDP representations...
Focus here on a specific, but very important case.

Given a set S ⊂ Rn, we can define its convex hull

convS :=

{∑
i

λixi : xi ∈ S ,
∑
i

λi = 1, λi ≥ 0

}

Our interest: S is a real algebraic variety and the
approximation is an SDP-representable set.
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Why?

Many interesting problems require or boil down exactly to understanding
and describing convex hulls of algebraic varieties.

Nonnegative polynomials and optimization

Polynomial games

Convex relaxations for minimum-rank

Convex hull of rotation matrices

We’ll discuss some of these in detail...
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Polynomial optimization

Consider the unconstrained minimization of a multivariate polynomial

p(x) =
∑
α∈S

pαx
α,

where x ∈ Rn and S is a given set of monomials (e.g., all monomials of
total degree less than or equal to 2d , in the dense case).

Define the (real, toric) algebraic variety VS ⊂ R|S|:

VS := {(xα1 , . . . , xα|S|) : x ∈ Rn} .

This is the image of Rn under the monomial map (e.g., in the
homogeneous case, the Veronese embedding).
Want to study the convex hull of VS . Extends to the constrained case.
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Univariate case

Convex hull of the rational normal curve
(1, t, . . . , td).
Not polyhedral.
Known geometry (Karlin-Shapley)

−1

−0.5

0

0.5

1

0

0.5

1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

y
1y

2

y 3

“Simplicial”: every supporting hyperplane yields a simplex.
Related to cyclic polytopes.
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Polynomial optimization

We have then (almost trivially):

inf
x∈Rn

p(x) = inf{pT y : y ∈ convVS}

Optimizing a nonconvex polynomial is equivalent to linear optimization
over a convex set (!)

Unfortunately, in general, it is NP-hard to check membership in convVS .
Nevertheless, we can turn this around, and use SOS relaxations to obtain
“good” approximate SDP descriptions of the convex hull VS .
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A geometric interlude

How is this possible? Convex optimization for solving nonconvex problems?

Convexity is relative. Every problem can be trivially “lifted” to a convex
setting (in general, infinite dimensional).
Ex: mixed strategies in games, “relaxed” controls, Fokker-Planck, etc.
Interestingly, however, often a finite (and small) dimension is enough.

Consider the set defined by

1 ≤ x2 + y2 ≤ 2

Clearly non-convex.
Can we use convex optimization?
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Geometric interpretation

A polynomial “lifting” to a higher dimensional space:

(x , y) 7→ (x , y , x2 + y2)

The nonconvex set is the projection of the extreme points of a convex set.

In particular, the convex set
defined by

x2 + y2 ≤ z

1 ≤ z ≤ 4
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Convex hull of varieties: a “polar” viewpoint

How to describe a convex hull?

Any convex set S is uniquely defined by its supporting
hyperplanes.
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Thus, if we can optimize a linear function over a set using SDP, we
effectively have an SDP representation.

Need to solve (or approximate)

min cT x s.t. x ∈ S

If S is defined by polynomial equations/inequalities, can use SOS.

53 / 73



Theta bodies

We define the k-th theta body of a real variety (Gouveia-P.-Thomas 08).

Let V be an algebraic variety, and I = I (V ) ⊆ R[x1, . . . , xn] the associated
polynomial ideal. The polynomial f is k-sos modulo the ideal I if

f =
∑
i

q2
i ∀x ∈ V , deg(qi ) ≤ k .

If f is k-sos mod I , then clearly f is nonnegative on V .

Recall the characterization of the (closed) convex hull of a set S as the
intersection of all half-spaces that contain S :

conv(S) = {p ∈ Rn : f (p) ≥ 0 for all f affine and nonnegative on S}

Next, we will do the same, but replacing nonnegativity with k-sos.
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Theta bodies (II)

Def: Given an ideal I ⊂ R[x1, . . . , xn] we define its k-th theta body:

THk(I ) := {p ∈ Rn : f (p) ≥ 0 for all f affine and k-sos mod I}

Replace all halfspaces with “k-sos certifiable” halfspaces.

Since

conv(S) = {p ∈ Rn : f (p) ≥ 0 for all f affine and nonnegative on S}

We have then

conv(VR(I )) ⊆ · · · ⊆ THk(I ) ⊆ THk−1(I ) ⊆ · · · ⊆ TH1(I ).

Under mild conditions, limk→∞ THk(I ) gives the desired convex hull.
Often, finite convergence.
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Example

SDP approximations to a (half) lemniscate:

x
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Many variations (e.g., Putinar-Lasserre, LP-based, sparse SOS, etc.), same
basic ideas.
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Summary

Sum of squares allows the use of SDP for
polynomial problems

Through the P-satz, extend to constrained
problems

Convexity properties depend on description

Convex hulls can be nicely approximated by SDP

End of Part II
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Example: orthogonal matrices

Consider O(3), the group of 3× 3 orthogonal matrices. It has two
connected components (determinant is ±1). Rotation matrices have
determinant one (preserve orientation).

Can use the double-cover of SO(3) with SU(2) (equivalently, quaternions)
to provide an exact SDP representation of the convex hull of SO(3):

Z11 + Z22 − Z33 − Z44 2Z23 − 2Z14 2Z24 + 2Z13
2Z23 + 2Z14 Z11 − Z22 + Z33 − Z44 2Z34 − 2Z12
2Z24 − 2Z13 2Z34 + 2Z12 Z11 − Z22 − Z33 + Z44

 , Z � 0, Tr Z = 1.

This is a convex set in R9.
Here is a two-dimensional projection.

Generalizations to SO(n) via Clifford algebras

(Saunderson-P.-Willsky, arXiv:1403.4914,

SIAM J. Optim. 25:3, 1314–1343, 2015.)
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Joint spin-rate and attitude estimation

unknown initial ‘attitude’ Q

spinning at unknown rate ω around
known (in body frame) axis

Data: sequence of noisy measurements (in body frame) of reference
directions (sun, stars, magnetic field, etc) known in inertial frame

Problem: Estimate initial attitude Q and spin-rate ω from data.

max
Q∈SO(3)
ω∈[−π,π)

N∑
n=0

[〈An,Q cos(nω)〉+ 〈Bn,Q sin(nω)〉]

Representation allow us to exactly solve this problem with SDP!
(arXiv:1410.2841, J. Guidance, Control, and Dynamics, 39:1, 118-127, 2016.)
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Pose graph optimization
e.g., Bandeira-Kennedy-Singer, Carlone-Rosen-Calafiore-Leonard-Dellaert, . . .

Collection of rigid bodies (e.g., drones
w/cameras, SLAM)

(Few) measurements of pairwise relative
positions Mij

Estimate the position of all bodies

(figure from Calafiore et al.)

min
{Ri}∈SO(3)

∑
(ij)∈M

‖Mij − RiR
T
j ‖2

Natural semidefinite relaxation:

min
∑

(ij)∈M

‖Mij − Rij‖2 s.t.


I3 R12 . . . R1n

RT
12 I3 . . . R2n

...
...

. . .
...

RT
1n RT

2n . . . I3

 � 0, Rij ∈ convSO(3).
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Minimum rank and convex relaxations

Consider the rank minimization problem

minimize rankX subject to A(X ) = b,

where A : Rm×n → Rp is a linear map.

Find the minimum-rank matrix in a given subspace. In general, NP-hard.

Let’s see a few applications...
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Application: System identification

Measure response at time T (e.g., for random input)

Response at time T is linear in impulse response h.

hank(h) :=


h(0) h(1) · · · h(N)
h(1) h(2) · · · h(N + 1)

...
...

. . .
...

h(N) h(N + 1) · · · h(2N)


Complexity of P ≈ rank(hank(h)).
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Application: Matrix completion

Mij known for black cells
Mij unknown for white cells

Partially specified matrix, known pattern

Often, random sampling of entries

Applications:

Partially specified covariances (PSD case)
Collaborative prediction (e.g., Rennie-Srebro’05, “Netflix problem”,
Candés-Recht’09)
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Minimum rank and convex relaxations

Consider the rank minimization problem

minimize rankX subject to A(X ) = b,

where A : Rm×n → Rp is a linear map.
Find the minimum-rank matrix in a given subspace. In general, NP-hard.

Since rank is hard, let’s use instead its convex envelope, the nuclear norm.
The nuclear norm of a matrix (alternatively, Schatten 1-norm, Ky Fan
r -norm, or trace class norm) is the sum of its singular values, i.e.,

‖X‖∗ :=
r∑

i=1

σi (X ).
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Convex hulls and nuclear norm

Nuclear norm ball is convex hull of rank one matrices:

B = {X ∈ Rm×n : ‖X‖∗ ≤ 1}
= conv{uvT : u ∈ Rm, v ∈ Rn, ‖u‖2 = 1, ‖v‖2 = 1}

Exactly SDP-characterizable! -1.0
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B =

{
X ∈ Rm×n :

[
W1 X
XT W2

]
� 0, TrW1 + TrW2 = 2

}
Under certain conditions (e.g., if subspace defined by A is “random”),
optimizing the nuclear norm yields the true minimum rank solution.

For details, see Recht-Fazel-P., “Guaranteed minimum-rank solutions of linear matrix equations

via nuclear norm minimization,” SIAM Review, 2010.
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Rank, sparsity, and beyond: atomic norms

Exactly the same constructions can be applied to more general situations:
atomic norms.

Structure-inducing regularizer is convex hull of atom set, e.g., low-rank
matrices/tensors, permutation matrices, cut matrices, etc.

Generally NP-hard to compute, but good SDP
approximations.

Statistical guarantees for recovery based on Gaussian
width of tangent cones. Interesting interplay between
computational and sample complexities.

For details, see Chandrasekaran-Recht-P.-Willsky, “The convex geometry of linear inverse

problems,” Found. Comp. Math., 2012.
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Exploiting structure

P-satz

relaxations

Exploit

structure

Representation

Displacement rank

Orthogonalization

Graph structure Semidefinite

programs

Polynomial

descriptions

Symmetry reduction

Ideal structure

Sparsity

Symmetry reduction

Ideal structure

Sparsity

SOS

Programs
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Algebraic structure

Algebraic sparsity: polynomials with few nonzero coefficients.

Newton polytopes techniques.

Ideal structure: equality constraints.

SOS on quotient rings R[x ]/I .
Compute in the coordinate ring. Quotient bases.

Graphical structure:

Dependency graph among the variables
Chordality/treewidth techniques

Symmetries: invariance under a group

SOS on invariant rings
Representation theory and invariant-theoretic methods.
Enabling factor in applications (e.g., Markov chains)
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Numerical structure

Rank one SDPs.

Dual coordinate change makes all constraints rank one
Efficient computation of Hessians and gradients

Representations

Interpolation representation
Orthogonalization

Displacement rank

Fast solvers for search direction

Alternatives to interior-point methods?

E.g., factorization approaches (Burer-Monteiro)?
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Related work
(very incomplete/partial list!)

Related basic work: N.Z. Shor, Nesterov, Lasserre, etc.

Systems and control (Prajna, Rantzer, Hol-Scherer, Henrion, etc.)

Sparse optimization (Waki-Kim-Kojima-Muramatsu, Lasserre,
Nie-Demmel, etc.)

Approximation algorithms (de Klerk-Laurent-P.)

Filter design (Alkire-Vandenberghe, Hachez-Nesterov, etc.)

Stability number of graphs (Laurent, Peña, Rendl)

Quantum information theory (Doherty-Spedalieri-P.,
Childs-Landahl-P.)

Joint spectral radius (P.-Jadbabaie, Legat-Jungers)

Game theory (Stein-Ozdaglar-P.)

Theoretical computer science (Barak, Kelner, Steurer, Lee,
Raghavendra)
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Connections

Many fascinating links to other areas of mathematics:

Probability (moments, exchangeability and de Finetti, etc)

Operator theory (via Gelfand-Neimark-Segal)

Harmonic analysis on semigroups

Noncommutative probability and quantum information

Complexity and proof theory (degrees of certificates)

Graph theory (perfect graphs)

Tropical geometry (SDP over more general fields)
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Summary

A very rich class of optimization problems

Methods have enabled many new applications

Interplay of many branches of mathematics

Structure must be exploited for reliability and
efficiency

Combination of numerical and algebraic
techniques.
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This book provides a self-contained, accessible introduction to the mathematical 
advances and challenges resulting from the use of semidefinite programming in 
polynomial optimization. This quickly evolving research area with contributions from the 
diverse fields of convex geometry, algebraic geometry, and optimization is known as 
convex algebraic geometry.

Each chapter addresses a fundamental aspect of convex algebraic geometry. The book 
begins with an introduction to nonnegative polynomials and sums of squares and their 
connections to semidefinite programming and quickly advances to several areas at the 
forefront of current research. These include

•   semidefinite representability of convex sets,
•   duality theory from the point of view of algebraic geometry, and 
•   nontraditional topics such as sums of squares of complex forms and 

noncommutative sums of squares polynomials.

Suitable for a class or seminar, with exercises aimed at teaching the topics to 
beginners, Semidefinite Optimization and Convex Algebraic Geometry serves as a point 

of entry into the subject for readers from multiple communities such 
as engineering, mathematics, and computer science. A guide to the 
necessary background material is available in the appendix. 

This book can serve as a textbook for graduate-level courses 
presenting the basic mathematics behind convex algebraic geometry 
and semidefinite optimization. Readers conducting research in these 
areas will discover open problems and potential research directions. 

Grigoriy Blekherman is an assistant professor at Georgia Institute 
of Technology and a 2012 recipient of the Sloan Research Fellowship. 
His research interests lie at the intersection of convex and algebraic 
geometry.

Pablo A. Parrilo is a professor of Electrical Engineering and Computer 
Science at the Massachusetts Institute of Technology. He has received 
the SIAG/CST Prize and the IEEE Antonio Ruberti Young Researcher 
Prize. His research interests include mathematical optimization, 
systems and control theory, and computational methods for 
engineering applications.

Rekha R. Thomas is the Robert R. and Elaine F. Phelps Endowed 
Professor of Mathematics at the University of Washington in Seattle. 
Her research interests are in optimization and computational algebra.
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If you want to know more:

Papers, slides, lecture notes, software, etc.: www.mit.edu/~parrilo

NSF FRG: “SDP and convex algebraic geometry”

NSF AF: “Algebraic proof systems, convexity, and algorithms”

Thanks for your attention!
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A very rich class of optimization problems

Methods have enabled many new applications

Interplay of many branches of mathematics

Structure must be exploited for reliability and
efficiency

Combination of numerical and algebraic
techniques.
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This book provides a self-contained, accessible introduction to the mathematical 
advances and challenges resulting from the use of semidefinite programming in 
polynomial optimization. This quickly evolving research area with contributions from the 
diverse fields of convex geometry, algebraic geometry, and optimization is known as 
convex algebraic geometry.

Each chapter addresses a fundamental aspect of convex algebraic geometry. The book 
begins with an introduction to nonnegative polynomials and sums of squares and their 
connections to semidefinite programming and quickly advances to several areas at the 
forefront of current research. These include

•   semidefinite representability of convex sets,
•   duality theory from the point of view of algebraic geometry, and 
•   nontraditional topics such as sums of squares of complex forms and 

noncommutative sums of squares polynomials.

Suitable for a class or seminar, with exercises aimed at teaching the topics to 
beginners, Semidefinite Optimization and Convex Algebraic Geometry serves as a point 

of entry into the subject for readers from multiple communities such 
as engineering, mathematics, and computer science. A guide to the 
necessary background material is available in the appendix. 

This book can serve as a textbook for graduate-level courses 
presenting the basic mathematics behind convex algebraic geometry 
and semidefinite optimization. Readers conducting research in these 
areas will discover open problems and potential research directions. 

Grigoriy Blekherman is an assistant professor at Georgia Institute 
of Technology and a 2012 recipient of the Sloan Research Fellowship. 
His research interests lie at the intersection of convex and algebraic 
geometry.

Pablo A. Parrilo is a professor of Electrical Engineering and Computer 
Science at the Massachusetts Institute of Technology. He has received 
the SIAG/CST Prize and the IEEE Antonio Ruberti Young Researcher 
Prize. His research interests include mathematical optimization, 
systems and control theory, and computational methods for 
engineering applications.

Rekha R. Thomas is the Robert R. and Elaine F. Phelps Endowed 
Professor of Mathematics at the University of Washington in Seattle. 
Her research interests are in optimization and computational algebra.
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