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1. Recall that a set S ⊂ Rn is convex if

x, y ∈ S ⇒ λx+ (1− λ)y ∈ S ∀λ ∈ [0, 1],

and a function f : Rn → R is convex if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) ∀x, y ∈ Rn, λ ∈ [0, 1].

(a) Are the following sets convex? Justify as needed.

S1 := {(x, y) ∈ R2 : x+ y ≥ 1}
S2 := {(x, y) ∈ R2 : x2 + y2 ≤ 2}
S3 := S1 ∩ S2,

S4 := S1 ∪ S2

What can you say in general about unions and intersections of convex sets?

(b) Are the following functions convex? Justify as needed.

f1(x) = 1/(1 + x2),

f2(x, y) = x2 · (1 + 2y − x2),
f3(x, y) = sin(x2 + y2)− cos(x+ y).

(c) Show that a function is convex if and only if its epigraph

epif := {(x, t) ∈ Rn × R : f(x) ≤ t}

is a convex set.
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2. Consider the linear programming (LP) problem:

minimize x1 − x2 s.t.

{
x1 + x2 + x3 = 1

x1, x2, x3 ≥ 0

(a) Write this problem as an LP in standard form. What are the corresponding
matrices A, b, c?

(b) Write down the corresponding dual problem.

(c) What are the optimal solutions of the primal and dual problems?

(d) Verify that strong duality holds for this example.

(e) Implement this in your favorite LP solver.

3. Consider the following semidefinite programming problem:

minimize x+ 2y subject to

[
x 1
1 y

]
� 0.

(a) Sketch the feasible set. Is it convex?

(b) Write the dual semidefinite program.

(c) What are the optimal solutions?

(d) What can you say about strong duality?
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4. Let C ⊂ Rn be a convex body (i.e., full-dimensional, compact) that includes the origin
in its interior. Its polar convex body is defined as

C◦ = {y ∈ Rn : 〈y, x〉 ≤ 1 ∀x ∈ C}.

(a) Show that C◦ is a convex body (i.e., convex, compact, full-dimensional).

(b) Let C be a triangle with vertices (−1, 1), (−1,−1) and (a, 0), where a > 0. Draw
C and C◦, as a function of the parameter a.

(c) Let C be an axis-aligned ellipse of semiaxes a and b. What is C◦?

(d) Let C = {x ∈ Rn : ‖x‖p := (
∑n

i=1 |xi|p)
1
p ≤ 1}, where p ≥ 1. Find a “nice”

description of C◦. Hint: use Hölder’s inequality.

5. In this exercise we explore the polar set from a computational point of view.

(a) Assume that C is the feasible set of an SDP, i.e.,

C = {x ∈ Rn :
n∑

i=1

xiAi � C},

where Ai and C are given symmetric matrices, and C � 0. Find a convenient
description of Co in terms of semidefinite programming. Can you optimize a linear
function over Co?

(b) Compute the polar of the 3× 3 elliptope, i.e., the set

C = {X ∈ S3
+ : X11 = X22 = X33 = 1}

Plot C and C◦.
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6. Using semidefinite programming, give a description of the convex hull of two disjoint
disks in R3. In particular, consider

D1 = {(x, y, z) ∈ R3 : (x− 2)2 + y2 ≤ 1, z = 0}

and
D2 = {(x, y, z) ∈ R3 : (x+ 1)2 + z2 ≤ 1, y = 0}.

Implement your construction using an SDP solver. Plot D1 and D2, and the resulting
convex hull.

7. Consider the polynomial p(x) = x4 + 2ax2 + b. For what values of (a, b) is this polyno-
mial nonnegative? Draw the region of nonnegativity in the (a, b) plane. Where does
the discriminant of p vanish? How do you explain this?
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8. Let M(x, y, z) = x4y2 + x2y4 + z6 − 3x2y2z2 be the Motzkin polynomial. Show that
M(x, y, z) is not SOS, but (x2 + y2 + z2) ·M(x, y, z) is.

9. Give a rational certificate of the nonnegativity of the trigonometric polynomial p(θ) =
5− sin θ + sin 2θ − 3 cos 3θ.
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10. Consider a univariate polynomial of degree d, that is bounded by one in absolute
value on the interval [−1, 1]. How large can its leading coefficient be? Give an SOS
formulation for this problem, solve it numerically for d = 2, 3, 4, 5, and plot the found
solutions. Can you guess what the general solution is as a function of d? Can you
characterize the optimal polynomial?

11. Consider a given univariate rational function r(x), for which we want to find a good
polynomial approximation p(x) of fixed degree d on the interval [−2, 2].

(a) Write an SOS formulation to compute the best polynomial approximation of r(x)
in the supremum norm.

(b) Same as before, but now p(x) is also required to be convex.

(c) Same as before, but p(x) is required to be a convex lower bound of r(x) (i.e.,
p(x) ≤ r(x) for all x ∈ [−2, 2]).

(d) Let r(x) = 1−2x+x2

1+x+x2 . Find the solution of the previous subproblems (for d = 4),
and plot them.
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12. In general, the SOS decomposition of a univariate polynomial is not unique. Given a
specific basis of R[x] (for instance, the standard monomial basis we have been consid-
ering), a “natural” choice can be obtained by finding a matrix Q satisfying

p(x) = [x]Td Q [x]d, Q � 0

and such that the determinant of Q is as large as possible. This “central solution” can
be computed by solving a convex optimization problem, since log detQ is a concave
function on the region where Q is positive semidefinite. In fact, this convex optimiza-
tion problem can be reformulated a semidefinite programming problem.

(a) Compute numerically the central solution for the polynomial p(x) = x6 − 6x5 +
16x4 − 24x3 + 22x2 − 12x+ 4.

(b) Show, using the KKT optimality conditions, that in general the inverse of the
optimal matrix Q is a Hankel matrix.

13. Consider the polynomial system {x+ y3 = 2, x2 + y2 = 1}.

(a) Is it feasible over C? How many solutions are there?

(b) Is it feasible over R? If not, give a Positivstellensatz-based infeasibility certificate
of this fact.
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14. Consider the butterfly curve in R2, defined by the equation

x6 + y6 = x2.

Give an sos certificate that the real locus of this curve is contained in a disk of radius
5/4. Is this the best possible constant?

15. Consider the quartic form in four variables

p(w, x, y, z) := w4 + x2y2 + x2z2 + y2z2 − 4wxyz.

(a) Show that p(w, x, y, z) is not a sum of squares.

(b) Find a multiplier q(w, x, y, z) such that q(w, x, y, z)p(w, x, y, z) is a sum of squares.
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16. Consider a random variable X, with an unknown probability distribution supported
on the set Ω, and for which we know its first d+ 1 moments (µ0, . . . , µd). We want to
find bounds on the probability of an event S ⊆ Ω, i.e., want to bound P (X ∈ S). We
assume S and Ω are given intervals. Consider the following optimization problem in
the decision variables ck:

min
d∑

k=0

ckµk s.t.

{∑d
k=0 ckx

k ≥ 1 ∀x ∈ S∑d
k=0 ckx

k ≥ 0 ∀x ∈ Ω.
(1)

(a) Show that any feasible solution of (1) gives a valid upper bound on P (X ∈ S).
How would you solve this problem?

(b) Assume that Ω = [0, 5], S = [4, 5], and we know that the mean and variance of X
are equal to 1 and 1/2, respectively. Give upper and lower bounds on P (X ∈ S).
Are these bounds tight? Can you find the worst-case distributions?
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17. The stability number α(G) of a graph G is the cardinality of its largest stable set.
Define the ideal I = 〈xi(1− xi) i ∈ V, xixj (i, j) ∈ E〉.

(a) Show that α(G) is exactly given by

min γ γ −
∑
i∈V

xi is SOS mod I.

[Hint: recall (or prove!) that if I is zero-dimensional and radical, then p(x) ≥ 0
on V (I) if and only if p(x) is SOS mod I.]

(b) Recall that a polynomial is 1-SOS if it can be written as a sum of squares of affine
(degree 1) polynomials. Show that an upper bound on α(G) can be obtained by
solving

min γ γ −
∑
i∈V

xi is 1-SOS mod I. (2)

(c) Show that the given generators of the ideal I are already a Gröbner basis. Show
that there is a natural bijection between standard monomials and stable sets of G.

(d) As a consequence of the previous fact, show that α(G) is equal to the degree of
the Hilbert function of R[x]/I.

Now let G = (V,E) be the Petersen graph, given in Figure 1.

Figure 1: Petersen graph

(a) Find a stable set in the Petersen graph of maximum cardinality.

(b) Solve problem (2) for the Petersen graph. What is the corresponding upper
bound?

(c) Compute the Hilbert function of I using Macaulay2, and verify that this answer
is consistent with your previous results.
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18. Consider linear maps between symmetric matrices, i.e., of the form Λ : Sn → Sm. A
map is said to be a positive map if it maps the PSD cone Sn

+ into the PSD cone Sm
+

(i.e., it preserves positive semidefinite matrices).

(a) Show that any linear map of the form A 7→
∑

i P
T
i APi, where Pi ∈ Rn×m, is

positive. These maps are known as decomposable maps.

(b) Show that the linear map C : S3 → S3 (due to M.-D. Choi) given by:

C : A 7→

2a11 + a22 0 0
0 2a22 + a33 0
0 0 2a33 + a11

− A.
is a positive map, but is not decomposable.

Hint: Consider the polynomial defined by p(x, y) := yTΛ(xxT )y. How can you express
positivity and decomposability of the linear map Λ in terms of the polynomial p?
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