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Introduction

Multidimensional data appear in many applications:

image and signal processing;

pattern recognition, data mining and machine learning;

chemometrics;

biomedicine;

psychometrics; etc.

There are two major problems associated with this data:

1 Storage cost is very high, and

2 analysis and interpretation of patterns in data.

Tensor decompositions can identify and exploit useful
structures in the tensor that may not be apparent from its given
coordinate representation.
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Introduction

Different decompositions have different strengths.

A Tucker decomposition

=

can reduce storage costs.

A tensor rank decomposition

= + + · · ·+

may uncover interpretable patterns.
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Basic tensor operations

Flattenings

A tensor A of order d lives in the tensor product of d vector spaces:

A ∈ Fn1 ⊗ Fn2 ⊗ · · · ⊗ Fnd ' Fn1×n2×···×nd

A 3rd order tensor has 3 associated vector spaces:

Mode-1 vectors
(Fn1)

Mode-2 vectors
(Fn2)

Mode-3 vectors
(Fn3)
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Basic tensor operations

A =

A(2) =

∈ Fn1×n2×n3

∈ Fn2×n1n3

Mode-2 flattening



Computing and decomposing tensors: Decomposition basics

Basic tensor operations

Formally, a flattening is the linear map induced via the universal
property of the multilinear map

·(π;τ) : V1 × · · · × Vd → (Vπ1 ⊗ · · · ⊗ Vπk )⊗ (Vτ1 ⊗ · · · ⊗ Vτd−k
)

(a1, . . . , ad) 7→ (aπ1 ⊗ · · · ⊗ aπk )(aτ1 ⊗ · · · ⊗ aτd−k
)T

It is common to use the following shorthand notations in the
literature:

A(k) := A(k;1,...,k−1,k+1,...,d) and vec(A) := A(1,...,d ;∅).

Be aware that some authors still define A(k) = A(k;k+1,...,d ,1,...,k−1).
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Basic tensor operations

For example, if A =
∑r

i=1 ai ⊗ bi ⊗ ci then

A(2) =
r∑

i=1

bi (ai ⊗ ci )
T .

Flattenings can be implemented on a computer for tensors
expressed in coordinates simply by rearranging the elements in
the d-array of size n1 × · · · × nd to form a 2-array of size
nπ1 · · · nπk × nτ1 · · · nτd−k

.

In fact, all flattenings A(1,...,k;k+1,...,d) in which the order of the
factors is not changed can be implemented on a computer with 0
computational cost (time and memory).
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Basic tensor operations

Multilinear multiplication

As mentioned in the first lecture, multilinear multiplication is
synonymous with the tensor product of linear maps
Ai : Vi →Wi , where Vi ,Wi are finite-dimensional vector spaces.

This is the unique linear map from V1⊗ · · · ⊗Vd to W1⊗ · · · ⊗Wd

induced by the universal property by the multilinear map

V1 × · · · × Vd →W1 ⊗ · · · ⊗Wd ,

(v1, . . . , vd) 7→ (A1v1)⊗ · · · ⊗ (Advd).

The induced linear map is A1 ⊗ · · · ⊗ Ad .
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Basic tensor operations

The notation

(A1, . . . ,Ad) · A := (A1 ⊗ · · · ⊗ Ad)(A)

is commonly used in the literature, specifically when working in
coordinates.

The shorthand notation

Ak ·k A := (Id, . . . , Id,Ak , Id, . . . , Id) · A

is also used in the literature.
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Basic tensor operations

By definition, the action on rank-1 tensor is

(A1 ⊗ · · · ⊗ Ad)(v1 ⊗ · · · ⊗ vd) = (A1v1)⊗ · · · ⊗ (Advd).

The composition of multilinear multiplications behaves like

(A1⊗· · ·⊗Ad)
(
(B1⊗· · ·⊗Bd)(A)

)
=
(
(A1B1)⊗· · ·⊗(AdBd)

)
(A),

which follows immediately from the definition.

Practically, multilinear multiplications are often computed by
exploiting

[(A1, . . . ,Ad) ·A](k) = AkA(k)(A1⊗· · ·⊗Ak−1⊗Ak+1⊗· · ·⊗Ad)T
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Tucker decomposition

Multilinear rank

Multilinear rank

Assume that A lives in a separable tensor subspace

A ∈W1 ⊗W2 ⊗ · · · ⊗Wd ⊂ Fn1 ⊗ Fn2 ⊗ · · · ⊗ Fnd .

Since the mode-k flattening

A(k) ∈Wk ⊗ (W1 ⊗ · · · ⊗Wk−1 ⊗Wk+1 ⊗ · · · ⊗Wd)∗,

which is a subspace of the nk × (n1 · · · nk−1nk+1 · · · nd) matrices,
it follows that the column span

span(A(k)) ⊂Wk .
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Tucker decomposition

Multilinear rank

In fact, the smallest separable tensor subspace that A lives in is
W1 ⊗ · · · ⊗Wd with

Wk := span(A(k)).

The dimension of this subspace is

rk := dim Wk = dim span(A(k)) = rank(A(k)).

Definition (Hitchcock, 1928)

The multilinear rank of A is the tuple containing the dimensions
of the minimal subspaces that the standard flattenings of A live in:

mlrank(A) := (r1, r2, . . . , rd).
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Tucker decomposition

Multilinear rank

In the case A ∈W1 ⊗W2 ⊂ Fn1×n2 is a matrix, the multilinear
rank is, by definition,

mlrank(A) = (dim W1, dim W2) =
(
rank(A(1)), rank(A(2))

)
=
(
rank(A), rank(AT )

)
.

In the matrix case, we attach special names to W1 and W2:

W1 is the column space or range, and

W2 is the row space.

The fundamental theorem of linear algebra states that
dim W1 = dim W2. Therefore,

mlrank(A) = (dim W1, dim W2) = (r , r).

Consequently, not all tuples are feasible multilinear ranks!
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Tucker decomposition

Multilinear rank

Proposition (Carlini and Kleppe, 2011)

Let A ∈ Fn1×···×nd with multilinear rank (r1, . . . , rd). Then, for all
k = 1, . . . , d we have

rk ≤
∏
j 6=k

rj .

The proof is left as an exercise.
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Tucker decomposition

Multilinear rank

Connection to algebraic geometry

The set of tensors of bounded multilinear rank

Mr1,...,rd := {A ∈ Fn1×···×nd | mlrank(A) ≤ (r1, . . . , rd)}

is easily seen to be an algebraic variety, i.e., the solution set of a
system of polynomial equations, because it is the intersection of
the determinantal varieties

Mrk := {A ∈ Fn1×···×nd | rank(A(k)) ≤ rk}

for k = 1, . . . , d .
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Tucker decomposition

Higher-order singular value decomposition

Higher-order singular value decomposition

If A ∈ Fn1×···×nd lives in a separable tensor subspace V1 ⊗ · · · ⊗ Vd

with rk := dim Vk , then there exist bases

Ak = [ak
j ]rkj=1 ∈ Fnk×rk for Vk ⊂ Fnk

such that

A =

r1∑
i1=1

· · ·
rd∑

id=1

ci1,...,id a1
i1 ⊗ · · · ⊗ ad

id
=: (A1,A2, . . . ,Ad) · C

for some C ∈ Fr1×r2×···×rd .

This is equivalent to stating that

mlrank(A) = (r1, r2, . . . , rd).
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Tucker decomposition

Higher-order singular value decomposition

Recall that the Moore–Penrose pseudoinverse of matrix
A ∈ Fm×n of rank n is given by

A† = (AHA)−1AH .

Then, the coefficients C of A with respect to the basis
A1 ⊗ · · · ⊗ Ad satisfy

A = (A1,A2, . . . ,Ad) · C ,

so that

(A†1,A
†
2, . . . ,A

†
d) · A = (A†1,A

†
2, . . . ,A

†
d) · (A1,A2, . . . ,Ad) · C

= (A†1A1,A
†
2A2, . . . ,A

†
dAd) · C

= C .
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Tucker decomposition

Higher-order singular value decomposition

In other words, if we know that A lives in V1 ⊗ · · · ⊗ Vd , and we
have chosen some bases Ak of Vk , then the coefficients (also called

core tensor) are given by C = (A†1,A
†
2, . . . ,A

†
d) · A.

The factorization
A = (A1, . . . ,Ad) · C

reveals the separable subspace V = V1 ⊗ · · · ⊗ Vd that tensor A
lives in, as Ak provides a basis of Vk from which a tensor product
basis of V can be constructed. The factorization is called a
(rank-revealing) Tucker decomposition of A in honor of
L. Tucker (1963).
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Tucker decomposition

Higher-order singular value decomposition

The higher-order singular value decomposition (HOSVD),
popularized by De Lathauwer, De Moor, and Vandewalle (2000)
but already introduced by Tucker (1966), is a particular strategy
for choosing orthonormal bases Ak .

The HOSVD chooses as orthonormal basis for Vk the left singular
vectors of A(k). That is, let the thin SVD of A(k) be

A(k) = UkΣkQH
k .

Then, the HOSVD orthogonal basis for Vk is given by Uk .
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Tucker decomposition

Higher-order singular value decomposition

An advantage of choosing orthonormal bases Ak , beyond improved
numerical stability, is that the Moore–Penrose inverse reduces to

U†k = (UH
k Uk)−1UH

k = UH
k ,

so that

A = (U1,U2, . . . ,Ud) ·
(
(U1,U2, . . . ,Ud)H · A

)
= (U1UH

1 ,U2UH
2 , . . . ,UdUH

d ) · A
= π1π2 · · ·πdA

where
πkA := (UkUH

k ) ·k A

is the HOSVD mode-k orthogonal projection.
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Tucker decomposition

Higher-order singular value decomposition

The coefficients d-array

S = (U1,U2, . . . ,Ud)H · A

is called the core tensor.

The orthogonal basis of V1 ⊗ · · · ⊗ Vd ,

U1 ⊗ U2 ⊗ · · · ⊗ Ud := [u1
i1 ⊗ · · · ⊗ ud

id
]r1,...,rd
i1,...,id=1

is called the HOSVD basis.

By definition of the thin SVD, we have

rk = dim Vk = rank(Uk)

and so Uk ∈ Fnk×rk .
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Tucker decomposition

Higher-order singular value decomposition

Algorithm 1: HOSVD Algorithm

input : A tensor A ∈ Fn1×n2×···×nd

output: The components (U1,U2, . . . ,Ud) of the HOSVD basis
output: Coefficients array S ∈ Fr1×r2×···×rd

for k = 1, 2, . . . , d do
Compute the compact SVD A(k) = UkΣkQH

k ;

end

S ← (UH
1 ,U

H
2 , . . . ,U

H
d ) · A;



Computing and decomposing tensors: Decomposition basics

Tucker decomposition

Higher-order singular value decomposition

The HOSVD provides a natural data sparse representation of
tensors A living in a separable subspace.

If A ∈ Fn1×n2×···×nd has multilinear rank (r1, r2, . . . , rd), then it can
be represented exactly via the HOSVD as

A = (U1,U2, . . . ,Ud) · S

using only
d∏

k=1

rk +
d∑

k=1

nk rk

storage (for S and the Ui ).
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Tucker decomposition

Numerical issues

Numerical issues

Consider the mathematically simple task of computing the
multilinear rank of a tensor A. For example, rk equals the number
of nonzero singular values of A(k).

Let us take the rank-1 tensor

A =

[
1
√

2
√

2 2√
2 2 2 2

√
2

]
= v ⊗ v ⊗ v, where v =

[
1√
2

]
.

Its 1-flattening is

A(1) = v(v ⊗ v)T =

[
1
√

2
√

2 2√
2 2 2 2

√
2

]
.
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Tucker decomposition

Numerical issues

Computing the singular values of A(1) in Matlab R2017b, we get
the next result:

>> svd([[1 sqrt(2) sqrt(2) 2];[sqrt(2) 2 2 2*sqrt(2)]])

ans =

5.196152422706632e+00

1.805984985273179e-16

Both singular values are nonzero, so the computed rank is 2!

However, the rank of A(1) is 1, so what have we computed? Can
we make sense of this result?
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Tucker decomposition

Numerical issues

There are two sources of error that entered our computation:

1 representation errors, and

2 computation errors.

The representation error is incurred because A(1) cannot be
represented with (IEEE double-precision) floating-point numbers;
indeed,

√
2 6∈ Q.

Nevertheless, the numerical representation of A(1) is very close to
the latter. By the properties of floating-point arithmetic, we have

‖A(1) − fl(A(1))‖2
F ≤ 3

(√
2δ
)2

+
(
(2
√

2)δ
)2

= 14δ2,

where δ ≈ 1.1 · 10−16 is the unit roundoff.
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Tucker decomposition

Numerical issues

The computation error arises in the computation of the singular
values of the matrix with floating-point elements. The magnitude
of this error strongly depends on the algorithm. Numerically
“stable” algorithms will only introduce “small” errors.

Matlab’s svd likely implements an algorithm satisfying1

|σ̃k(Ã)− σk(Ã + E )| ≤ p(m, n) · σ1(Ã + E ) · δ

with
‖E‖2 ≤ p(m, n) · σ1(Ã) · δ

where σk(A) is the kth exact singular value of the matrix A and
σ̃k(A) is the numerically obtained kth singular value, and p(m, n)
is a “modest growth factor.”

1See http://www.netlib.org/lapack/lug/node97.html.

http://www.netlib.org/lapack/lug/node97.html
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Tucker decomposition

Numerical issues

For brevity, write A := A(1) and Ã := fl(A(1)).

Even in light of these representation and computation errors, we
can extract useful information from our result by using the error
bounds and Weyl’s perturbation lemma:

|σk(X )− σk(X + Y )| ≤ ‖Y ‖2.

We have

|σk(A)− σ̃k(Ã)| = |σk(A)− σk(Ã) + σk(Ã)− σ̃k(Ã)|

≤
√

14δ + |σk(Ã)− σ̃k(Ã)|

=
√

14δ + |σk(Ã)− σk(Ã + E ) + σk(Ã + E )− σ̃k(Ã)|

≤ (p(m, n)σ1(Ã) +
√

14)δ + |σk(Ã + E )− σ̃k(Ã)|

≤
(
4p(m, n)σ̃1(Ã) +

√
14
)
δ,

assuming p(m, n) max{σ1(Ã + E ), σ1(Ã)} ≤ 2.



Computing and decomposing tensors: Decomposition basics

Tucker decomposition

Numerical issues

Applying this to our case, and assuming that p(m, n) ≤ 10(m + n),
we find

|σ1(A(1))− 5.196152422706632| ≤ 1.517 · 10−13

|σ2(A(1))− 1.805984985273179 · 10−16| ≤ 1.517 · 10−13;

hence, σ1(A(1)) 6= 0, but based on our error bounds we cannot
exclude that σ2(A(1)) might be 0.

We thus conclude that r1 ≥ 1 and that the distance of A(1) to the
locus of rank-1 matrices is at most about 1.517 · 10−13.
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Tucker decomposition

Truncation algorithms

Truncation algorithms

It is uncommon to encounter tensors A ∈ Fn1×n2×···×nd with a
multilinear rank that is exactly smaller than (n1, n2, . . . , nd)
because of numerical errors. However, tensors A can often lie close
to a separable subspace V1⊗V2⊗ · · · ⊗Vd . This leads naturally to

The low multilinear rank approximation (LMLRA) problem

Given A ∈ Fn1×···×nd and a target multilinear rank (r1, . . . , rd), find
a minimizer of

min
mlrank(B)≤(r1,...,rd )

‖A − B‖F

In other words, find the separable subspace V1 ⊗ · · · ⊗ Vd with
dim Vk = rk that is closest to A.
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Tucker decomposition

Truncation algorithms

Since mlrank(B) = (r1, . . . , rd) is equivalent to the existence of a
separable subspace V1 ⊗ · · · ⊗ Vd in which B lives, we can write

B = (U1,U2, . . . ,Ud) · S

where Uk ∈ Fnk×rk can be chosen orthonormal by the existence of
the HOSVD.

So graphically we want to approximate A by

A ≈ (U1,U2,U3) · S

A
≈ U1 U2

U
3

S



Computing and decomposing tensors: Decomposition basics

Tucker decomposition

Truncation algorithms

After choosing the separable subspace, the optimal approximation
is the orthogonal projection onto this subspace. Hence, the
LMLRA problem is equivalent to

min
Uk∈Stnk ,rk

∥∥A − P〈U1⊗···⊗Ud 〉A
∥∥
F

where 〈U〉 denotes the linear subspace spanned by the basis U, and
Stm,n is the Stiefel manifold of m × n matrices with orthonormal
columns.
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Tucker decomposition

Truncation algorithms

Proposition (V, Vandebril, and Meerbergen, 2012)

Let U1 ⊗ · · · ⊗ Ud be a tensor basis of the separable subspace
V = V1 ⊗ · · · ⊗ Vd . Then, the approximation error

‖A − PV A‖2
F =

d∑
k=1

‖πpk−1
· · ·πp1 A − πpkπpk−1

· · ·πp1 A‖2
F ,

where πjA = (UjU
H
j ) ·j A and p is any permutation of

{1, 2, . . . , d}.

The proof is left as an exercise.
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Tucker decomposition

Truncation algorithms

Note that A − πjA = (I −UjU
H
j ) ·j A is also a projection, which we

denote by
π⊥j A := (I − UjU

H
j ) ·j A.

We may intuitively understand the proposition as follows. If

A ≈ Â := π1π2π3A = (U1UH
1 ,U2UH

2 ,U3UH
3 ) · A,

then an error expression is

− =

=‖A − π1π2π3A‖2

+ +

+ +‖π⊥1 A‖2 ‖π⊥2 π1A‖2 ‖π⊥3 π1π2A‖2
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Tucker decomposition

Truncation algorithms

Since orthogonal projections only decrease unitarily invariant
norms, we also get the following corollary.

Corollary

Let U1 ⊗ · · · ⊗ Ud be a tensor basis of the separable subspace
V = V1 ⊗ · · · ⊗ Vd . Then, the approximation error satisfies

‖A − PV A‖2
F ≤

d∑
k=1

‖π⊥k A‖2
F ,

where πjA = (UjU
H
j ) ·j A.
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Tucker decomposition

Truncation algorithms

We may intuitively understand this corollary as follows. If

A ≈ Â := π1π2π3A = (U1UH
1 ,U2UH

2 ,U3UH
3 ) · A,

then an upper bound is

− ≤≤

‖A − π1π2π3A‖2

+ +

+ +‖π⊥1 A‖2 ‖π⊥2 A‖2 ‖π⊥3 A‖2
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Tucker decomposition

Truncation algorithms

A closed solution of the LMLRA problem

min
Uk∈Stnk ,rk

∥∥A − P〈U1⊗···⊗Ud 〉A
∥∥
F

is not known.

However, we can use foregoing error expressions for choosing good,
even quasi-optimal, separable subspaces to project onto.
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Tucker decomposition

Truncation algorithms

T-HOSVD

The idea of the truncated HOSVD (T-HOSVD) is minimizing
the upper bound on the error:

− ≤≤

‖A − π1π2π3A‖2

+ +

+ +‖π⊥1 A‖2 ‖π⊥2 A‖2 ‖π⊥3 A‖2

If the upper bound is small, then evidently the error is also small.
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Tucker decomposition

Truncation algorithms

Minimizing the upper bound results in

min
π1,...,πd

‖A − π1 · · ·πdA‖2
F ≤ min

π1,...,πd

d∑
k=1

‖π⊥k A‖2
F

=
d∑

k=1

min
πk
‖π⊥k A‖2

F

=
d∑

k=1

min
Uk∈Stnk ,rk

‖A(k) − UkUH
k A(k)‖2

F

This has a closed form solution, namely the optimal Uk should
contain the rk dominant left singular vectors. That is, writing the
compact SVD of A(k) as

A(k) = UkΣkQT
k ,

then Uk contains the first rk columns of Uk .
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Tucker decomposition

Truncation algorithms

The resulting T-HOSVD algorithm is thus but a minor
modification of the HOSVD algorithm.

Algorithm 2: T-HOSVD Algorithm

input : A tensor A ∈ Fn1×n2×···×nd

input : A target multilinear rank (r1, r2, . . . , rd).
output: The components (U1,U2, . . . ,Ud) of the T-HOSVD basis
output: Coefficients array S ∈ Fr1×r2×···×rd

for k = 1, 2, . . . , d do
Compute the compact SVD A(k) = UkΣkQH

k ;

Let Uk contain the first rk columns of Uk ;

end

S ← (U
H
1 ,U

H
2 , . . . ,U

H
d ) · A;
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Tucker decomposition

Truncation algorithms

Assume that we truncate a tensor in Fn×···×n to multilinear rank
(r , . . . , r). The computational complexity of standard T-HOSVD is

O

(
dnd+1 +

d∑
k=1

nd+1−k rk

)
operations.
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Tucker decomposition

Truncation algorithms

The resulting approximation is quasi-optimal.

Proposition (Hackbusch, 2012)

Let A ∈ Fn1×···×nd , and let A∗ be the best rank-(r , . . . , r)
approximation to B, i.e.,

‖A − A∗‖F = min
mlrank(B)≤(r ,...,r)

‖A − B‖F .

Then, the rank-(r , . . . , r) T-HOSVD approximation AT is a quasi
best approximation:

‖A − AT‖F ≤
√

d‖A − A∗‖F .
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Tucker decomposition

Truncation algorithms

ST-HOSVD

The idea of the sequentially truncated HOSVD (ST-HOSVD) is
sequentially choosing projections with the aim of minimizing the
error expression:

− =

=‖A − π1π2π3A‖2

+ +

+ +‖π⊥1 A‖2 ‖π⊥2 π1A‖2 ‖π⊥3 π1π2A‖2
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Tucker decomposition

Truncation algorithms

ST-HOSVD greedily minimizes the foregoing error expression.
That is, it computes

π̂1 = arg min
π1

‖π⊥1 A‖2

π̂2 = arg min
π2

‖π⊥2 π̂1A‖2

...

π̂d = arg min
πd
‖π⊥d π̂d−1 · · · π̂2π̂1A‖2
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In practice, minπk ‖π⊥k π̂k−1 · · · π̂1A‖F is computed as follows. As
π̂j are orthogonal projections, we can write them as

π̂jA := (Ûj Û
H
j ) ·j A = Ûj ·j (ÛH

j ·j A).

Therefore,

min
Uk∈Stnk ,rk

‖UkUH
k A(k)(Û1ÛH

1 ⊗ · · · ⊗ Ûk−1ÛH
k−1 ⊗ I ⊗ · · · ⊗ I )T‖F

= min
Uk

‖UkUH
k A(k)(ÛH

1 ⊗ · · · ⊗ ÛH
k−1 ⊗ I ⊗ · · · ⊗ I )T‖F

= min
Uk

‖UkUH
k Sk−1

(k) ‖F ,

where we define

Sk−1 := (Û1, . . . , Ûk−1, I , . . . , I )H · A = ÛH
k−1 ·k−1 Sk−2.

Recall that the solution of minUk
‖UkUH

k Sk−1
(k) ‖F is given by the

rank-rk truncated SVD of Sk−1
(k) .
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Visually, here’s what happens for a third-order tensor.

S0 = A S1
(1) = ÛH

1 S0
(1) S2

(2) = ÛH
2 S1

(2) S3
(3) = ÛH

3 S2
(3)
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The resulting ST-HOSVD algorithm is thus but a minor
modification of the T-HOSVD algorithm.

Algorithm 3: ST-HOSVD Algorithm

input : A tensor A ∈ Fn1×n2×···×nd

input : A target multilinear rank (r1, r2, . . . , rd).
output: The components (Û1, Û2, . . . , Ûd) of the ST-HOSVD basis
output: Coefficients array Ŝ ∈ Fr1×r2×···×rd

Ŝ ← Â;
for k = 1, 2, . . . , d do

Compute the compact SVD S(k) = UkΣkQH
k ;

Let Ûk contain the first rk columns of Uk ;

Ŝ ← ÛH
k ·k Ŝ ;

end
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Assume that we truncate a tensor in Fn×···×n to multilinear rank
(r , . . . , r). The computational complexity of ST-HOSVD is

O

(
nd+1 + 2

d∑
k=1

nd+1−k rk

)
operations,

which compares favorably versus T-HOSVD’s

O

(
dnd+1 +

d∑
k=1

nd+1−k rk

)
operations.

Note that much larger speedups are possible for uneven mode sizes
n1 ≥ n2 ≥ · · · ≥ nd ≥ 2, as you will show in the problem sessions.
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The resulting approximation is also quasi-optimal.

Proposition (Hackbusch, 2012)

Let A ∈ Fn1×···×nd , and let A∗ be the best rank-(r , . . . , r)
approximation to A, i.e.,

‖A − A∗‖F = min
mlrank(B)≤(r ,...,r)

‖A − B‖F .

Then, the rank-(r , . . . , r) ST-HOSVD approximation AS is a quasi
best approximation:

‖A − AS‖F ≤
√

d‖A − A∗‖F .
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Rank

Tensor rank

The tensor rank decomposition (CPD) expresses a tensor
A ∈ V1 ⊗ · · · ⊗ Vd as a minimum-length linear combination of
rank-1 tensors:

A =
r∑

i=1

λia
1
i ⊗ · · · ⊗ ad

i , where ak
i ∈ Vk .

Often the scalars λi are absorbed into the ak
i ∈ Vk .

The rank of A is the length of any of its tensor rank
decompositions.
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Tensor rank decomposition

Rank

Tensor rank is a considerably more difficult subject for d ≥ 3 than
the multilinear rank. For example,

the maximum rank of a tensor space Fn1 ⊗ · · · ⊗ Fnd is not
known in general;

the typical ranks of a tensor space Fn1 ⊗ · · · ⊗ Fnd , i.e., those
ranks occurring on nonempty Euclidean-open subsets, are not
known in general;

the rank of a real tensor can decrease when taking a field
extension, contrary to matrix and multilinear rank; and

computing tensor rank is NP Hard.
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Rank

Tensor rank is invariant under invertible multilinear multiplications
with A1⊗· · ·⊗Ad , where Ak : Vk →Wk are invertible linear maps.

Let A =
∑r

i=1 b1
i ⊗ · · · ⊗ bd

i . Since

(A1, . . . ,Ad) · A =
r∑

i=1

(A1b1
i )⊗ · · · ⊗ (Adbd

i ),

we have rank(A) ≤ rank((A1, . . . ,Ad) · A). And so

rank(A) ≤ rank((A1, . . . ,Ad) · A)

≤ rank((A−1
1 , . . . ,A−1

d ) ·
(
(A1, . . . ,Ad) · A

)
) = rank(A).
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Border rank

Another issue with tensor rank is that the set

S≤r := {A ∈ Fn1×···×nd | rank(A) ≤ r}

is not closed in general, i.e., S≤r 6= S≤r .

For example, for any linearly independent x, y ∈ Rn, we have

lim
ε→0

(
1

ε
(x + εy)⊗3 − 1

ε
x⊗3

)
= y⊗x⊗x+x⊗y⊗x+x⊗x⊗y;

evidently, the tensors in the sequence have rank bounded by 2, but
it can be shown that the limit has rank 3.
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Border rank

Connection to algebraic geometry

Consider the Euclidean closure of S≤r :

S≤r := { lim
ε→0

Aε, where Aε ∈ S≤r}.

If A ∈ S≤r \S≤r−1, then we say that A has border rank equal to r .

It turns out that for F = C, the Euclidean closure of S≤r coincides
with its closure in the Zariski topology. That is, S≤r is an
algebraic, even projective, variety, i.e., the zero set of a system
of homogeneous polynomial equations.

For F = R, both S≤r and S≤r are semi-algebraic sets, i.e., the
solution set of a system of polynomial equalities and inequalities.
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Identifiability

A key property of the tensor rank decomposition is that the
decomposition of A as a sum of rank-1 tensors Ai is often unique.

We say that A ∈ Fn1×···×nd is r-identifiable if the set of rank-1
tensors {A1, . . . ,Ar} whose sum is A, i.e.,

A = A1 + · · ·+ Ar ,

is uniquely determined by A.
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Note that the components of a rank-1 tensor A ∈ Fn1 ⊗ · · · ⊗ Fnd

are themselves also uniquely determined (in projective space) by A.
Precisely, the points

[ak ] ∈ P(Fnk )

are uniquely determined given A = a1 ⊗ · · · ⊗ ad .
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Identifiability

This r -identifiability is radically different from the matrix case
(d = 2). Indeed, if A ∈ Fm×n is a rank-r matrix, then

A = UV T = (UX )(X−1V T ) for all X ∈ GLr (F)

For a generic choice of X , i.e., outside of some Zariski-closed set,
(UX )i 6= αuπi , so that the tensor rank decompositions are distinct.

Note that in the matrix case there is even a positive-dimensional
family of distinct decompositions! (Can you prove this?)
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Identifiability

A classic result on r -identifiability of CPDs is Kruskal’s lemma,
which relies on the notion of the Kruskal rank of a set of vectors.

Definition (Kruskal, 1977)

The Kruskal rank kV of a set of vectors V = {v1, . . . , vr} ⊂ Fn is
the largest k integer such that every subset of k vectors of V is
linearly independent.

For example,

{v, v} has Kruskal rank 1;

{v,w, v} has Kruskal rank 1; and

{v,w, v + w} has Kruskal rank 2 if v and w are linearly
independent.
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Kruskal proved, among others, the following result.

Theorem (Kruskal, 1977)

Let A =
∑r

i=1 a1
i ⊗ a2

i ⊗ a3
i and Ak := [ak

i ]ri=1. If kA1 , kA2 , kA3 > 1
and

r ≤ 1

2
(kA1 + kA2 + kA3 − 2)

then A is r -identifiable.

The condition kA1 > 1 is necessary for r ≥ 2 because otherwise
A ∈ 〈v〉 ⊗ Fn2 ⊗ Fn3 ' Fn2×n3 , and likewise for the other factors.
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Computing the Kruskal rank of r vectors in Fn is very expensive, in
general, as one needs to compute the ranks of all

(r
k

)
subsets of k

vectors for k = 1, . . . ,min{r , n}. Computing one of these ranks
already has a complexity of nk2.

Notwithstanding this limitation, applying Kruskal’s lemma is a
popular technique for verifying that a tensor given as the sum of r
rank-1 tensors has rank equal to r . Indeed, a rank-r tensor is never
r ′-identifiable with r ′ > r .



Computing and decomposing tensors: Decomposition basics

Tensor rank decomposition

Identifiability

Kruskal’s lemma can also be applied to higher-order tensors

A ∈ V1 ⊗ · · · ⊗ Vd

simply by grouping the factors:

A ∈ (Vπ1 ⊗ · · · ⊗ Vπs )⊗ (Vπs+1 ⊗ · · · ⊗ Vπt )⊗ (Vπt+1 ⊗ · · · ⊗ Vπd )

where 1 ≤ s < t ≤ d and π is a permutation of {1, . . . , d}.

In other words, Kruskal’s lemma is applied to the reshaped tensor
(coordinate array).
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While r -identifiability seems like a special property admitted by
only few tensors, the phenomenon is very general. It is an open
problem to prove the following conjecture:

Conjecture (Chiantini, Ottaviani, V, 2014)

Let n1 ≥ n2 ≥ · · · ≥ nd ≥ 2, d ≥ 3. If r <
∏d

k=1 nk
1+

∑d
k=1(nk−1)

, then

Fn1 ⊗ · · · ⊗ Fnd is generically r-identifiable (there exists a proper
Zariski-closed subset Z of S≤r such that every A ∈ S≤r \ Z is
r -identifiable), unless:

1 (n1, n2, n3) = (4, 4, 3) and r = 5;

2 (n1, n2, n3) = (4, 4, 4) and r = 6;

3 (n1, n2, n3) = (6, 6, 3) and r = 8;

4 (n1, n2, n3, n4) = (n, n, 2, 2) and r = 2n − 1, n ≥ 2;

5 (n1, n2, n3, n4, n5) = (2, 2, 2, 2, 2) and r = 5; and

6 n1 >
∏d

k=2 nk −
∑d

k=2(nk − 1) =: c and r ≥ c .
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