Max-Planck-Institut für

Mathematik in den Naturwissenschaften

Sum of Squares: exercises

Pablo A. Parrilo

Summer School on Numerical Computing in Algebraic Geometry MPI Leipzig - August 2018

1. Recall that a set $S \subset \mathbb{R}^n$ is *convex* if

$$x, y \in S \quad \Rightarrow \quad \lambda x + (1 - \lambda)y \in S \quad \forall \lambda \in [0, 1],$$

and a function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y) \quad \forall x, y \in \mathbb{R}^n, \quad \lambda \in [0, 1].$$

(a) Are the following sets convex? Justify as needed.

$$S_1 := \{(x, y) \in \mathbb{R}^2 : x + y \ge 1\}$$

$$S_2 := \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 2\}$$

$$S_3 := S_1 \cap S_2,$$

$$S_4 := S_1 \cup S_2$$

What can you say in general about unions and intersections of convex sets?

(b) Are the following functions convex? Justify as needed.

$$f_1(x) = 1/(1+x^2),$$

$$f_2(x,y) = x^2 \cdot (1+2y-x^2),$$

$$f_3(x,y) = \sin(x^2+y^2) - \cos(x+y).$$

(c) Show that a function is convex if and only if its epigraph

$$epif := \{(x, t) \in \mathbb{R}^n \times \mathbb{R} : f(x) \le t\}$$

is a convex set.

2. Consider the linear programming (LP) problem:

minimize
$$x_1 - x_2$$
 s.t.
$$\begin{cases} x_1 + x_2 + x_3 &= 1 \\ x_1, x_2, x_3 &\geq 0 \end{cases}$$

- (a) Write this problem as an LP in $standard\ form$. What are the corresponding matrices A,b,c?
- (b) Write down the corresponding dual problem.
- (c) What are the optimal solutions of the primal and dual problems?
- (d) Verify that strong duality holds for this example.
- (e) Implement this in your favorite LP solver.

3. Consider the following semidefinite programming problem:

minimize
$$x + 2y$$
 subject to $\begin{bmatrix} x & 1 \\ 1 & y \end{bmatrix} \succeq 0$.

2

- (a) Sketch the feasible set. Is it convex?
- (b) Write the dual semidefinite program.
- (c) What are the optimal solutions?
- (d) What can you say about strong duality?

4. Let $\mathcal{C} \subset \mathbb{R}^n$ be a convex body (i.e., full-dimensional, compact) that includes the origin in its interior. Its *polar* convex body is defined as

$$\mathcal{C}^{\circ} = \{ y \in \mathbb{R}^n : \langle y, x \rangle \le 1 \quad \forall x \in \mathcal{C} \}.$$

- (a) Show that C° is a convex body (i.e., convex, compact, full-dimensional).
- (b) Let \mathcal{C} be a triangle with vertices (-1,1), (-1,-1) and (a,0), where a>0. Draw \mathcal{C} and \mathcal{C}° , as a function of the parameter a.
- (c) Let \mathcal{C} be an axis-aligned ellipse of semiaxes a and b. What is \mathcal{C}° ?
- (d) Let $C = \{x \in \mathbb{R}^n : ||x||_p := (\sum_{i=1}^n |x_i|^p)^{\frac{1}{p}} \le 1\}$, where $p \ge 1$. Find a "nice" description of C° . Hint: use Hölder's inequality.

- 5. In this exercise we explore the polar set from a computational point of view.
 - (a) Assume that C is the feasible set of an SDP, i.e.,

$$C = \{ x \in \mathbb{R}^n : \sum_{i=1}^n x_i A_i \leq C \},$$

where A_i and C are given symmetric matrices, and $C \succ 0$. Find a convenient description of \mathcal{C}^o in terms of semidefinite programming. Can you optimize a linear function over \mathcal{C}^o ?

(b) Compute the polar of the 3×3 elliptope, i.e., the set

$$\mathcal{C} = \{ X \in \mathcal{S}_+^3 : X_{11} = X_{22} = X_{33} = 1 \}$$

Plot \mathcal{C} and \mathcal{C}° .

6. Using semidefinite programming, give a description of the convex hull of two disjoint disks in \mathbb{R}^3 . In particular, consider

$$D_1 = \{(x, y, z) \in \mathbb{R}^3 : (x - 2)^2 + y^2 \le 1, \quad z = 0\}$$

and

$$D_2 = \{(x, y, z) \in \mathbb{R}^3 : (x+1)^2 + z^2 \le 1, \quad y = 0\}.$$

Implement your construction using an SDP solver. Plot D_1 and D_2 , and the resulting convex hull.

7. Consider the polynomial $p(x) = x^4 + 2ax^2 + b$. For what values of (a, b) is this polynomial nonnegative? Draw the region of nonnegativity in the (a, b) plane. Where does the discriminant of p vanish? How do you explain this?

8. Let $M(x,y,z)=x^4y^2+x^2y^4+z^6-3x^2y^2z^2$ be the Motzkin polynomial. Show that M(x,y,z) is not SOS, but $(x^2+y^2+z^2)\cdot M(x,y,z)$ is.

9. Give a rational certificate of the nonnegativity of the trigonometric polynomial $p(\theta) = 5 - \sin \theta + \sin 2\theta - 3\cos 3\theta$.

10. Consider a univariate polynomial of degree d, that is bounded by one in absolute value on the interval [-1,1]. How large can its leading coefficient be? Give an SOS formulation for this problem, solve it numerically for d=2,3,4,5, and plot the found solutions. Can you guess what the general solution is as a function of d? Can you characterize the optimal polynomial?

- 11. Consider a given univariate rational function r(x), for which we want to find a good polynomial approximation p(x) of fixed degree d on the interval [-2, 2].
 - (a) Write an SOS formulation to compute the best polynomial approximation of r(x) in the supremum norm.
 - (b) Same as before, but now p(x) is also required to be convex.
 - (c) Same as before, but p(x) is required to be a convex lower bound of r(x) (i.e., $p(x) \le r(x)$ for all $x \in [-2, 2]$).
 - (d) Let $r(x) = \frac{1-2x+x^2}{1+x+x^2}$. Find the solution of the previous subproblems (for d=4), and plot them.

12. In general, the SOS decomposition of a univariate polynomial is not unique. Given a specific basis of $\mathbb{R}[x]$ (for instance, the standard monomial basis we have been considering), a "natural" choice can be obtained by finding a matrix Q satisfying

$$p(x) = [x]_d^T Q [x]_d, \qquad Q \succeq 0$$

and such that the determinant of Q is as large as possible. This "central solution" can be computed by solving a convex optimization problem, since $\log \det Q$ is a concave function on the region where Q is positive semidefinite. In fact, this convex optimization problem can be reformulated a semidefinite programming problem.

- (a) Compute numerically the central solution for the polynomial $p(x) = x^6 6x^5 + 16x^4 24x^3 + 22x^2 12x + 4$.
- (b) Show, using the KKT optimality conditions, that in general the inverse of the optimal matrix Q is a Hankel matrix.

- 13. Consider the polynomial system $\{x + y^3 = 2, x^2 + y^2 = 1\}$.
 - (a) Is it feasible over \mathbb{C} ? How many solutions are there?
 - (b) Is it feasible over \mathbb{R} ? If not, give a Positivstellensatz-based infeasibility certificate of this fact.

14. Consider the butterfly curve in \mathbb{R}^2 , defined by the equation

$$x^6 + y^6 = x^2.$$

Give an sos certificate that the real locus of this curve is contained in a disk of radius 5/4. Is this the best possible constant?

15. Consider the quartic form in four variables

$$p(w, x, y, z) := w^4 + x^2y^2 + x^2z^2 + y^2z^2 - 4wxyz.$$

- (a) Show that p(w, x, y, z) is not a sum of squares.
- (b) Find a multiplier q(w,x,y,z) such that q(w,x,y,z)p(w,x,y,z) is a sum of squares.

16. Consider a random variable X, with an unknown probability distribution supported on the set Ω , and for which we know its first d+1 moments (μ_0, \ldots, μ_d) . We want to find bounds on the probability of an event $S \subseteq \Omega$, i.e., want to bound $P(X \in S)$. We assume S and Ω are given intervals. Consider the following optimization problem in the decision variables c_k :

$$\min \sum_{k=0}^{d} c_k \mu_k \qquad \text{s.t.} \quad \begin{cases} \sum_{k=0}^{d} c_k x^k \ge 1 & \forall x \in S \\ \sum_{k=0}^{d} c_k x^k \ge 0 & \forall x \in \Omega. \end{cases}$$
 (1)

- (a) Show that any feasible solution of (1) gives a valid upper bound on $P(X \in S)$. How would you solve this problem?
- (b) Assume that $\Omega = [0, 5]$, S = [4, 5], and we know that the mean and variance of X are equal to 1 and 1/2, respectively. Give upper and lower bounds on $P(X \in S)$. Are these bounds tight? Can you find the worst-case distributions?

- 17. The stability number $\alpha(G)$ of a graph G is the cardinality of its largest stable set. Define the ideal $I = \langle x_i(1-x_i) \mid i \in V, x_ix_j \mid (i,j) \in E \rangle$.
 - (a) Show that $\alpha(G)$ is exactly given by

$$\min \gamma \qquad \gamma - \sum_{i \in V} x_i \quad \text{is SOS mod } I.$$

[Hint: recall (or prove!) that if I is zero-dimensional and radical, then $p(x) \ge 0$ on V(I) if and only if p(x) is SOS mod I.]

(b) Recall that a polynomial is 1-SOS if it can be written as a sum of squares of affine (degree 1) polynomials. Show that an upper bound on $\alpha(G)$ can be obtained by solving

$$\min \gamma \qquad \gamma - \sum_{i \in V} x_i \quad \text{is 1-SOS mod } I.$$
 (2)

- (c) Show that the given generators of the ideal I are already a Gröbner basis. Show that there is a natural bijection between standard monomials and stable sets of G.
- (d) As a consequence of the previous fact, show that $\alpha(G)$ is equal to the degree of the Hilbert function of $\mathbb{R}[x]/I$.

Now let G = (V, E) be the Petersen graph, given in Figure 1.

Figure 1: Petersen graph

- (a) Find a stable set in the Petersen graph of maximum cardinality.
- (b) Solve problem (2) for the Petersen graph. What is the corresponding upper bound?
- (c) Compute the Hilbert function of I using Macaulay2, and verify that this answer is consistent with your previous results.

- 18. Consider linear maps between symmetric matrices, i.e., of the form $\Lambda: \mathcal{S}^n \to \mathcal{S}^m$. A map is said to be a *positive map* if it maps the PSD cone S^n_+ into the PSD cone S^m_+ (i.e., it preserves positive semidefinite matrices).
 - (a) Show that any linear map of the form $A \mapsto \sum_i P_i^T A P_i$, where $P_i \in \mathbb{R}^{n \times m}$, is positive. These maps are known as decomposable maps.
 - (b) Show that the linear map $C: \mathcal{S}^3 \to \mathcal{S}^3$ (due to M.-D. Choi) given by:

$$C: A \mapsto \begin{bmatrix} 2a_{11} + a_{22} & 0 & 0 \\ 0 & 2a_{22} + a_{33} & 0 \\ 0 & 0 & 2a_{33} + a_{11} \end{bmatrix} - A.$$

is a positive map, but is not decomposable.

Hint: Consider the polynomial defined by $p(x,y) := y^T \Lambda(xx^T)y$. How can you express positivity and decomposability of the linear map Λ in terms of the polynomial p?