Computing and decomposing tensors

- Decomposition basics

Nick Vannieuwentioven
(FWO KU Leuven)
(1) Introduction
(2) Basic tensor operations
(3) Tucker decomposition

- Multilinear rank
- Higher-order singular value decomposition
- Numerical issues
- Truncation algorithms
(4) Tensor rank decomposition
- Rank
- Border rank
- Identifiability
(5) References

Overview

(1) Introduction

2 Basic tensor operations

(3) Tucker decomposition

- Multilinear rank
- Higher-order singular value decomposition
- Numerical issues
- Truncation algorithms
(4) Tensor rank decomposition
- Rank
- Border rank
- Identifiability
(5) References

Multidimensional data appear in many applications:

- image and signal processing;
- pattern recognition, data mining and machine learning;
- chemometrics;
- biomedicine;
- psychometrics; etc.

There are two major problems associated with this data:
(1) Storage cost is very high, and
(2) analysis and interpretation of patterns in data.

Tensor decompositions can identify and exploit useful structures in the tensor that may not be apparent from its given coordinate representation.

Different decompositions have different strengths.
A Tucker decomposition

can reduce storage costs.

A tensor rank decomposition

may uncover interpretable patterns.

Overview

(1) Introduction
(2) Basic tensor operations
(3) Tucker decomposition

- Multilinear rank
- Higher-order singular value decomposition
- Numerical issues
- Truncation algorithms
(4) Tensor rank decomposition
- Rank
- Border rank
- Identifiability
(5) References

Flattenings

A tensor \mathcal{A} of order d lives in the tensor product of d vector spaces:

$$
\mathcal{A} \in \mathbb{F}^{n_{1}} \otimes \mathbb{F}^{n_{2}} \otimes \cdots \otimes \mathbb{F}^{n_{d}} \simeq \mathbb{F}^{n_{1} \times n_{2} \times \cdots \times n_{d}}
$$

A $3^{\text {rd }}$ order tensor has 3 associated vector spaces:

Formally, a flattening is the linear map induced via the universal property of the multilinear map

$$
\begin{aligned}
\cdot(\pi ; \tau): V_{1} \times \cdots \times V_{d} & \rightarrow\left(V_{\pi_{1}} \otimes \cdots \otimes V_{\pi_{k}}\right) \otimes\left(V_{\tau_{1}} \otimes \cdots \otimes V_{\tau_{d-k}}\right) \\
\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{d}\right) & \mapsto\left(\mathbf{a}_{\pi_{1}} \otimes \cdots \otimes \mathbf{a}_{\pi_{k}}\right)\left(\mathbf{a}_{\tau_{1}} \otimes \cdots \otimes \mathbf{a}_{\tau_{d-k}}\right)^{T}
\end{aligned}
$$

It is common to use the following shorthand notations in the literature:

$$
\mathcal{A}_{(k)}:=\mathcal{A}_{(k ; 1, \ldots, k-1, k+1, \ldots, d)} \text { and } \operatorname{vec}(\mathcal{A}):=\mathcal{A}_{(1, \ldots, d ; \emptyset)} .
$$

Be aware that some authors still define $\mathcal{A}_{(k)}=\mathcal{A}_{(k ; k+1, \ldots, d, 1, \ldots, k-1)}$.

For example, if $\mathcal{A}=\sum_{i=1}^{r} \mathbf{a}_{i} \otimes \mathbf{b}_{i} \otimes \mathbf{c}_{i}$ then

$$
\mathcal{A}_{(2)}=\sum_{i=1}^{r} \mathbf{b}_{i}\left(\mathbf{a}_{i} \otimes \mathbf{c}_{i}\right)^{T}
$$

Flattenings can be implemented on a computer for tensors expressed in coordinates simply by rearranging the elements in the d-array of size $n_{1} \times \cdots \times n_{d}$ to form a 2-array of size $n_{\pi_{1}} \cdots n_{\pi_{k}} \times n_{\tau_{1}} \cdots n_{\tau_{d-k}}$.

In fact, all flattenings $\mathcal{A}_{(1, \ldots, k ; k+1, \ldots, d)}$ in which the order of the factors is not changed can be implemented on a computer with 0 computational cost (time and memory).

Multilinear multiplication

As mentioned in the first lecture, multilinear multiplication is synonymous with the tensor product of linear maps
$A_{i}: V_{i} \rightarrow W_{i}$, where V_{i}, W_{i} are finite-dimensional vector spaces.
This is the unique linear map from $V_{1} \otimes \cdots \otimes V_{d}$ to $W_{1} \otimes \cdots \otimes W_{d}$ induced by the universal property by the multilinear map

$$
\begin{aligned}
V_{1} \times \cdots \times V_{d} & \rightarrow W_{1} \otimes \cdots \otimes W_{d} \\
\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{d}\right) & \mapsto\left(A_{1} \mathbf{v}_{1}\right) \otimes \cdots \otimes\left(A_{d} \mathbf{v}_{d}\right)
\end{aligned}
$$

The induced linear map is $A_{1} \otimes \cdots \otimes A_{d}$.

The notation

$$
\left(A_{1}, \ldots, A_{d}\right) \cdot \mathcal{A}:=\left(A_{1} \otimes \cdots \otimes A_{d}\right)(\mathscr{A})
$$

is commonly used in the literature, specifically when working in coordinates.

The shorthand notation

$$
A_{k} \cdot k \mathcal{A}:=\left(\mathrm{Id}, \ldots, \mathrm{Id}, A_{k}, \mathrm{Id}, \ldots, \mathrm{Id}\right) \cdot \mathcal{A}
$$

is also used in the literature.

By definition, the action on rank- 1 tensor is

$$
\left(A_{1} \otimes \cdots \otimes A_{d}\right)\left(\mathbf{v}_{1} \otimes \cdots \otimes \mathbf{v}_{d}\right)=\left(A_{1} \mathbf{v}_{1}\right) \otimes \cdots \otimes\left(A_{d} \mathbf{v}_{d}\right)
$$

The composition of multilinear multiplications behaves like
$\left(A_{1} \otimes \cdots \otimes A_{d}\right)\left(\left(B_{1} \otimes \cdots \otimes B_{d}\right)(\mathcal{A})\right)=\left(\left(A_{1} B_{1}\right) \otimes \cdots \otimes\left(A_{d} B_{d}\right)\right)(\mathcal{A})$,
which follows immediately from the definition.

Practically, multilinear multiplications are often computed by exploiting
$\left[\left(A_{1}, \ldots, A_{d}\right) \cdot \mathcal{A}\right]_{(k)}=A_{k} \mathcal{A}_{(k)}\left(A_{1} \otimes \cdots \otimes A_{k-1} \otimes A_{k+1} \otimes \cdots \otimes A_{d}\right)^{T}$

Overview

(1) Introduction

2 Basic tensor operations

(3) Tucker decomposition

- Multilinear rank
- Higher-order singular value decomposition
- Numerical issues
- Truncation algorithms
(4) Tensor rank decomposition
- Rank
- Border rank
- Identifiability
(5) References

Overview

(1) Introduction

2 Basic tensor operations
(3) Tucker decomposition

- Multilinear rank
- Higher-order singular value decomposition
- Numerical issues
- Truncation algorithms
(4) Tensor rank decomposition
- Rank
- Border rank
- Identifiability
(5) References

Multilinear rank

Assume that \mathcal{A} lives in a separable tensor subspace

$$
\mathcal{A} \in W_{1} \otimes W_{2} \otimes \cdots \otimes W_{d} \subset \mathbb{F}^{n_{1}} \otimes \mathbb{F}^{n_{2}} \otimes \cdots \otimes \mathbb{F}^{n_{d}} .
$$

Since the mode- k flattening

$$
\mathcal{A}_{(k)} \in W_{k} \otimes\left(W_{1} \otimes \cdots \otimes W_{k-1} \otimes W_{k+1} \otimes \cdots \otimes W_{d}\right)^{*}
$$

which is a subspace of the $n_{k} \times\left(n_{1} \cdots n_{k-1} n_{k+1} \cdots n_{d}\right)$ matrices, it follows that the column span

$$
\operatorname{span}\left(\mathcal{A}_{(k)}\right) \subset W_{k} .
$$

In fact, the smallest separable tensor subspace that \mathcal{A} lives in is $W_{1} \otimes \cdots \otimes W_{d}$ with

$$
W_{k}:=\operatorname{span}\left(\mathcal{A}_{(k)}\right)
$$

The dimension of this subspace is

$$
r_{k}:=\operatorname{dim} W_{k}=\operatorname{dim} \operatorname{span}\left(\mathcal{A}_{(k)}\right)=\operatorname{rank}\left(\mathcal{A}_{(k)}\right) .
$$

Definition (Hitchcock, 1928)

The multilinear rank of \mathcal{A} is the tuple containing the dimensions of the minimal subspaces that the standard flattenings of \mathcal{A} live in:

$$
\operatorname{mlrank}(\mathcal{A}):=\left(r_{1}, r_{2}, \ldots, r_{d}\right)
$$

In the case $A \in W_{1} \otimes W_{2} \subset \mathbb{F}^{n_{1} \times n_{2}}$ is a matrix, the multilinear rank is, by definition,

$$
\begin{aligned}
\operatorname{mlrank}(A)=\left(\operatorname{dim} W_{1}, \operatorname{dim} W_{2}\right) & =\left(\operatorname{rank}\left(A_{(1)}\right), \operatorname{rank}\left(A_{(2)}\right)\right) \\
& =\left(\operatorname{rank}(A), \operatorname{rank}\left(A^{T}\right)\right)
\end{aligned}
$$

In the matrix case, we attach special names to W_{1} and W_{2} :

- W_{1} is the column space or range, and
- W_{2} is the row space.

The fundamental theorem of linear algebra states that $\operatorname{dim} W_{1}=\operatorname{dim} W_{2}$. Therefore,

$$
\operatorname{mlrank}(A)=\left(\operatorname{dim} W_{1}, \operatorname{dim} W_{2}\right)=(r, r) .
$$

Consequently, not all tuples are feasible multilinear ranks!

Proposition (Carlini and Kleppe, 2011)

Let $\mathcal{A} \in \mathbb{F}^{n_{1} \times \cdots \times n_{d}}$ with multilinear rank $\left(r_{1}, \ldots, r_{d}\right)$. Then, for all $k=1, \ldots, d$ we have

$$
r_{k} \leq \prod_{j \neq k} r_{j} .
$$

The proof is left as an exercise.

Connection to algebraic geometry

The set of tensors of bounded multilinear rank

$$
M_{r_{1}, \ldots, r_{d}}:=\left\{\mathcal{A} \in \mathbb{F}^{n_{1} \times \cdots \times n_{d}} \mid \operatorname{mlrank}(\mathcal{A}) \leq\left(r_{1}, \ldots, r_{d}\right)\right\}
$$

is easily seen to be an algebraic variety, i.e., the solution set of a system of polynomial equations, because it is the intersection of the determinantal varieties

$$
M_{r_{k}}:=\left\{\mathcal{A} \in \mathbb{F}^{n_{1} \times \cdots \times n_{d}} \mid \operatorname{rank}\left(\mathcal{A}_{(k)}\right) \leq r_{k}\right\}
$$

for $k=1, \ldots, d$.

Overview

(1) Introduction

2 Basic tensor operations
(3) Tucker decomposition

- Multilinear rank
- Higher-order singular value decomposition
- Numerical issues
- Truncation algorithms
(a) Tensor rank decomposition
- Rank
- Border rank
- IdentifiabilityReferences

Higher-order singular value decomposition

If $\mathfrak{A} \in \mathbb{F}^{n_{1} \times \cdots \times n_{d}}$ lives in a separable tensor subspace $V_{1} \otimes \cdots \otimes V_{d}$ with $r_{k}:=\operatorname{dim} V_{k}$, then there exist bases

$$
A_{k}=\left[\mathbf{a}_{j}^{k}\right]_{j=1}^{r_{k}} \in \mathbb{F}^{n_{k} \times r_{k}} \text { for } V_{k} \subset \mathbb{F}^{n_{k}}
$$

such that

$$
\mathcal{A}=\sum_{i_{1}=1}^{r_{1}} \cdots \sum_{i_{d}=1}^{r_{d}} c_{i_{1}, \ldots, i_{d}} \mathbf{a}_{i_{1}}^{1} \otimes \cdots \otimes \mathbf{a}_{i_{d}}^{d}=:\left(A_{1}, A_{2}, \ldots, A_{d}\right) \cdot \mathcal{C}
$$

for some $C \in \mathbb{F}^{r_{1} \times r_{2} \times \cdots \times r_{d}}$.

This is equivalent to stating that

$$
\operatorname{mlrank}(\mathcal{A})=\left(r_{1}, r_{2}, \ldots, r_{d}\right)
$$

Recall that the Moore-Penrose pseudoinverse of matrix $A \in \mathbb{F}^{m \times n}$ of rank n is given by

$$
A^{\dagger}=\left(A^{H} A\right)^{-1} A^{H}
$$

Then, the coefficients \mathcal{C} of \mathcal{A} with respect to the basis $A_{1} \otimes \cdots \otimes A_{d}$ satisfy

$$
\mathcal{A}=\left(A_{1}, A_{2}, \ldots, A_{d}\right) \cdot \mathcal{C}
$$

so that

$$
\begin{aligned}
\left(A_{1}^{\dagger}, A_{2}^{\dagger}, \ldots, A_{d}^{\dagger}\right) \cdot \mathcal{A} & =\left(A_{1}^{\dagger}, A_{2}^{\dagger}, \ldots, A_{d}^{\dagger}\right) \cdot\left(A_{1}, A_{2}, \ldots, A_{d}\right) \cdot \mathcal{C} \\
& =\left(A_{1}^{\dagger} A_{1}, A_{2}^{\dagger} A_{2}, \ldots, A_{d}^{\dagger} A_{d}\right) \cdot \mathcal{C} \\
& =\mathcal{C} .
\end{aligned}
$$

In other words, if we know that \mathcal{A} lives in $V_{1} \otimes \cdots \otimes V_{d}$, and we have chosen some bases A_{k} of V_{k}, then the coefficients (also called core tensor) are given by $\mathcal{C}=\left(A_{1}^{\dagger}, A_{2}^{\dagger}, \ldots, A_{d}^{\dagger}\right) \cdot \mathcal{A}$.

The factorization

$$
\mathcal{A}=\left(A_{1}, \ldots, A_{d}\right) \cdot \mathcal{C}
$$

reveals the separable subspace $V=V_{1} \otimes \cdots \otimes V_{d}$ that tensor \mathcal{A} lives in, as A_{k} provides a basis of V_{k} from which a tensor product basis of V can be constructed. The factorization is called a (rank-revealing) Tucker decomposition of \mathcal{A} in honor of L. Tucker (1963).

The higher-order singular value decomposition (HOSVD), popularized by De Lathauwer, De Moor, and Vandewalle (2000) but already introduced by Tucker (1966), is a particular strategy for choosing orthonormal bases A_{k}.

The HOSVD chooses as orthonormal basis for V_{k} the left singular vectors of $\mathcal{A}_{(k)}$. That is, let the thin SVD of $\mathcal{A}_{(k)}$ be

$$
\mathcal{A}_{(k)}=U_{k} \Sigma_{k} Q_{k}^{H}
$$

Then, the HOSVD orthogonal basis for V_{k} is given by U_{k}.

An advantage of choosing orthonormal bases A_{k}, beyond improved numerical stability, is that the Moore-Penrose inverse reduces to

$$
U_{k}^{\dagger}=\left(U_{k}^{H} U_{k}\right)^{-1} U_{k}^{H}=U_{k}^{H},
$$

so that

$$
\begin{aligned}
\mathcal{A} & =\left(U_{1}, U_{2}, \ldots, U_{d}\right) \cdot\left(\left(U_{1}, U_{2}, \ldots, U_{d}\right)^{H} \cdot \mathcal{A}\right) \\
& =\left(U_{1} U_{1}^{H}, U_{2} U_{2}^{H}, \ldots, U_{d} U_{d}^{H}\right) \cdot \mathcal{A} \\
& =\bar{\pi}_{1} \bar{\pi}_{2} \cdots \bar{\pi}_{d} \mathcal{A}
\end{aligned}
$$

where

$$
\bar{\pi}_{k} \mathcal{A}:=\left(U_{k} U_{k}^{H}\right) \cdot k \mathcal{A}
$$

is the HOSVD mode- k orthogonal projection.

The coefficients d-array

$$
\mathcal{S}=\left(U_{1}, U_{2}, \ldots, U_{d}\right)^{H} \cdot \mathcal{A}
$$

is called the core tensor.
The orthogonal basis of $V_{1} \otimes \cdots \otimes V_{d}$,

$$
U_{1} \otimes U_{2} \otimes \cdots \otimes U_{d}:=\left[\mathbf{u}_{i_{1}}^{1} \otimes \cdots \otimes \mathbf{u}_{i_{d}}^{d} r_{i_{1}, \ldots, i_{d}=1}^{r_{1}, \ldots, r_{d}}\right.
$$

is called the HOSVD basis.
By definition of the thin SVD, we have

$$
r_{k}=\operatorname{dim} V_{k}=\operatorname{rank}\left(U_{k}\right)
$$

and so $U_{k} \in \mathbb{F}^{n_{k} \times r_{k}}$.

Algorithm 1: HOSVD Algorithm

input : A tensor $\mathcal{A} \in \mathbb{F}^{n_{1} \times n_{2} \times \cdots \times n_{d}}$
output: The components $\left(U_{1}, U_{2}, \ldots, U_{d}\right)$ of the HOSVD basis
output: Coefficients array $S \in \mathbb{F}^{r_{1} \times r_{2} \times \cdots \times r_{d}}$
for $k=1,2, \ldots, d$ do
Compute the compact SVD $\mathcal{A}_{(k)}=U_{k} \Sigma_{k} Q_{k}^{H}$;
end
$\mathcal{S} \leftarrow\left(U_{1}^{H}, U_{2}^{H}, \ldots, U_{d}^{H}\right) \cdot \mathscr{A} ;$

The HOSVD provides a natural data sparse representation of tensors \mathcal{A} living in a separable subspace.

If $\mathcal{A} \in \mathbb{F}^{n_{1} \times n_{2} \times \cdots \times n_{d}}$ has multilinear rank $\left(r_{1}, r_{2}, \ldots, r_{d}\right)$, then it can be represented exactly via the HOSVD as

$$
\mathcal{A}=\left(U_{1}, U_{2}, \ldots, U_{d}\right) \cdot \mathcal{S}
$$

using only

$$
\prod_{k=1}^{d} r_{k}+\sum_{k=1}^{d} n_{k} r_{k}
$$

storage (for \mathcal{S} and the U_{i}).

Computing and decomposing tensors: Decomposition basics
Tucker decomposition
Numerical issues

Overview

(1) Introduction

2 Basic tensor operations
(3) Tucker decomposition

- Multilinear rank
- Higher-order singular value decomposition
- Numerical issues
- Truncation algorithms

4 Tensor rank decomposition

- Rank
- Border rank
- Identifiability
(3) References

Numerical issues

Consider the mathematically simple task of computing the multilinear rank of a tensor \mathcal{A}. For example, r_{k} equals the number of nonzero singular values of $\mathcal{A}_{(k)}$.

Let us take the rank-1 tensor

$$
\mathcal{A}=\left[\begin{array}{cc||cc}
1 & \sqrt{2} & \sqrt{2} & 2 \\
\sqrt{2} & 2 & 2 & 2 \sqrt{2}
\end{array}\right]=\mathbf{v} \otimes \mathbf{v} \otimes \mathbf{v}, \quad \text { where } \mathbf{v}=\left[\begin{array}{c}
1 \\
\sqrt{2}
\end{array}\right] .
$$

Its 1-flattening is

$$
\mathcal{A}_{(1)}=\mathbf{v}(\mathbf{v} \otimes \mathbf{v})^{T}=\left[\begin{array}{cccc}
1 & \sqrt{2} & \sqrt{2} & 2 \\
\sqrt{2} & 2 & 2 & 2 \sqrt{2}
\end{array}\right] .
$$

Computing the singular values of $\mathcal{A}_{(1)}$ in Matlab R2017b, we get the next result:

```
>> svd([[1 sqrt(2) sqrt(2) 2];[sqrt(2) 2 2 2*sqrt(2)]])
ans =
    5.196152422706632e+00
    1.805984985273179e-16
```

Both singular values are nonzero, so the computed rank is 2 !

However, the rank of $\mathcal{A}_{(1)}$ is 1 , so what have we computed? Can we make sense of this result?

There are two sources of error that entered our computation:
(1) representation errors, and
(2) computation errors.

The representation error is incurred because $\mathcal{A}_{(1)}$ cannot be represented with (IEEE double-precision) floating-point numbers; indeed, $\sqrt{2} \notin \mathbb{Q}$.

Nevertheless, the numerical representation of $\mathcal{A}_{(1)}$ is very close to the latter. By the properties of floating-point arithmetic, we have

$$
\left\|\mathcal{A}_{(1)}-\mathrm{fl}\left(\mathcal{A}_{(1)}\right)\right\|_{F}^{2} \leq 3(\sqrt{2} \delta)^{2}+((2 \sqrt{2}) \delta)^{2}=14 \delta^{2}
$$

where $\delta \approx 1.1 \cdot 10^{-16}$ is the unit roundoff.

The computation error arises in the computation of the singular values of the matrix with floating-point elements. The magnitude of this error strongly depends on the algorithm. Numerically "stable" algorithms will only introduce "small" errors.

Matlab's svd likely implements an algorithm satisfying ${ }^{1}$

$$
\left|\widetilde{\sigma}_{k}(\widetilde{A})-\sigma_{k}(\widetilde{A}+E)\right| \leq p(m, n) \cdot \sigma_{1}(\widetilde{A}+E) \cdot \delta
$$

with

$$
\|E\|_{2} \leq p(m, n) \cdot \sigma_{1}(\widetilde{A}) \cdot \delta
$$

where $\sigma_{k}(A)$ is the k th exact singular value of the matrix A and $\tilde{\sigma}_{k}(A)$ is the numerically obtained k th singular value, and $p(m, n)$ is a "modest growth factor."

[^0]For brevity, write $A:=\mathcal{A}_{(1)}$ and $\widetilde{A}:=f 1\left(\mathcal{A}_{(1)}\right)$.
Even in light of these representation and computation errors, we can extract useful information from our result by using the error bounds and Weyl's perturbation lemma:

$$
\left|\sigma_{k}(X)-\sigma_{k}(X+Y)\right| \leq\|Y\|_{2} .
$$

We have

$$
\begin{aligned}
\left|\sigma_{k}(A)-\widetilde{\sigma}_{k}(\widetilde{A})\right| & =\left|\sigma_{k}(A)-\sigma_{k}(\widetilde{A})+\sigma_{k}(\widetilde{A})-\widetilde{\sigma}_{k}(\widetilde{A})\right| \\
& \leq \sqrt{14} \delta+\left|\sigma_{k}(\widetilde{A})-\widetilde{\sigma}_{k}(\widetilde{A})\right| \\
& =\sqrt{14} \delta+\left|\sigma_{k}(\widetilde{A})-\sigma_{k}(\widetilde{A}+E)+\sigma_{k}(\widetilde{A}+E)-\widetilde{\sigma}_{k}(\widetilde{A})\right| \\
& \leq\left(p(m, n) \sigma_{1}(\widetilde{A})+\sqrt{14}\right) \delta+\left|\sigma_{k}(\widetilde{A}+E)-\widetilde{\sigma}_{k}(\widetilde{A})\right| \\
& \leq\left(4 p(m, n) \widetilde{\sigma}_{1}(\widetilde{A})+\sqrt{14}\right) \delta,
\end{aligned}
$$

assuming $p(m, n) \max \left\{\sigma_{1}(\widetilde{A}+E), \sigma_{1}(\widetilde{A})\right\} \leq 2$.

Applying this to our case, and assuming that $p(m, n) \leq 10(m+n)$, we find

$$
\begin{aligned}
\left|\sigma_{1}\left(\mathcal{A}_{(1)}\right)-5.196152422706632\right| & \leq 1.517 \cdot 10^{-13} \\
\left|\sigma_{2}\left(\mathcal{A}_{(1)}\right)-1.805984985273179 \cdot 10^{-16}\right| & \leq 1.517 \cdot 10^{-13}
\end{aligned}
$$

hence, $\sigma_{1}\left(\mathcal{A}_{(1)}\right) \neq 0$, but based on our error bounds we cannot exclude that $\sigma_{2}\left(\mathcal{A}_{(1)}\right)$ might be 0 .

We thus conclude that $r_{1} \geq 1$ and that the distance of $\mathcal{A}_{(1)}$ to the locus of rank- 1 matrices is at most about $1.517 \cdot 10^{-13}$.

Overview

(1) Introduction

2 Basic tensor operations
(3) Tucker decomposition

- Multilinear rank
- Higher-order singular value decomposition
- Numerical issues
- Truncation algorithms

4. Tensor rank decomposition

- Rank
- Border rank
- Identifiability
(5) References

Truncation algorithms

It is uncommon to encounter tensors $\mathcal{A} \in \mathbb{F}^{n_{1} \times n_{2} \times \cdots \times n_{d}}$ with a multilinear rank that is exactly smaller than $\left(n_{1}, n_{2}, \ldots, n_{d}\right)$ because of numerical errors. However, tensors \mathcal{A} can often lie close to a separable subspace $V_{1} \otimes V_{2} \otimes \cdots \otimes V_{d}$. This leads naturally to

The low multilinear rank approximation (LMLRA) problem

Given $\mathcal{A} \in \mathbb{F}^{n_{1} \times \cdots \times n_{d}}$ and a target multilinear rank $\left(r_{1}, \ldots, r_{d}\right)$, find a minimizer of

$$
\min _{\operatorname{mlrank}(\mathcal{B}) \leq\left(r_{1}, \ldots, r_{d}\right)}\|\mathcal{A}-\mathcal{B}\|_{F}
$$

In other words, find the separable subspace $V_{1} \otimes \cdots \otimes V_{d}$ with $\operatorname{dim} V_{k}=r_{k}$ that is closest to \mathcal{A}.

Since $\operatorname{mlrank}(\mathcal{B})=\left(r_{1}, \ldots, r_{d}\right)$ is equivalent to the existence of a separable subspace $V_{1} \otimes \cdots \otimes V_{d}$ in which \mathcal{B} lives, we can write

$$
\mathcal{B}=\left(U_{1}, U_{2}, \ldots, U_{d}\right) \cdot \mathcal{S}
$$

where $U_{k} \in \mathbb{F}^{n_{k} \times r_{k}}$ can be chosen orthonormal by the existence of the HOSVD.

So graphically we want to approximate \mathcal{A} by

$$
\mathcal{A} \approx\left(U_{1}, U_{2}, U_{3}\right) \cdot S
$$

After choosing the separable subspace, the optimal approximation is the orthogonal projection onto this subspace. Hence, the LMLRA problem is equivalent to

$$
\min _{U_{k} \in \mathrm{St}_{n_{k}, r_{k}}}\left\|\mathcal{A}-\mathrm{P}_{\left\langle U_{1} \otimes \cdots \otimes U_{d}\right\rangle} \mathcal{A}\right\|_{F}
$$

where $\langle U\rangle$ denotes the linear subspace spanned by the basis U, and $\mathrm{St}_{m, n}$ is the Stiefel manifold of $m \times n$ matrices with orthonormal columns.

Proposition (V, Vandebril, and Meerbergen, 2012)

Let $U_{1} \otimes \cdots \otimes U_{d}$ be a tensor basis of the separable subspace $V=V_{1} \otimes \cdots \otimes V_{d}$. Then, the approximation error

$$
\left\|\mathcal{A}-\mathrm{P}_{V \mathcal{A}}\right\|_{F}^{2}=\sum_{k=1}^{d}\left\|\pi_{p_{k-1}} \cdots \pi_{p_{1}} \mathcal{A}-\pi_{p_{k}} \pi_{p_{k-1}} \cdots \pi_{p_{1}} \mathcal{A}\right\|_{F}^{2},
$$

where $\pi_{j} \mathcal{A}=\left(U_{j} U_{j}^{H}\right) \cdot{ }_{j} \mathcal{A}$ and \mathbf{p} is any permutation of $\{1,2, \ldots, d\}$.

The proof is left as an exercise.

Note that $\mathcal{A}-\pi_{j} \mathcal{A}=\left(I-U_{j} U_{j}^{H}\right) \cdot_{j} \mathcal{A}$ is also a projection, which we denote by

$$
\pi_{j}^{\perp} \mathcal{A}:=\left(I-U_{j} U_{j}^{H}\right) \cdot{ }_{j} \mathcal{A} .
$$

We may intuitively understand the proposition as follows. If

$$
\mathcal{A} \approx \hat{\mathcal{A}}:=\pi_{1} \pi_{2} \pi_{3} \mathcal{A}=\left(U_{1} U_{1}^{H}, U_{2} U_{2}^{H}, U_{3} U_{3}^{H}\right) \cdot \mathcal{A}
$$

then an error expression is

Since orthogonal projections only decrease unitarily invariant norms, we also get the following corollary.

Corollary

Let $U_{1} \otimes \cdots \otimes U_{d}$ be a tensor basis of the separable subspace $V=V_{1} \otimes \cdots \otimes V_{d}$. Then, the approximation error satisfies

$$
\left\|\mathcal{A}-\mathrm{P}_{V \mathcal{A}}\right\|_{F}^{2} \leq \sum_{k=1}^{d}\left\|\pi_{k}^{\perp} \mathcal{A}\right\|_{F}^{2}
$$

where $\pi_{j} \mathcal{A}=\left(U_{j} U_{j}^{H}\right) \cdot{ }_{j} \mathcal{A}$.

We may intuitively understand this corollary as follows. If

$$
\mathcal{A} \approx \hat{\mathcal{A}}:=\pi_{1} \pi_{2} \pi_{3} \mathcal{A}=\left(U_{1} U_{1}^{H}, U_{2} U_{2}^{H}, U_{3} U_{3}^{H}\right) \cdot \mathcal{A}
$$

then an upper bound is

A closed solution of the LMLRA problem

$$
\min _{U_{k} \in \mathrm{St}_{n_{k}, r_{k}}}\left\|\mathcal{A}-\mathrm{P}_{\left\langle U_{1} \otimes \cdots \otimes U_{d}\right\rangle} \mathcal{A}\right\|_{F}
$$

is not known.

However, we can use foregoing error expressions for choosing good, even quasi-optimal, separable subspaces to project onto.

T-HOSVD

The idea of the truncated HOSVD (T-HOSVD) is minimizing the upper bound on the error:

If the upper bound is small, then evidently the error is also small.

Minimizing the upper bound results in

$$
\begin{aligned}
\min _{\pi_{1}, \ldots, \pi_{d}}\left\|\mathcal{A}-\pi_{1} \cdots \pi_{d} \mathcal{A}\right\|_{F}^{2} & \leq \min _{\pi_{1}, \ldots, \pi_{d}} \sum_{k=1}^{d}\left\|\pi_{k}^{\perp} \mathcal{A}\right\|_{F}^{2} \\
& =\sum_{k=1}^{d} \min _{\pi_{k}}\left\|\pi_{k}^{\perp} \mathcal{A}\right\|_{F}^{2} \\
& =\sum_{k=1}^{d} \min _{U_{k} \in \operatorname{St}_{n_{k}, r_{k}}}\left\|\mathcal{A}_{(k)}-U_{k} U_{k}^{H} \mathcal{A}_{(k)}\right\|_{F}^{2}
\end{aligned}
$$

This has a closed form solution, namely the optimal \bar{U}_{k} should contain the r_{k} dominant left singular vectors. That is, writing the compact SVD of $\mathcal{A}_{(k)}$ as

$$
\mathcal{A}_{(k)}=U_{k} \Sigma_{k} Q_{k}^{T}
$$

then \bar{U}_{k} contains the first r_{k} columns of U_{k}.

The resulting T-HOSVD algorithm is thus but a minor modification of the HOSVD algorithm.

Algorithm 2: T-HOSVD Algorithm
input : A tensor $\mathcal{A} \in \mathbb{F}^{n_{1} \times n_{2} \times \cdots \times n_{d}}$ input : A target multilinear rank $\left(r_{1}, r_{2}, \ldots, r_{d}\right)$.
output: The components $\left(\bar{U}_{1}, \bar{U}_{2}, \ldots, \bar{U}_{d}\right)$ of the T-HOSVD basis
output: Coefficients array $\overline{\mathcal{S}} \in \mathbb{F}^{r_{1} \times r_{2} \times \cdots \times r_{d}}$
for $k=1,2, \ldots, d$ do
Compute the compact SVD $\mathcal{A}_{(k)}=U_{k} \Sigma_{k} Q_{k}^{H}$; Let \bar{U}_{k} contain the first r_{k} columns of U_{k};
end
$\bar{S} \leftarrow\left(\bar{U}_{1}^{H}, \bar{U}_{2}^{H}, \ldots, \bar{U}_{d}^{H}\right) \cdot \mathcal{A} ;$

Assume that we truncate a tensor in $\mathbb{F}^{n \times \cdots \times n}$ to multilinear rank (r, \ldots, r). The computational complexity of standard T-HOSVD is

$$
\mathcal{O}\left(d n^{d+1}+\sum_{k=1}^{d} n^{d+1-k} r^{k}\right) \text { operations. }
$$

The resulting approximation is quasi-optimal.

Proposition (Hackbusch, 2012)

Let $\mathcal{A} \in \mathbb{F}^{n_{1} \times \cdots \times n_{d}}$, and let \mathscr{A}^{*} be the best rank- (r, \ldots, r) approximation to \mathcal{B}, i.e.,

$$
\left\|\mathcal{A}-\mathcal{A}^{*}\right\|_{F}=\min _{\operatorname{mlrank}(\mathcal{B}) \leq(r, \ldots, r)}\|\mathcal{A}-\mathcal{B}\|_{F} .
$$

Then, the rank- (r, \ldots, r) T-HOSVD approximation \mathcal{A}_{T} is a quasi best approximation:

$$
\left\|\mathcal{A}-\mathcal{A}_{T}\right\|_{F} \leq \sqrt{d}\left\|\mathcal{A}-\mathscr{A}^{*}\right\|_{F} .
$$

Truncation algorithms

ST-HOSVD

The idea of the sequentially truncated HOSVD (ST-HOSVD) is sequentially choosing projections with the aim of minimizing the error expression:

ST-HOSVD greedily minimizes the foregoing error expression. That is, it computes

$$
\begin{aligned}
\widehat{\pi}_{1}= & \arg \min _{\pi_{1}}\left\|\pi_{1}^{\perp} \mathcal{A}\right\|^{2} \\
\widehat{\pi}_{2}= & \arg \min _{\pi_{2}}\left\|\pi_{2}^{\perp} \widehat{\pi}_{1} \mathcal{A}\right\|^{2} \\
& \vdots \\
\widehat{\pi}_{d}= & \arg \min _{\pi_{d}}\left\|\pi_{d}^{\perp} \widehat{\pi}_{d-1} \cdots \widehat{\pi}_{2} \widehat{\pi}_{1} \mathcal{A}\right\|^{2}
\end{aligned}
$$

In practice, $\min _{\pi_{k}}\left\|\pi_{k}^{\perp} \widehat{\pi}_{k-1} \cdots \widehat{\pi}_{1} \mathcal{A}\right\|_{F}$ is computed as follows. As $\widehat{\pi}_{j}$ are orthogonal projections, we can write them as

$$
\widehat{\pi}_{j} \mathcal{A}:=\left(\widehat{U}_{j} \widehat{U}_{j}^{H}\right) \cdot_{j} \mathcal{A}=\widehat{U}_{j} \cdot{ }_{j}\left(\widehat{U}_{j}^{H} \cdot j \mathcal{A}\right) .
$$

Therefore,

$$
\begin{aligned}
\min _{U_{k} \in \mathrm{St}_{n_{k}, r_{k}}} & \left\|U_{k} U_{k}^{H} \mathcal{A}_{(k)}\left(\widehat{U}_{1} \widehat{U}_{1}^{H} \otimes \cdots \otimes \widehat{U}_{k-1} \widehat{U}_{k-1}^{H} \otimes I \otimes \cdots \otimes I\right)^{T}\right\|_{F} \\
& =\min _{U_{k}}\left\|U_{k} U_{k}^{H} \mathcal{A}_{(k)}\left(\widehat{U}_{1}^{H} \otimes \cdots \otimes \widehat{U}_{k-1}^{H} \otimes I \otimes \cdots \otimes I\right)^{T}\right\|_{F} \\
& =\min _{U_{k}}\left\|U_{k} U_{k}^{H} S_{(k)}^{k-1}\right\|_{F},
\end{aligned}
$$

where we define

$$
S^{k-1}:=\left(\widehat{U}_{1}, \ldots, \widehat{U}_{k-1}, I, \ldots, I\right)^{H} \cdot \mathcal{A}=\widehat{U}_{k-1}^{H} \cdot{ }_{k-1} S^{k-2}
$$

Recall that the solution of $\min _{U_{k}}\left\|U_{k} U_{k}^{H} S_{(k)}^{k-1}\right\|_{F}$ is given by the rank- r_{k} truncated SVD of $S_{(k)}^{k-1}$.

Visually, here's what happens for a third-order tensor.

$$
S_{(1)}^{1}=\widehat{U}_{1}^{H} S_{(1)}^{0}
$$

$$
S_{(2)}^{2}=\widehat{U}_{2}^{H} S_{(2)}^{1}
$$

$$
S_{(3)}^{3}=\widehat{U}_{3}^{H} S_{(3)}^{2}
$$

The resulting ST-HOSVD algorithm is thus but a minor modification of the T-HOSVD algorithm.

Algorithm 3: ST-HOSVD Algorithm
input : A tensor $\mathcal{A} \in \mathbb{F}^{n_{1} \times n_{2} \times \cdots \times n_{d}}$ input : A target multilinear rank $\left(r_{1}, r_{2}, \ldots, r_{d}\right)$.
output: The components ($\widehat{U}_{1}, \widehat{U}_{2}, \ldots, \widehat{U}_{d}$) of the ST-HOSVD basis output: Coefficients array $\widehat{\mathcal{S}} \in \mathbb{F}^{r_{1} \times r_{2} \times \cdots \times r_{d}}$
$\widehat{\mathcal{S}} \leftarrow \widehat{\mathcal{A}} ;$
for $k=1,2, \ldots, d$ do
Compute the compact SVD $S_{(k)}=U_{k} \Sigma_{k} Q_{k}^{H}$; Let \widehat{U}_{k} contain the first r_{k} columns of U_{k}; $\widehat{S} \leftarrow \widehat{U}_{k}^{H} \cdot{ }_{k} \widehat{S} ;$
end

Assume that we truncate a tensor in $\mathbb{F}^{n \times \cdots \times n}$ to multilinear rank (r, \ldots, r). The computational complexity of ST-HOSVD is

$$
\mathcal{O}\left(n^{d+1}+2 \sum_{k=1}^{d} n^{d+1-k} r^{k}\right) \text { operations, }
$$

which compares favorably versus T-HOSVD's

$$
\mathcal{O}\left(d n^{d+1}+\sum_{k=1}^{d} n^{d+1-k} r^{k}\right) \text { operations. }
$$

Note that much larger speedups are possible for uneven mode sizes $n_{1} \geq n_{2} \geq \cdots \geq n_{d} \geq 2$, as you will show in the problem sessions.

The resulting approximation is also quasi-optimal.

Proposition (Hackbusch, 2012)

Let $\mathcal{A} \in \mathbb{F}^{n_{1} \times \cdots \times n_{d}}$, and let \mathscr{A}^{*} be the best rank- (r, \ldots, r) approximation to \mathcal{A}, i.e.,

$$
\left\|\mathcal{A}-\mathcal{A}^{*}\right\|_{F}=\min _{\operatorname{mlrank}(\mathcal{B}) \leq(r, \ldots, r)}\|\mathcal{A}-\mathcal{B}\|_{F} .
$$

Then, the rank- (r, \ldots, r) ST-HOSVD approximation \mathcal{A}_{S} is a quasi best approximation:

$$
\left\|\mathcal{A}-\mathcal{A}_{S}\right\|_{F} \leq \sqrt{d}\left\|\mathcal{A}-\mathcal{A}^{*}\right\|_{F} .
$$

Overview

(1) Introduction

- Basic tensor operations
(3) Tucker decomposition
- Multilinear rank
- Higher-order singular value decomposition
- Numerical issues
- Truncation algorithms

4. Tensor rank decomposition

- Rank
- Border rank
- Identifiability
(5) References

Tensor rank decomposition
Rank

Overview

(1) Introduction

- Basic tensor operations
(3) Tucker decomposition
- Multilinear rank
- Higher-order singular value decomposition
- Numerical issues
- Truncation algorithms

4. Tensor rank decomposition

- Rank
- Border rank
- Identifiability
(3) References

Tensor rank

The tensor rank decomposition (CPD) expresses a tensor $\mathcal{A} \in V_{1} \otimes \cdots \otimes V_{d}$ as a minimum-length linear combination of rank-1 tensors:

$$
\mathcal{A}=\sum_{i=1}^{r} \lambda_{i} \mathbf{a}_{i}^{1} \otimes \cdots \otimes \mathbf{a}_{i}^{d}, \text { where } \mathbf{a}_{i}^{k} \in V_{k} .
$$

Often the scalars λ_{i} are absorbed into the $\mathbf{a}_{i}^{k} \in V_{k}$.

The rank of \mathcal{A} is the length of any of its tensor rank decompositions.

Tensor rank is a considerably more difficult subject for $d \geq 3$ than the multilinear rank. For example,

- the maximum rank of a tensor space $\mathbb{F}^{n_{1}} \otimes \cdots \otimes \mathbb{F}^{n_{d}}$ is not known in general;
- the typical ranks of a tensor space $\mathbb{F}^{n_{1}} \otimes \cdots \otimes \mathbb{F}^{n_{d}}$, i.e., those ranks occurring on nonempty Euclidean-open subsets, are not known in general;
- the rank of a real tensor can decrease when taking a field extension, contrary to matrix and multilinear rank; and
- computing tensor rank is NP Hard.

Tensor rank is invariant under invertible multilinear multiplications with $A_{1} \otimes \cdots \otimes A_{d}$, where $A_{k}: V_{k} \rightarrow W_{k}$ are invertible linear maps.

Let $\mathcal{A}=\sum_{i=1}^{r} \mathbf{b}_{i}^{1} \otimes \cdots \otimes \mathbf{b}_{i}^{d}$. Since

$$
\left(A_{1}, \ldots, A_{d}\right) \cdot \mathcal{A}=\sum_{i=1}^{r}\left(A_{1} \mathbf{b}_{i}^{1}\right) \otimes \cdots \otimes\left(A_{d} \mathbf{b}_{i}^{d}\right)
$$

we have $\operatorname{rank}(\mathcal{A}) \leq \operatorname{rank}\left(\left(A_{1}, \ldots, A_{d}\right) \cdot \mathcal{A}\right)$. And so

$$
\begin{aligned}
\operatorname{rank}(\mathcal{A}) & \leq \operatorname{rank}\left(\left(A_{1}, \ldots, A_{d}\right) \cdot \mathcal{A}\right) \\
& \leq \operatorname{rank}\left(\left(A_{1}^{-1}, \ldots, A_{d}^{-1}\right) \cdot\left(\left(A_{1}, \ldots, A_{d}\right) \cdot \mathcal{A}\right)\right)=\operatorname{rank}(\mathscr{A})
\end{aligned}
$$

Tensor rank decomposition
Border rank

Overview

(1) Introduction
2. Basic tensor operations
(3) Tucker decomposition

- Multilinear rank
- Higher-order singular value decomposition
- Numerical issues
- Truncation algorithms

4. Tensor rank decomposition

- Rank
- Border rank
- Identifiability
(5) References

Border rank

Another issue with tensor rank is that the set

$$
S_{\leq r}:=\left\{\mathcal{A} \in \mathbb{F}^{n_{1} \times \cdots \times n_{d}} \mid \operatorname{rank}(\mathcal{A}) \leq r\right\}
$$

is not closed in general, i.e., $S_{\leq r} \neq \overline{S_{\leq r}}$.

For example, for any linearly independent $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$, we have

$$
\lim _{\epsilon \rightarrow 0}\left(\frac{1}{\epsilon}(\mathbf{x}+\epsilon \mathbf{y})^{\otimes 3}-\frac{1}{\epsilon} \mathbf{x}^{\otimes 3}\right)=\mathbf{y} \otimes \mathbf{x} \otimes \mathbf{x}+\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{x}+\mathbf{x} \otimes \mathbf{x} \otimes \mathbf{y}
$$

evidently, the tensors in the sequence have rank bounded by 2, but it can be shown that the limit has rank 3.

Connection to algebraic geometry

Consider the Euclidean closure of $S_{\leq r}$:

$$
\overline{S_{\leq r}}:=\left\{\lim _{\epsilon \rightarrow 0} \mathcal{A}_{\epsilon}, \text { where } \mathcal{A}_{\epsilon} \in S_{\leq r}\right\} .
$$

If $\mathcal{A} \in \overline{S_{\leq r}} \backslash \overline{S_{\leq r-1}}$, then we say that \mathcal{A} has border rank equal to r.

It turns out that for $\mathbb{F}=\mathbb{C}$, the Euclidean closure of $S_{\leq r}$ coincides with its closure in the Zariski topology. That is, $\overline{S_{\leq r}}$ is an algebraic, even projective, variety, i.e., the zero set of a system of homogeneous polynomial equations.

For $\mathbb{F}=\mathbb{R}$, both $S_{\leq r}$ and $\overline{S_{\leq r}}$ are semi-algebraic sets, i.e., the solution set of a system of polynomial equalities and inequalities.

Tensor rank decomposition Identifiability

Overview

(1) Introduction

2 Basic tensor operations
(3) Tucker decomposition

- Multilinear rank
- Higher-order singular value decomposition
- Numerical issues
- Truncation algorithms

4. Tensor rank decomposition

- Rank
- Border rank
- Identifiability
(5) References

Identifiability

A key property of the tensor rank decomposition is that the decomposition of \mathcal{A} as a sum of rank- 1 tensors \mathscr{A}_{i} is often unique.

We say that $\mathcal{A} \in \mathbb{F}^{n_{1} \times \cdots \times n_{d}}$ is r-identifiable if the set of rank- 1 tensors $\left\{\mathcal{A}_{1}, \ldots, \mathcal{A}_{r}\right\}$ whose sum is \mathcal{A}, i.e.,

$$
\mathcal{A}=\mathcal{A}_{1}+\cdots+\mathcal{A}_{r},
$$

is uniquely determined by \mathcal{A}.

Note that the components of a rank-1 tensor $\mathcal{A} \in \mathbb{F}^{n_{1}} \otimes \cdots \otimes \mathbb{F}^{n_{d}}$ are themselves also uniquely determined (in projective space) by \mathcal{A}. Precisely, the points

$$
\left[\mathbf{a}_{k}\right] \in \mathbb{P}\left(\mathbb{F}^{n_{k}}\right)
$$

are uniquely determined given $\mathcal{A}=\mathbf{a}_{1} \otimes \cdots \otimes \mathbf{a}_{d}$.

This r-identifiability is radically different from the matrix case $(d=2)$. Indeed, if $A \in \mathbb{F}^{m \times n}$ is a rank- r matrix, then

$$
A=U V^{T}=(U X)\left(X^{-1} V^{T}\right) \quad \text { for all } X \in \mathrm{GL}_{r}(\mathbb{F})
$$

For a generic choice of X, i.e., outside of some Zariski-closed set, $(U X)_{i} \neq \alpha \mathbf{u}_{\pi_{i}}$, so that the tensor rank decompositions are distinct.

Note that in the matrix case there is even a positive-dimensional family of distinct decompositions! (Can you prove this?)

A classic result on r-identifiability of CPDs is Kruskal's lemma, which relies on the notion of the Kruskal rank of a set of vectors.

Definition (Kruskal, 1977)

The Kruskal rank k_{V} of a set of vectors $V=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}\right\} \subset \mathbb{F}^{n}$ is the largest k integer such that every subset of k vectors of V is linearly independent.

For example,

- $\{\mathbf{v}, \mathbf{v}\}$ has Kruskal rank 1;
- $\{\mathbf{v}, \mathbf{w}, \mathbf{v}\}$ has Kruskal rank 1; and
- $\{\mathbf{v}, \mathbf{w}, \mathbf{v}+\mathbf{w}\}$ has Kruskal rank 2 if \mathbf{v} and \mathbf{w} are linearly independent.

Kruskal proved, among others, the following result.

Theorem (Kruskal, 1977)

Let $\mathcal{A}=\sum_{i=1}^{r} \mathbf{a}_{i}^{1} \otimes \mathbf{a}_{i}^{2} \otimes \mathbf{a}_{i}^{3}$ and $A_{k}:=\left[\mathbf{a}_{i}^{k}\right]_{i=1}^{r}$. If $k_{A_{1}}, k_{A_{2}}, k_{A_{3}}>1$ and

$$
r \leq \frac{1}{2}\left(k_{A_{1}}+k_{A_{2}}+k_{A_{3}}-2\right)
$$

then \mathcal{A} is r-identifiable.

The condition $k_{A_{1}}>1$ is necessary for $r \geq 2$ because otherwise $\mathcal{A} \in\langle\mathbf{v}\rangle \otimes \mathbb{F}^{n_{2}} \otimes \mathbb{F}^{n_{3}} \simeq \mathbb{F}^{n_{2} \times n_{3}}$, and likewise for the other factors.

Computing the Kruskal rank of r vectors in \mathbb{F}^{n} is very expensive, in general, as one needs to compute the ranks of all $\binom{r}{k}$ subsets of k vectors for $k=1, \ldots, \min \{r, n\}$. Computing one of these ranks already has a complexity of $n k^{2}$.

Notwithstanding this limitation, applying Kruskal's lemma is a popular technique for verifying that a tensor given as the sum of r rank-1 tensors has rank equal to r. Indeed, a rank- r tensor is never r^{\prime}-identifiable with $r^{\prime}>r$.

Kruskal's lemma can also be applied to higher-order tensors

$$
\mathcal{A} \in V_{1} \otimes \cdots \otimes V_{d}
$$

simply by grouping the factors:
$\mathcal{A} \in\left(V_{\pi_{1}} \otimes \cdots \otimes V_{\pi_{s}}\right) \otimes\left(V_{\pi_{s+1}} \otimes \cdots \otimes V_{\pi_{t}}\right) \otimes\left(V_{\pi_{t+1}} \otimes \cdots \otimes V_{\pi_{d}}\right)$
where $1 \leq s<t \leq d$ and π is a permutation of $\{1, \ldots, d\}$.

In other words, Kruskal's lemma is applied to the reshaped tensor (coordinate array).

While r-identifiability seems like a special property admitted by only few tensors, the phenomenon is very general. It is an open problem to prove the following conjecture:

Conjecture (Chiantini, Ottaviani, V, 2014)

Let $n_{1} \geq n_{2} \geq \cdots \geq n_{d} \geq 2, d \geq 3$. If $r<\frac{\prod_{k=1}^{d} n_{k}}{1+\sum_{k=1}^{d}\left(n_{k}-1\right)}$, then $\mathbb{F}^{n_{1}} \otimes \cdots \otimes \mathbb{F}^{n_{d}}$ is generically r-identifiable (there exists a proper Zariski-closed subset Z of $S_{\leq r}$ such that every $\mathcal{A} \in S_{\leq r} \backslash Z$ is r-identifiable), unless:
(1) $\left(n_{1}, n_{2}, n_{3}\right)=(4,4,3)$ and $r=5$;
(2) $\left(n_{1}, n_{2}, n_{3}\right)=(4,4,4)$ and $r=6$;
(3) $\left(n_{1}, n_{2}, n_{3}\right)=(6,6,3)$ and $r=8$;
(9) $\left(n_{1}, n_{2}, n_{3}, n_{4}\right)=(n, n, 2,2)$ and $r=2 n-1, n \geq 2$;
(3) $\left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}\right)=(2,2,2,2,2)$ and $r=5$; and
(6) $n_{1}>\prod_{k=2}^{d} n_{k}-\sum_{k=2}^{d}\left(n_{k}-1\right)=: c$ and $r \geq c$.

Overview

(1) Introduction

2 Basic tensor operations
(3) Tucker decomposition

- Multilinear rank
- Higher-order singular value decomposition
- Numerical issues
- Truncation algorithms
(4) Tensor rank decomposition
- Rank
- Border rank
- Identifiability
(5) References

References for basic tensor operations

- Greub, Multilinear Algebra, 2nd ed., Springer, 1978.
- de Silva, Lim, Tensor rank and the ill-posedness of the best low-rank approximation problem, SIAM Journal on Matrix Analysis and Applications, 2008.
- Kolda, Bader, Tensor decompositions and applications, SIAM Review, 2008.
- Landsberg, Tensors: Geometry and Applications, AMS, 2012.

References for Tucker decomposition

- Carlini, Kleppe, Ranks derived from multilinear maps, Journal of Pure and Applied Algebra, 2011.
- De Lathauwer, De Moor, Vandewalle, A multilinear singular value decomposition, SIAM Journal on Matrix Analysis and Applications, 2000.
- Hackbusch, Tensor Spaces and Numerical Tensor Calculus, Springer, 2012.
- Hitchcock, Multiple invariants and generalized rank of a P-way matrix or tensor, Journal of Mathematics and Physics, 1928.
- Tucker, Some mathematical notes on three-mode factor analysis, Psychometrika, 1966.
- Vannieuwenhoven, Vandebril, Meerbergen, A new truncation strategy for the higher-order singular value decomposition, SIAM Journal on Scientific Computing, 2012.

References for tensor rank decomposition

- Chiantini, Ottaviani, Vannieuwenhoven, An algorithm for generic and low-rank specific identifiability of complex tensors, SIAM Journal on Matrix Analysis, 2014.
- Chiantini, Ottaviani, Vannieuwenhoven, Effective criteria for specific identifiability of tensors and forms, SIAM Journal on Matrix Analysis, 2017.
- de Silva, Lim, Tensor rank and the ill-posedness of the best low-rank approximation problem, SIAM Journal on Matrix Analysis and Applications, 2008.
- Hitchcock, The expression of a polyadic or tensor as a sum of products, Journal of Mathematics and Physics, 1927.
- Kruskal, Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics, Linear Algebra and its Applications, 1977.
- Landsberg, Tensors: Geometry and Applications, AMS, 2012.

[^0]: ${ }^{1}$ See http://www.netlib.org/lapack/lug/node97.html.

