

- Introduction
- 2 Basic tensor operations
- Tucker decomposition
 - Multilinear rank
 - Higher-order singular value decomposition
 - Numerical issues
 - Truncation algorithms
- 4 Tensor rank decomposition
 - Rank
 - Border rank
 - Identifiability
- Seferences

Overview

- Introduction
- 2 Basic tensor operations
- 3 Tucker decomposition
 - Multilinear rank
 - Higher-order singular value decomposition
 - Numerical issues
 - Truncation algorithms
- Tensor rank decomposition
 - Rank
 - Border rank
 - Identifiability
- 6 References

Computing and decomposing tensors: Decomposition basics Introduction

Multidimensional data appear in many applications:

- image and signal processing;
- pattern recognition, data mining and machine learning;
- chemometrics;
- biomedicine;
- psychometrics; etc.

There are two major problems associated with this data:

- Storage cost is very high, and
- analysis and interpretation of patterns in data.

Tensor decompositions can **identify** and **exploit** useful structures in the tensor that may not be apparent from its given coordinate representation.

Different decompositions have different strengths.

A Tucker decomposition

can reduce storage costs.

A tensor rank decomposition

may uncover interpretable patterns.

Overview

- Introduction
- 2 Basic tensor operations
- Tucker decomposition
 - Multilinear rank
 - Higher-order singular value decomposition
 - Numerical issues
 - Truncation algorithms
- Tensor rank decomposition
 - Rank
 - Border rank
 - Identifiability
- 6 References

Flattenings

A tensor \mathcal{A} of order d lives in the tensor product of d vector spaces:

$$\mathcal{A} \in \mathbb{F}^{n_1} \otimes \mathbb{F}^{n_2} \otimes \cdots \otimes \mathbb{F}^{n_d} \simeq \mathbb{F}^{n_1 \times n_2 \times \cdots \times n_d}$$

A 3rd order tensor has 3 associated vector spaces:

Formally, a flattening is the linear map induced via the universal property of the multilinear map

$$(\pi;\tau): V_1 \times \cdots \times V_d \to (V_{\pi_1} \otimes \cdots \otimes V_{\pi_k}) \otimes (V_{\tau_1} \otimes \cdots \otimes V_{\tau_{d-k}})$$

$$(\mathbf{a}_1, \dots, \mathbf{a}_d) \mapsto (\mathbf{a}_{\pi_1} \otimes \cdots \otimes \mathbf{a}_{\pi_k}) (\mathbf{a}_{\tau_1} \otimes \cdots \otimes \mathbf{a}_{\tau_{d-k}})^T$$

It is common to use the following shorthand notations in the literature:

$$\mathcal{A}_{(k)} := \mathcal{A}_{(k;1,\dots,k-1,k+1,\dots,d)}$$
 and $\operatorname{vec}(\mathcal{A}) := \mathcal{A}_{(1,\dots,d;\emptyset)}$.

Be aware that some authors still define $\mathcal{A}_{(k)} = \mathcal{A}_{(k;k+1,\dots,d,1,\dots,k-1)}$.

For example, if $\mathcal{A} = \sum_{i=1}^{r} \mathbf{a}_{i} \otimes \mathbf{b}_{i} \otimes \mathbf{c}_{i}$ then

$$\mathcal{A}_{(2)} = \sum_{i=1}^r \mathbf{b}_i (\mathbf{a}_i \otimes \mathbf{c}_i)^T.$$

Flattenings can be implemented on a computer for tensors expressed in coordinates simply by **rearranging the elements** in the *d*-array of size $n_1 \times \cdots \times n_d$ to form a 2-array of size $n_{\pi_1} \cdots n_{\pi_k} \times n_{\tau_1} \cdots n_{\tau_{d-k}}$.

In fact, all flattenings $\mathcal{A}_{(1,\dots,k;k+1,\dots,d)}$ in which the order of the factors is not changed can be implemented on a computer with 0 computational cost (time and memory).

Multilinear multiplication

As mentioned in the first lecture, **multilinear multiplication** is synonymous with the **tensor product of linear maps** $A_i: V_i \rightarrow W_i$, where V_i, W_i are finite-dimensional vector spaces.

This is the unique linear map from $V_1 \otimes \cdots \otimes V_d$ to $W_1 \otimes \cdots \otimes W_d$ induced by the universal property by the multilinear map

$$V_1 \times \cdots \times V_d \to W_1 \otimes \cdots \otimes W_d,$$
$$(\mathbf{v}_1, \dots, \mathbf{v}_d) \mapsto (A_1 \mathbf{v}_1) \otimes \cdots \otimes (A_d \mathbf{v}_d).$$

The induced linear map is $A_1 \otimes \cdots \otimes A_d$.

The notation

$$(A_1,\ldots,A_d)\cdot\mathcal{A}:=(A_1\otimes\cdots\otimes A_d)(\mathcal{A})$$

is commonly used in the literature, specifically when working in coordinates.

The shorthand notation

$$A_k \cdot_k \mathcal{A} := (\mathsf{Id}, \dots, \mathsf{Id}, A_k, \mathsf{Id}, \dots, \mathsf{Id}) \cdot \mathcal{A}$$

is also used in the literature.

By definition, the action on rank-1 tensor is

$$(A_1 \otimes \cdots \otimes A_d)(\mathbf{v}_1 \otimes \cdots \otimes \mathbf{v}_d) = (A_1 \mathbf{v}_1) \otimes \cdots \otimes (A_d \mathbf{v}_d).$$

The composition of multilinear multiplications behaves like

$$(A_1 \otimes \cdots \otimes A_d) ((B_1 \otimes \cdots \otimes B_d)(\mathcal{A})) = ((A_1 B_1) \otimes \cdots \otimes (A_d B_d))(\mathcal{A}),$$

which follows immediately from the definition.

Practically, multilinear multiplications are often **computed** by exploiting

$$[(A_1,\ldots,A_d)\cdot\mathcal{A}]_{(k)}=A_k\mathcal{A}_{(k)}(A_1\otimes\cdots\otimes A_{k-1}\otimes A_{k+1}\otimes\cdots\otimes A_d)^T$$

Overview

- Introduction
- Basic tensor operations
- 3 Tucker decomposition
 - Multilinear rank
 - Higher-order singular value decomposition
 - Numerical issues
 - Truncation algorithms
- 4 Tensor rank decomposition
 - Rank
 - Border rank
 - Identifiability
- 6 References

Overview

- Introduction
- 2 Basic tensor operations
- 3 Tucker decomposition
 - Multilinear rank
 - Higher-order singular value decomposition
 - Numerical issues
 - Truncation algorithms
- 4 Tensor rank decomposition
 - Rank
 - Border rank
 - Identifiability
- 6 References

Multilinear rank

Assume that \mathcal{A} lives in a separable tensor subspace

$$A \in W_1 \otimes W_2 \otimes \cdots \otimes W_d \subset \mathbb{F}^{n_1} \otimes \mathbb{F}^{n_2} \otimes \cdots \otimes \mathbb{F}^{n_d}$$
.

Since the mode-k flattening

$$\mathcal{A}_{(k)} \in W_k \otimes (W_1 \otimes \cdots \otimes W_{k-1} \otimes W_{k+1} \otimes \cdots \otimes W_d)^*,$$

which is a subspace of the $n_k \times (n_1 \cdots n_{k-1} n_{k+1} \cdots n_d)$ matrices, it follows that the column span

$$\operatorname{span}(\mathcal{A}_{(k)}) \subset W_k$$
.

In fact, the *smallest* separable tensor subspace that \mathcal{A} lives in is $W_1 \otimes \cdots \otimes W_d$ with

$$W_k := \operatorname{span}(\mathcal{A}_{(k)}).$$

The dimension of this subspace is

$$r_k := \dim W_k = \dim \operatorname{span}(A_{(k)}) = \operatorname{rank}(A_{(k)}).$$

Definition (Hitchcock, 1928)

The **multilinear rank** of \mathcal{A} is the tuple containing the dimensions of the minimal subspaces that the standard flattenings of \mathcal{A} live in:

$$\mathsf{mIrank}(\mathcal{A}) := (r_1, r_2, \dots, r_d).$$

In the case $A \in W_1 \otimes W_2 \subset \mathbb{F}^{n_1 \times n_2}$ is a matrix, the multilinear rank is, by definition,

$$\mathsf{mIrank}(A) = (\mathsf{dim}\ W_1, \mathsf{dim}\ W_2) = (\mathsf{rank}(A_{(1)}), \mathsf{rank}(A_{(2)}))$$
$$= (\mathsf{rank}(A), \mathsf{rank}(A^T)).$$

In the matrix case, we attach special names to W_1 and W_2 :

- W_1 is the **column space** or **range**, and
- W_2 is the row space.

The fundamental theorem of linear algebra states that dim $W_1 = \text{dim } W_2$. Therefore,

$$mIrank(A) = (dim W_1, dim W_2) = (r, r).$$

Consequently, not all tuples are feasible multilinear ranks!

Proposition (Carlini and Kleppe, 2011)

Let $A \in \mathbb{F}^{n_1 \times \cdots \times n_d}$ with multilinear rank (r_1, \ldots, r_d) . Then, for all $k = 1, \ldots, d$ we have

$$r_k \leq \prod_{j \neq k} r_j$$
.

The proof is left as an exercise.

Connection to algebraic geometry

The set of tensors of bounded multilinear rank

$$M_{r_1,\ldots,r_d} := \{ \mathcal{A} \in \mathbb{F}^{n_1 \times \cdots \times n_d} \mid \mathsf{mlrank}(\mathcal{A}) \leq (r_1,\ldots,r_d) \}$$

is easily seen to be an **algebraic variety**, i.e., the solution set of a system of polynomial equations, because it is the intersection of the determinantal varieties

$$M_{r_k} := \{\mathcal{A} \in \mathbb{F}^{n_1 \times \dots \times n_d} \mid \operatorname{rank}(\mathcal{A}_{(k)}) \leq r_k\}$$

for
$$k = 1, \ldots, d$$
.

Overview

- Introduction
- 2 Basic tensor operations
- 3 Tucker decomposition
 - Multilinear rank
 - Higher-order singular value decomposition
 - Numerical issues
 - Truncation algorithms
- Tensor rank decomposition
 - Rank
 - Border rank
 - Identifiability
- 5 References

Higher-order singular value decomposition

If $A \in \mathbb{F}^{n_1 \times \cdots \times n_d}$ lives in a separable tensor subspace $V_1 \otimes \cdots \otimes V_d$ with $r_k := \dim V_k$, then there exist bases

$$A_k = [\mathbf{a}_j^k]_{j=1}^{r_k} \in \mathbb{F}^{n_k \times r_k} \text{ for } V_k \subset \mathbb{F}^{n_k}$$

such that

$$\mathcal{A} = \sum_{i_1=1}^{r_1} \cdots \sum_{i_d=1}^{r_d} c_{i_1,\dots,i_d} \mathbf{a}_{i_1}^1 \otimes \cdots \otimes \mathbf{a}_{i_d}^d =: (A_1, A_2, \dots, A_d) \cdot \mathcal{C}$$

for some $C \in \mathbb{F}^{r_1 \times r_2 \times \cdots \times r_d}$.

This is equivalent to stating that

$$mlrank(\mathcal{A}) = (r_1, r_2, \dots, r_d).$$

Recall that the **Moore–Penrose pseudoinverse** of matrix $A \in \mathbb{F}^{m \times n}$ of rank n is given by

$$A^{\dagger} = (A^H A)^{-1} A^H.$$

Then, the coefficients $\mathcal C$ of $\mathcal A$ with respect to the basis $A_1\otimes\cdots\otimes A_d$ satisfy

$$\mathcal{A}=(A_1,A_2,\ldots,A_d)\cdot\mathcal{C},$$

so that

$$(A_1^{\dagger}, A_2^{\dagger}, \dots, A_d^{\dagger}) \cdot \mathcal{A} = (A_1^{\dagger}, A_2^{\dagger}, \dots, A_d^{\dagger}) \cdot (A_1, A_2, \dots, A_d) \cdot \mathcal{C}$$
$$= (A_1^{\dagger} A_1, A_2^{\dagger} A_2, \dots, A_d^{\dagger} A_d) \cdot \mathcal{C}$$
$$= \mathcal{C}.$$

In other words, if we know that \mathcal{A} lives in $V_1 \otimes \cdots \otimes V_d$, and we have chosen some bases A_k of V_k , then the coefficients (also called **core tensor**) are given by $\mathcal{C} = (A_1^{\dagger}, A_2^{\dagger}, \dots, A_d^{\dagger}) \cdot \mathcal{A}$.

The factorization

$$\mathcal{A} = (A_1, \ldots, A_d) \cdot \mathcal{C}$$

reveals the separable subspace $V=V_1\otimes\cdots\otimes V_d$ that tensor $\mathcal A$ lives in, as A_k provides a basis of V_k from which a tensor product basis of V can be constructed. The factorization is called a (rank-revealing) **Tucker decomposition** of $\mathcal A$ in honor of L. Tucker (1963).

The **higher-order singular value decomposition** (HOSVD), popularized by De Lathauwer, De Moor, and Vandewalle (2000) but already introduced by Tucker (1966), is a particular strategy for choosing orthonormal bases A_k .

The HOSVD chooses as orthonormal basis for V_k the left singular vectors of $\mathcal{A}_{(k)}$. That is, let the thin SVD of $\mathcal{A}_{(k)}$ be

$$\mathcal{A}_{(k)} = U_k \Sigma_k Q_k^H.$$

Then, the HOSVD orthogonal basis for V_k is given by U_k .

An advantage of choosing orthonormal bases A_k , beyond improved numerical stability, is that the Moore–Penrose inverse reduces to

$$U_k^{\dagger} = (U_k^H U_k)^{-1} U_k^H = U_k^H,$$

so that

$$\mathcal{A} = (U_1, U_2, \dots, U_d) \cdot ((U_1, U_2, \dots, U_d)^H \cdot \mathcal{A})$$

$$= (U_1 U_1^H, U_2 U_2^H, \dots, U_d U_d^H) \cdot \mathcal{A}$$

$$= \overline{\pi}_1 \overline{\pi}_2 \cdots \overline{\pi}_d \mathcal{A}$$

where

$$\overline{\pi}_k \mathcal{A} := (U_k U_k^H) \cdot_k \mathcal{A}$$

is the **HOSVD** mode-k orthogonal projection.

The coefficients *d*-array

$$S = (U_1, U_2, \dots, U_d)^H \cdot \mathcal{A}$$

is called the core tensor.

The orthogonal basis of $V_1 \otimes \cdots \otimes V_d$,

$$U_1 \otimes U_2 \otimes \cdots \otimes U_d := [\mathbf{u}_{i_1}^1 \otimes \cdots \otimes \mathbf{u}_{i_d}^d]_{i_1,\dots,i_d=1}^{r_1,\dots,r_d}$$

is called the HOSVD basis.

By definition of the thin SVD, we have

$$r_k = \dim V_k = \operatorname{rank}(U_k)$$

and so $U_k \in \mathbb{F}^{n_k \times r_k}$.

Algorithm 1: HOSVD Algorithm

input: A tensor $\mathcal{A} \in \mathbb{F}^{n_1 \times n_2 \times \cdots \times n_d}$

output: The components (U_1, U_2, \dots, U_d) of the HOSVD basis

output: Coefficients array $S \in \mathbb{F}^{r_1 \times r_2 \times \cdots \times r_d}$

for k = 1, 2, ..., d do

Compute the compact SVD $\mathcal{A}_{(k)} = U_k \Sigma_k Q_k^H$;

end

$$\mathcal{S} \leftarrow (U_1^H, U_2^H, \dots, U_d^H) \cdot \mathcal{A};$$

The HOSVD provides a natural data sparse representation of tensors \mathcal{A} living in a separable subspace.

If $A \in \mathbb{F}^{n_1 \times n_2 \times \cdots \times n_d}$ has multilinear rank (r_1, r_2, \dots, r_d) , then it can be represented exactly via the HOSVD as

$$\mathcal{A} = (U_1, U_2, \dots, U_d) \cdot \mathcal{S}$$

using only

$$\prod_{k=1}^d r_k + \sum_{k=1}^d n_k r_k$$

storage (for S and the U_i).

Overview

- Introduction
- 2 Basic tensor operations
- 3 Tucker decomposition
 - Multilinear rank
 - Higher-order singular value decomposition
 - Numerical issues
 - Truncation algorithms
- 4 Tensor rank decomposition
 - Rank
 - Border rank
 - Identifiability
- 6 References

Numerical issues

Consider the mathematically simple task of computing the multilinear rank of a tensor \mathcal{A} . For example, r_k equals the number of nonzero singular values of $\mathcal{A}_{(k)}$.

Let us take the rank-1 tensor

$$\mathcal{A} = \left[\begin{array}{cc|c} 1 & \sqrt{2} & \sqrt{2} & 2 \\ \sqrt{2} & 2 & 2\sqrt{2} \end{array} \right] = \mathbf{v} \otimes \mathbf{v} \otimes \mathbf{v}, \quad \text{where } \mathbf{v} = \begin{bmatrix} 1 \\ \sqrt{2} \end{bmatrix}.$$

Its 1-flattening is

$$\mathcal{A}_{(1)} = \mathbf{v}(\mathbf{v} \otimes \mathbf{v})^T = \left[egin{array}{cccc} 1 & \sqrt{2} & \sqrt{2} & 2 \\ \sqrt{2} & 2 & 2 & 2\sqrt{2} \end{array}
ight].$$

Computing the singular values of $\mathcal{A}_{(1)}$ in Matlab R2017b, we get the next result:

```
>> svd([[1 sqrt(2) sqrt(2) 2];[sqrt(2) 2 2 2*sqrt(2)]])
ans =
```

5.196152422706632e+00

1.805984985273179e-16

Both singular values are nonzero, so the computed rank is 2!

However, the rank of $\mathcal{A}_{(1)}$ is 1, so what have we computed? Can we make sense of this result?

There are two sources of error that entered our computation:

- representation errors, and
- computation errors.

The **representation error** is incurred because $\mathcal{A}_{(1)}$ cannot be represented with (IEEE double-precision) floating-point numbers; indeed, $\sqrt{2} \notin \mathbb{Q}$.

Nevertheless, the numerical representation of $\mathcal{A}_{(1)}$ is very close to the latter. By the properties of floating-point arithmetic, we have

$$\|\mathcal{A}_{(1)} - \mathsf{fl}(\mathcal{A}_{(1)})\|_F^2 \le 3(\sqrt{2}\delta)^2 + ((2\sqrt{2})\delta)^2 = 14\delta^2,$$

where $\delta \approx 1.1 \cdot 10^{-16}$ is the unit roundoff.

The **computation error** arises in the computation of the singular values of the matrix with floating-point elements. The magnitude of this error strongly depends on the algorithm. Numerically "stable" algorithms will only introduce "small" errors.

Matlab's svd likely implements an algorithm satisfying¹

$$|\widetilde{\sigma}_k(\widetilde{A}) - \sigma_k(\widetilde{A} + E)| \le p(m, n) \cdot \sigma_1(\widetilde{A} + E) \cdot \delta$$

with

$$||E||_2 \leq p(m,n) \cdot \sigma_1(\widetilde{A}) \cdot \delta$$

where $\sigma_k(A)$ is the kth exact singular value of the matrix A and $\widetilde{\sigma}_k(A)$ is the numerically obtained kth singular value, and p(m, n) is a "modest growth factor."

¹See http://www.netlib.org/lapack/lug/node97.html.

For brevity, write $A := \mathcal{A}_{(1)}$ and $\widetilde{A} := \mathrm{fl}(\mathcal{A}_{(1)})$.

Even in light of these representation and computation errors, we can extract useful information from our result by using the error bounds and **Weyl's perturbation lemma**:

$$|\sigma_k(X) - \sigma_k(X + Y)| \le ||Y||_2.$$

We have

$$\begin{split} |\sigma_{k}(A) - \widetilde{\sigma}_{k}(\widetilde{A})| &= |\sigma_{k}(A) - \sigma_{k}(\widetilde{A}) + \sigma_{k}(\widetilde{A}) - \widetilde{\sigma}_{k}(\widetilde{A})| \\ &\leq \sqrt{14}\delta + |\sigma_{k}(\widetilde{A}) - \widetilde{\sigma}_{k}(\widetilde{A})| \\ &= \sqrt{14}\delta + |\sigma_{k}(\widetilde{A}) - \sigma_{k}(\widetilde{A} + E) + \sigma_{k}(\widetilde{A} + E) - \widetilde{\sigma}_{k}(\widetilde{A})| \\ &\leq (p(m, n)\sigma_{1}(\widetilde{A}) + \sqrt{14})\delta + |\sigma_{k}(\widetilde{A} + E) - \widetilde{\sigma}_{k}(\widetilde{A})| \\ &\leq (4p(m, n)\widetilde{\sigma}_{1}(\widetilde{A}) + \sqrt{14})\delta, \end{split}$$

assuming $p(m, n) \max \{ \sigma_1(A + E), \sigma_1(A) \} \le 2$.

Applying this to our case, and assuming that $p(m, n) \leq 10(m + n)$, we find

$$|\sigma_1(\mathcal{A}_{(1)}) - 5.196152422706632| \le 1.517 \cdot 10^{-13}$$

 $|\sigma_2(\mathcal{A}_{(1)}) - 1.805984985273179 \cdot 10^{-16}| \le 1.517 \cdot 10^{-13};$

hence, $\sigma_1(\mathcal{A}_{(1)}) \neq 0$, but based on our error bounds we cannot exclude that $\sigma_2(\mathcal{A}_{(1)})$ might be 0.

We thus conclude that $r_1 \ge 1$ and that the distance of $\mathcal{A}_{(1)}$ to the locus of rank-1 matrices is at most about $1.517 \cdot 10^{-13}$.

Overview

- Introduction
- 2 Basic tensor operations
- 3 Tucker decomposition
 - Multilinear rank
 - Higher-order singular value decomposition
 - Numerical issues
 - Truncation algorithms
- Tensor rank decomposition
 - Rank
 - Border rank
 - Identifiability
- 6 References

Truncation algorithms

It is uncommon to encounter tensors $\mathcal{A} \in \mathbb{F}^{n_1 \times n_2 \times \cdots \times n_d}$ with a multilinear rank that is exactly smaller than (n_1, n_2, \ldots, n_d) because of numerical errors. However, tensors \mathcal{A} can often lie close to a separable subspace $V_1 \otimes V_2 \otimes \cdots \otimes V_d$. This leads naturally to

The low multilinear rank approximation (LMLRA) problem

Given $\mathcal{A} \in \mathbb{F}^{n_1 \times \cdots \times n_d}$ and a target multilinear rank (r_1, \ldots, r_d) , find a minimizer of

$$\min_{\mathsf{mlrank}(\mathcal{B}) \leq (r_1, \dots, r_d)} \|\mathcal{A} - \mathcal{B}\|_{F}$$

In other words, find the separable subspace $V_1 \otimes \cdots \otimes V_d$ with dim $V_k = r_k$ that is closest to \mathcal{A} .

Truncation algorithms

Since mlrank(\mathcal{B}) = (r_1, \ldots, r_d) is equivalent to the existence of a separable subspace $V_1 \otimes \cdots \otimes V_d$ in which \mathcal{B} lives, we can write

$$\mathcal{B} = (U_1, U_2, \dots, U_d) \cdot \mathcal{S}$$

where $U_k \in \mathbb{F}^{n_k \times r_k}$ can be chosen orthonormal by the existence of the HOSVD.

So graphically we want to approximate A by

After choosing the separable subspace, the optimal approximation is the **orthogonal projection** onto this subspace. Hence, the LMLRA problem is equivalent to

$$\min_{U_k \in \mathsf{St}_{n_k,r_k}} \| \mathcal{A} - \mathrm{P}_{\langle U_1 \otimes \cdots \otimes U_d \rangle} \mathcal{A} \|_F$$

where $\langle U \rangle$ denotes the linear subspace spanned by the basis U, and $\operatorname{St}_{m,n}$ is the Stiefel manifold of $m \times n$ matrices with orthonormal columns.

Proposition (V, Vandebril, and Meerbergen, 2012)

Let $U_1 \otimes \cdots \otimes U_d$ be a tensor basis of the separable subspace $V = V_1 \otimes \cdots \otimes V_d$. Then, the approximation error

$$\|\mathcal{A} - P_{V}\mathcal{A}\|_{F}^{2} = \sum_{k=1}^{d} \|\pi_{\rho_{k-1}} \cdots \pi_{\rho_{1}}\mathcal{A} - \pi_{\rho_{k}}\pi_{\rho_{k-1}} \cdots \pi_{\rho_{1}}\mathcal{A}\|_{F}^{2},$$

where $\pi_j \mathcal{A} = (U_j U_j^H) \cdot_j \mathcal{A}$ and **p** is any permutation of $\{1, 2, \dots, d\}$.

The proof is left as an exercise.

Note that $\mathcal{A} - \pi_j \mathcal{A} = (I - U_j U_j^H) \cdot_j \mathcal{A}$ is also a projection, which we denote by $\pi_j^\perp \mathcal{A} := (I - U_j U_j^H) \cdot_j \mathcal{A}.$

We may intuitively understand the proposition as follows. If

$$\mathcal{A} \approx \hat{\mathcal{A}} := \pi_1 \pi_2 \pi_3 \mathcal{A} = (U_1 U_1^H, U_2 U_2^H, U_3 U_3^H) \cdot \mathcal{A},$$

then an error expression is

$$\|\mathcal{A} - \pi_{1}\pi_{2}\pi_{3}\mathcal{A}\|^{2} = \|\pi_{1}^{\perp}\mathcal{A}\|^{2} + \|\pi_{2}^{\perp}\pi_{1}\mathcal{A}\|^{2} + \|\pi_{3}^{\perp}\pi_{1}\pi_{2}\mathcal{A}\|^{2}$$

Since orthogonal projections only decrease unitarily invariant norms, we also get the following corollary.

Corollary

Let $U_1 \otimes \cdots \otimes U_d$ be a tensor basis of the separable subspace $V = V_1 \otimes \cdots \otimes V_d$. Then, the approximation error satisfies

$$\|\mathcal{A} - \mathcal{P}_{V}\mathcal{A}\|_{F}^{2} \leq \sum_{k=1}^{d} \|\pi_{k}^{\perp}\mathcal{A}\|_{F}^{2},$$

where $\pi_j \mathcal{A} = (U_j U_j^H) \cdot_j \mathcal{A}$.

We may intuitively understand this corollary as follows. If

$$\mathcal{A} \approx \hat{\mathcal{A}} := \pi_1 \pi_2 \pi_3 \mathcal{A} = \left(U_1 U_1^H, U_2 U_2^H, U_3 U_3^H \right) \cdot \mathcal{A},$$

then an upper bound is

$$\|\mathcal{A} - \pi_1 \pi_2 \pi_3 \mathcal{A}\|^2 \leq \|\pi_1^{\perp} \mathcal{A}\|^2 + \|\pi_2^{\perp} \mathcal{A}\|^2 + \|\pi_3^{\perp} \mathcal{A}\|^2$$

A closed solution of the LMLRA problem

$$\min_{U_k \in \mathsf{St}_{n_k, r_k}} \left\| \mathcal{A} - \mathrm{P}_{\langle U_1 \otimes \cdots \otimes U_d \rangle} \mathcal{A} \right\|_{F}$$

is not known.

However, we can use foregoing error expressions for choosing good, even **quasi-optimal**, separable subspaces to project onto.

T-HOSVD

The idea of the **truncated HOSVD** (T-HOSVD) is minimizing the upper bound on the error:

$$\|\mathcal{A} - \pi_1 \pi_2 \pi_3 \mathcal{A}\|^2 \leq \|\pi_1^{\perp} \mathcal{A}\|^2 + \|\pi_2^{\perp} \mathcal{A}\|^2 + \|\pi_3^{\perp} \mathcal{A}\|^2$$

If the upper bound is small, then evidently the error is also small.

Minimizing the upper bound results in

$$\begin{split} \min_{\pi_{1},...,\pi_{d}} \|\mathcal{A} - \pi_{1} \cdots \pi_{d}\mathcal{A}\|_{F}^{2} &\leq \min_{\pi_{1},...,\pi_{d}} \sum_{k=1}^{d} \|\pi_{k}^{\perp}\mathcal{A}\|_{F}^{2} \\ &= \sum_{k=1}^{d} \min_{\pi_{k}} \|\pi_{k}^{\perp}\mathcal{A}\|_{F}^{2} \\ &= \sum_{k=1}^{d} \min_{U_{k} \in \mathsf{St}_{n_{k},r_{k}}} \|\mathcal{A}_{(k)} - U_{k}U_{k}^{H}\mathcal{A}_{(k)}\|_{F}^{2} \end{split}$$

This has a closed form solution, namely the optimal \overline{U}_k should contain the r_k dominant left singular vectors. That is, writing the compact SVD of $\mathcal{A}_{(k)}$ as

$$\mathcal{A}_{(k)} = U_k \Sigma_k Q_k^T,$$

then \overline{U}_k contains the first r_k columns of U_k .

Truncation algorithms

The resulting **T-HOSVD** algorithm is thus but a minor modification of the HOSVD algorithm.

Algorithm 2: T-HOSVD Algorithm

input: A tensor $\mathcal{A} \in \mathbb{F}^{n_1 \times n_2 \times \cdots \times n_d}$

input: A target multilinear rank (r_1, r_2, \ldots, r_d) .

output: The components $(\overline{U}_1, \overline{U}_2, \dots, \overline{U}_d)$ of the T-HOSVD basis

output: Coefficients array $\overline{S} \in \mathbb{F}^{r_1 \times r_2 \times \cdots \times r_d}$

for
$$k = 1, 2, \ldots, d$$
 do

Compute the compact SVD $A_{(k)} = U_k \Sigma_k Q_k^H$;

Let \overline{U}_k contain the first r_k columns of U_k ;

end

$$\overline{S} \leftarrow (\overline{U}_1^H, \overline{U}_2^H, \dots, \overline{U}_d^H) \cdot \mathcal{A};$$

Assume that we truncate a tensor in $\mathbb{F}^{n \times \cdots \times n}$ to multilinear rank (r, \ldots, r) . The computational complexity of standard T-HOSVD is

$$\mathcal{O}\left(dn^{d+1} + \sum_{k=1}^d n^{d+1-k} r^k\right)$$
 operations.

The resulting approximation is quasi-optimal.

Proposition (Hackbusch, 2012)

Let $A \in \mathbb{F}^{n_1 \times \cdots \times n_d}$, and let A^* be the best rank- (r, \ldots, r) approximation to B, i.e.,

$$\|\mathcal{A}-\mathcal{A}^*\|_F=\min_{\mathsf{mlrank}(\mathcal{B})\leq (r,\ldots,r)}\|\mathcal{A}-\mathcal{B}\|_F.$$

Then, the rank-(r, ..., r) T-HOSVD approximation \mathcal{A}_T is a quasi best approximation:

$$\|\mathcal{A} - \mathcal{A}_T\|_F \le \sqrt{d} \|\mathcal{A} - \mathcal{A}^*\|_F.$$

ST-HOSVD

The idea of the **sequentially truncated HOSVD** (ST-HOSVD) is sequentially choosing projections with the aim of minimizing the error expression:

$$\|\mathcal{A} - \pi_1 \pi_2 \pi_3 \mathcal{A}\|^2 = \|\pi_1^{\perp} \mathcal{A}\|^2 + \|\pi_2^{\perp} \pi_1 \mathcal{A}\|^2 + \|\pi_3^{\perp} \pi_1 \pi_2 \mathcal{A}\|^2$$

ST-HOSVD greedily minimizes the foregoing error expression. That is, it computes

$$\begin{split} \widehat{\pi}_1 &= \arg\min_{\pi_1} \|\pi_1^\perp \mathcal{A}\|^2 \\ \widehat{\pi}_2 &= \arg\min_{\pi_2} \|\pi_2^\perp \widehat{\pi}_1 \mathcal{A}\|^2 \\ &\vdots \\ \widehat{\pi}_d &= \arg\min_{\pi_d} \|\pi_d^\perp \widehat{\pi}_{d-1} \cdots \widehat{\pi}_2 \widehat{\pi}_1 \mathcal{A}\|^2 \end{split}$$

In practice, $\min_{\pi_k} \|\pi_k^{\perp} \widehat{\pi}_{k-1} \cdots \widehat{\pi}_1 \mathcal{A}\|_F$ is computed as follows. As $\widehat{\pi}_j$ are orthogonal projections, we can write them as

$$\widehat{\pi}_{j}\mathcal{A}:=(\widehat{U}_{j}\widehat{U}_{i}^{H})\cdot_{j}\mathcal{A}=\widehat{U}_{j}\cdot_{j}(\widehat{U}_{i}^{H}\cdot_{j}\mathcal{A}).$$

Therefore.

$$\begin{split} \min_{U_k \in \mathsf{St}_{n_k, r_k}} &\| U_k U_k^H \mathcal{A}_{(k)} (\widehat{U}_1 \widehat{U}_1^H \otimes \cdots \otimes \widehat{U}_{k-1} \widehat{U}_{k-1}^H \otimes I \otimes \cdots \otimes I)^T \|_F \\ &= \min_{U_k} \| U_k U_k^H \mathcal{A}_{(k)} (\widehat{U}_1^H \otimes \cdots \otimes \widehat{U}_{k-1}^H \otimes I \otimes \cdots \otimes I)^T \|_F \\ &= \min_{U_k} \| U_k U_k^H \mathcal{S}_{(k)}^{k-1} \|_F, \end{split}$$

where we define

$$\mathcal{S}^{k-1} := (\widehat{U}_1, \dots, \widehat{U}_{k-1}, I, \dots, I)^H \cdot \mathcal{A} = \widehat{U}_{k-1}^H \cdot_{k-1} \mathcal{S}^{k-2}.$$

Recall that the solution of $\min_{U_k} \|U_k U_k^H \mathcal{S}_{(k)}^{k-1}\|_F$ is given by the rank- r_k truncated SVD of $\mathcal{S}_{(k)}^{k-1}$.

Visually, here's what happens for a third-order tensor.

$$S_{(1)}^1 = \widehat{U}_1^H S_{(1)}^0$$
 $S_{(2)}^2 = \widehat{U}_2^H S_{(2)}^1$ $S_{(3)}^3 = \widehat{U}_3^H S_{(3)}^2$

$$S_{(2)}^2 = \widehat{U}_2^H S_{(2)}^1$$

$$S_{(3)}^3 = \widehat{U}_3^H S_{(3)}^2$$

The resulting **ST-HOSVD** algorithm is thus but a minor modification of the T-HOSVD algorithm.

Algorithm 3: ST-HOSVD Algorithm

input: A tensor $\mathcal{A} \in \mathbb{F}^{n_1 \times n_2 \times \cdots \times n_d}$

input: A target multilinear rank (r_1, r_2, \ldots, r_d) .

output: The components $(\widehat{U}_1, \widehat{U}_2, \dots, \widehat{U}_d)$ of the ST-HOSVD basis

output: Coefficients array $\widehat{S} \in \mathbb{F}^{r_1 \times r_2 \times \cdots \times r_d}$

$$\widehat{\mathcal{S}} \leftarrow \widehat{\mathcal{A}};$$

for
$$k = 1, 2, ..., d$$
 do

Compute the compact SVD $S_{(k)} = U_k \Sigma_k Q_k^H$;

Let \widehat{U}_k contain the first r_k columns of U_k ;

$$\widehat{\mathcal{S}} \leftarrow \widehat{U}_k^H \cdot_k \widehat{\mathcal{S}};$$

end

Assume that we truncate a tensor in $\mathbb{F}^{n \times \cdots \times n}$ to multilinear rank (r, \ldots, r) . The computational complexity of ST-HOSVD is

$$\mathcal{O}\left(n^{d+1} + 2\sum_{k=1}^d n^{d+1-k} r^k\right)$$
 operations,

which compares favorably versus T-HOSVD's

$$\mathcal{O}\left(dn^{d+1} + \sum_{k=1}^{d} n^{d+1-k} r^k\right)$$
 operations.

Note that much larger speedups are possible for uneven mode sizes $n_1 \ge n_2 \ge \cdots \ge n_d \ge 2$, as you will show in the problem sessions.

The resulting approximation is also quasi-optimal.

Proposition (Hackbusch, 2012)

Let $A \in \mathbb{F}^{n_1 \times \cdots \times n_d}$, and let A^* be the best rank- (r, \ldots, r) approximation to A, i.e.,

$$\|\mathcal{A}-\mathcal{A}^*\|_F=\min_{\mathsf{mlrank}(\mathcal{B})\leq (r,\ldots,r)}\|\mathcal{A}-\mathcal{B}\|_F.$$

Then, the rank-(r,...,r) ST-HOSVD approximation A_S is a quasi best approximation:

$$\|\mathcal{A} - \mathcal{A}_{S}\|_{F} \leq \sqrt{d} \|\mathcal{A} - \mathcal{A}^{*}\|_{F}.$$

Overview

- Introduction
- Basic tensor operations
- 3 Tucker decomposition
 - Multilinear rank
 - Higher-order singular value decomposition
 - Numerical issues
 - Truncation algorithms
- Tensor rank decomposition
 - Rank
 - Border rank
 - Identifiability
- 6 References

Overview

- Introduction
- 2 Basic tensor operations
- Tucker decomposition
 - Multilinear rank
 - Higher-order singular value decomposition
 - Numerical issues
 - Truncation algorithms
- 4 Tensor rank decomposition
 - Rank
 - Border rank
 - Identifiability
- 6 References

Tensor rank

The tensor rank decomposition (CPD) expresses a tensor $\mathcal{A} \in V_1 \otimes \cdots \otimes V_d$ as a **minimum-length** linear combination of rank-1 tensors:

$$\mathcal{A} = \sum_{i=1}^r \lambda_i \mathbf{a}_i^1 \otimes \cdots \otimes \mathbf{a}_i^d, ext{ where } \mathbf{a}_i^k \in V_k.$$

Often the scalars λ_i are absorbed into the $\mathbf{a}_i^k \in V_k$.

The **rank** of \mathcal{A} is the length of any of its tensor rank decompositions.

Tensor rank is a considerably more difficult subject for $d \ge 3$ than the multilinear rank. For example,

- the **maximum rank** of a tensor space $\mathbb{F}^{n_1} \otimes \cdots \otimes \mathbb{F}^{n_d}$ is not known in general;
- the **typical ranks** of a tensor space $\mathbb{F}^{n_1} \otimes \cdots \otimes \mathbb{F}^{n_d}$, i.e., those ranks occurring on nonempty Euclidean-open subsets, are not known in general;
- the rank of a real tensor can decrease when taking a field extension, contrary to matrix and multilinear rank; and
- computing tensor rank is NP Hard.

Rank

Tensor rank is invariant under invertible multilinear multiplications with $A_1 \otimes \cdots \otimes A_d$, where $A_k : V_k \to W_k$ are invertible linear maps.

Let
$$\mathcal{A} = \sum_{i=1}^r \mathbf{b}_i^1 \otimes \cdots \otimes \mathbf{b}_i^d$$
. Since

$$(A_1,\ldots,A_d)\cdot\mathcal{A}=\sum_{i=1}^r(A_1\mathbf{b}_i^1)\otimes\cdots\otimes(A_d\mathbf{b}_i^d),$$

we have $rank(A) \leq rank((A_1, ..., A_d) \cdot A)$. And so

$$\begin{split} \mathsf{rank}(\mathcal{A}) &\leq \mathsf{rank}((A_1, \dots, A_d) \cdot \mathcal{A}) \\ &\leq \mathsf{rank}((A_1^{-1}, \dots, A_d^{-1}) \cdot \big((A_1, \dots, A_d) \cdot \mathcal{A}\big)) = \mathsf{rank}(\mathcal{A}). \end{split}$$

Overview

- Introduction
- 2 Basic tensor operations
- 3 Tucker decomposition
 - Multilinear rank
 - Higher-order singular value decomposition
 - Numerical issues
 - Truncation algorithms
- 4 Tensor rank decomposition
 - Rank
 - Border rank
 - Identifiability
- 6 References

Border rank

Another issue with tensor rank is that the set

$$S_{\leq r} := \{ \mathcal{A} \in \mathbb{F}^{n_1 \times \dots \times n_d} \mid \operatorname{rank}(\mathcal{A}) \leq r \}$$

is **not closed** in general, i.e., $S_{\leq r} \neq \overline{S_{\leq r}}$.

For example, for any linearly independent $\mathbf{x},\mathbf{y}\in\mathbb{R}^n$, we have

$$\lim_{\epsilon \to 0} \left(\frac{1}{\epsilon} (\mathbf{x} + \epsilon \mathbf{y})^{\otimes 3} - \frac{1}{\epsilon} \mathbf{x}^{\otimes 3} \right) = \mathbf{y} \otimes \mathbf{x} \otimes \mathbf{x} + \mathbf{x} \otimes \mathbf{y} \otimes \mathbf{x} + \mathbf{x} \otimes \mathbf{x} \otimes \mathbf{y};$$

evidently, the tensors in the sequence have rank bounded by 2, but it can be shown that the limit has rank 3.

Connection to algebraic geometry

Consider the Euclidean closure of $S_{\leq r}$:

$$\overline{S_{\leq r}} := \{ \lim_{\epsilon \to 0} \mathcal{A}_{\epsilon}, \text{ where } \mathcal{A}_{\epsilon} \in S_{\leq r} \}.$$

If $A \in \overline{S_{\leq r}} \setminus \overline{S_{\leq r-1}}$, then we say that A has **border rank** equal to r.

It turns out that for $\mathbb{F}=\mathbb{C}$, the Euclidean closure of $S_{\leq r}$ coincides with its closure in the Zariski topology. That is, $\overline{S_{\leq r}}$ is an **algebraic**, even **projective**, **variety**, i.e., the zero set of a system of homogeneous polynomial equations.

For $\mathbb{F} = \mathbb{R}$, both $S_{\leq r}$ and $\overline{S_{\leq r}}$ are **semi-algebraic sets**, i.e., the solution set of a system of polynomial equalities and inequalities.

Overview

Identifiability

- Introduction
- 2 Basic tensor operations
- Tucker decomposition
 - Multilinear rank
 - Higher-order singular value decomposition
 - Numerical issues
 - Truncation algorithms
- 4 Tensor rank decomposition
 - Rank
 - Border rank
 - Identifiability
- 6 References

Identifiability

A key property of the tensor rank decomposition is that the decomposition of \mathcal{A} as a sum of rank-1 tensors \mathcal{A}_i is often unique.

We say that $\mathcal{A} \in \mathbb{F}^{n_1 \times \cdots \times n_d}$ is r-identifiable if the set of rank-1 tensors $\{\mathcal{A}_1, \ldots, \mathcal{A}_r\}$ whose sum is \mathcal{A} , i.e.,

$$A = A_1 + \cdots + A_r$$

is uniquely determined by A.

Note that the components of a rank-1 tensor $\mathcal{A} \in \mathbb{F}^{n_1} \otimes \cdots \otimes \mathbb{F}^{n_d}$ are themselves also uniquely determined (in projective space) by \mathcal{A} . Precisely, the points

$$[\mathsf{a}_k] \in \mathbb{P}(\mathbb{F}^{n_k})$$

are uniquely determined given $\mathcal{A} = \mathbf{a}_1 \otimes \cdots \otimes \mathbf{a}_d$.

This *r*-identifiability is **radically different** from the matrix case (d=2). Indeed, if $A \in \mathbb{F}^{m \times n}$ is a rank-*r* matrix, then

$$A = UV^T = (UX)(X^{-1}V^T)$$
 for all $X \in GL_r(\mathbb{F})$

For a generic choice of X, i.e., outside of some Zariski-closed set, $(UX)_i \neq \alpha \mathbf{u}_{\pi_i}$, so that the tensor rank decompositions are distinct.

Note that in the matrix case there is even a positive-dimensional family of distinct decompositions! (Can you prove this?)

A classic result on *r*-identifiability of CPDs is **Kruskal's lemma**, which relies on the notion of the **Kruskal rank** of a set of vectors.

Definition (Kruskal, 1977)

The Kruskal rank k_V of a set of vectors $V = \{\mathbf{v}_1, \dots, \mathbf{v}_r\} \subset \mathbb{F}^n$ is the largest k integer such that every subset of k vectors of V is linearly independent.

For example,

- {v, v} has Kruskal rank 1;
- $\{\mathbf{v}, \mathbf{w}, \mathbf{v}\}$ has Kruskal rank 1; and
- {v, w, v + w} has Kruskal rank 2 if v and w are linearly independent.

Kruskal proved, among others, the following result.

Theorem (Kruskal, 1977)

Let $\mathcal{A}=\sum_{i=1}^r \mathbf{a}_i^1\otimes \mathbf{a}_i^2\otimes \mathbf{a}_i^3$ and $A_k:=[\mathbf{a}_i^k]_{i=1}^r$. If $k_{A_1},k_{A_2},k_{A_3}>1$ and

$$r \leq \frac{1}{2}(k_{A_1} + k_{A_2} + k_{A_3} - 2)$$

then A is r-identifiable.

The condition $k_{A_1} > 1$ is necessary for $r \geq 2$ because otherwise $\mathcal{A} \in \langle \mathbf{v} \rangle \otimes \mathbb{F}^{n_2} \otimes \mathbb{F}^{n_3} \simeq \mathbb{F}^{n_2 \times n_3}$, and likewise for the other factors.

Computing the Kruskal rank of r vectors in \mathbb{F}^n is very expensive, in general, as one needs to compute the ranks of all $\binom{r}{k}$ subsets of k vectors for $k=1,\ldots,\min\{r,n\}$. Computing one of these ranks already has a complexity of nk^2 .

Notwithstanding this limitation, applying Kruskal's lemma is a popular technique for verifying that a tensor given as the sum of r rank-1 tensors has rank equal to r. Indeed, a rank-r tensor is never r'-identifiable with r' > r.

Kruskal's lemma can also be applied to higher-order tensors

$$\mathcal{A} \in V_1 \otimes \cdots \otimes V_d$$

simply by grouping the factors:

$$\mathcal{A} \in (V_{\pi_1} \otimes \cdots \otimes V_{\pi_s}) \otimes (V_{\pi_{s+1}} \otimes \cdots \otimes V_{\pi_t}) \otimes (V_{\pi_{t+1}} \otimes \cdots \otimes V_{\pi_d})$$

where $1 \le s < t \le d$ and π is a permutation of $\{1, \ldots, d\}$.

In other words, Kruskal's lemma is applied to the **reshaped** tensor (coordinate array).

While *r*-identifiability seems like a special property admitted by only few tensors, the phenomenon is very general. It is an open problem to prove the following conjecture:

Conjecture (Chiantini, Ottaviani, V, 2014)

Let $n_1 \geq n_2 \geq \cdots \geq n_d \geq 2$, $d \geq 3$. If $r < \frac{\prod_{k=1}^{q} n_k}{1 + \sum_{k=1}^{d} (n_k - 1)}$, then $\mathbb{F}^{n_1} \otimes \cdots \otimes \mathbb{F}^{n_d}$ is **generically** r-identifiable (there exists a proper Zariski-closed subset Z of $S_{\leq r}$ such that every $\mathcal{A} \in S_{\leq r} \setminus Z$ is r-identifiable), unless:

- $(n_1, n_2, n_3) = (4, 4, 3)$ and r = 5;
- $(n_1, n_2, n_3) = (4, 4, 4)$ and r = 6;
- $(n_1, n_2, n_3) = (6, 6, 3)$ and r = 8;
- $(n_1, n_2, n_3, n_4) = (n, n, 2, 2)$ and r = 2n 1, $n \ge 2$;
- **5** $(n_1, n_2, n_3, n_4, n_5) = (2, 2, 2, 2, 2)$ and r = 5; and
- $oldsymbol{0} n_1 > \prod_{k=2}^d n_k \sum_{k=2}^d (n_k 1) =: c \text{ and } r \ge c.$

Overview

- Introduction
- 2 Basic tensor operations
- 3 Tucker decomposition
 - Multilinear rank
 - Higher-order singular value decomposition
 - Numerical issues
 - Truncation algorithms
- 4 Tensor rank decomposition
 - Rank
 - Border rank
 - Identifiability
- 6 References

References for basic tensor operations

- Greub, Multilinear Algebra, 2nd ed., Springer, 1978.
- de Silva, Lim, Tensor rank and the ill-posedness of the best low-rank approximation problem, SIAM Journal on Matrix Analysis and Applications, 2008.
- Kolda, Bader, Tensor decompositions and applications, SIAM Review, 2008.
- Landsberg, Tensors: Geometry and Applications, AMS, 2012.

References for Tucker decomposition

- Carlini, Kleppe, *Ranks derived from multilinear maps*, Journal of Pure and Applied Algebra, 2011.
- De Lathauwer, De Moor, Vandewalle, A multilinear singular value decomposition, SIAM Journal on Matrix Analysis and Applications, 2000.
- Hackbusch, Tensor Spaces and Numerical Tensor Calculus, Springer, 2012.
- Hitchcock, Multiple invariants and generalized rank of a P-way matrix or tensor, Journal of Mathematics and Physics, 1928.
- Tucker, Some mathematical notes on three-mode factor analysis, Psychometrika, 1966.
- Vannieuwenhoven, Vandebril, Meerbergen, A new truncation strategy for the higher-order singular value decomposition, SIAM Journal on Scientific Computing, 2012.

References for tensor rank decomposition

- Chiantini, Ottaviani, Vannieuwenhoven, An algorithm for generic and low-rank specific identifiability of complex tensors, SIAM Journal on Matrix Analysis, 2014.
- Chiantini, Ottaviani, Vannieuwenhoven, Effective criteria for specific identifiability of tensors and forms, SIAM Journal on Matrix Analysis, 2017.
- de Silva, Lim, Tensor rank and the ill-posedness of the best low-rank approximation problem, SIAM Journal on Matrix Analysis and Applications, 2008.
- Hitchcock, *The expression of a polyadic or tensor as a sum of products*, Journal of Mathematics and Physics, 1927.
- Kruskal, Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics, Linear Algebra and its Applications, 1977.
- Landsberg, Tensors: Geometry and Applications, AMS, 2012.