
Computing and

decomposing tensors

— Decomposition basics

Nick Vannieuwenhoven
(FWO / KU Leuven)

Computing and decomposing tensors: Decomposition basics

1 Introduction

2 Basic tensor operations

3 Tucker decomposition
Multilinear rank
Higher-order singular value decomposition
Numerical issues
Truncation algorithms

4 Tensor rank decomposition
Rank
Border rank
Identifiability

5 References

Computing and decomposing tensors: Decomposition basics

Introduction

Overview

1 Introduction

2 Basic tensor operations

3 Tucker decomposition
Multilinear rank
Higher-order singular value decomposition
Numerical issues
Truncation algorithms

4 Tensor rank decomposition
Rank
Border rank
Identifiability

5 References

Computing and decomposing tensors: Decomposition basics

Introduction

Multidimensional data appear in many applications:

image and signal processing;

pattern recognition, data mining and machine learning;

chemometrics;

biomedicine;

psychometrics; etc.

There are two major problems associated with this data:

1 Storage cost is very high, and

2 analysis and interpretation of patterns in data.

Tensor decompositions can identify and exploit useful
structures in the tensor that may not be apparent from its given
coordinate representation.

Computing and decomposing tensors: Decomposition basics

Introduction

Different decompositions have different strengths.

A Tucker decomposition

=

can reduce storage costs.

A tensor rank decomposition

= + + · · ·+

may uncover interpretable patterns.

Computing and decomposing tensors: Decomposition basics

Basic tensor operations

Overview

1 Introduction

2 Basic tensor operations

3 Tucker decomposition
Multilinear rank
Higher-order singular value decomposition
Numerical issues
Truncation algorithms

4 Tensor rank decomposition
Rank
Border rank
Identifiability

5 References

Computing and decomposing tensors: Decomposition basics

Basic tensor operations

Flattenings

A tensor A of order d lives in the tensor product of d vector spaces:

A ∈ Fn1 ⊗ Fn2 ⊗ · · · ⊗ Fnd ' Fn1×n2×···×nd

A 3rd order tensor has 3 associated vector spaces:

Mode-1 vectors
(Fn1)

Mode-2 vectors
(Fn2)

Mode-3 vectors
(Fn3)

Computing and decomposing tensors: Decomposition basics

Basic tensor operations

A =

A(2) =

∈ Fn1×n2×n3

∈ Fn2×n1n3

Mode-2 flattening

Computing and decomposing tensors: Decomposition basics

Basic tensor operations

Formally, a flattening is the linear map induced via the universal
property of the multilinear map

·(π;τ) : V1 × · · · × Vd → (Vπ1 ⊗ · · · ⊗ Vπk)⊗ (Vτ1 ⊗ · · · ⊗ Vτd−k
)

(a1, . . . , ad) 7→ (aπ1 ⊗ · · · ⊗ aπk)(aτ1 ⊗ · · · ⊗ aτd−k
)T

It is common to use the following shorthand notations in the
literature:

A(k) := A(k;1,...,k−1,k+1,...,d) and vec(A) := A(1,...,d ;∅).

Be aware that some authors still define A(k) = A(k;k+1,...,d ,1,...,k−1).

Computing and decomposing tensors: Decomposition basics

Basic tensor operations

For example, if A =
∑r

i=1 ai ⊗ bi ⊗ ci then

A(2) =
r∑

i=1

bi (ai ⊗ ci)
T .

Flattenings can be implemented on a computer for tensors
expressed in coordinates simply by rearranging the elements in
the d-array of size n1 × · · · × nd to form a 2-array of size
nπ1 · · · nπk × nτ1 · · · nτd−k

.

In fact, all flattenings A(1,...,k;k+1,...,d) in which the order of the
factors is not changed can be implemented on a computer with 0
computational cost (time and memory).

Computing and decomposing tensors: Decomposition basics

Basic tensor operations

Multilinear multiplication

As mentioned in the first lecture, multilinear multiplication is
synonymous with the tensor product of linear maps
Ai : Vi →Wi , where Vi ,Wi are finite-dimensional vector spaces.

This is the unique linear map from V1⊗ · · · ⊗Vd to W1⊗ · · · ⊗Wd

induced by the universal property by the multilinear map

V1 × · · · × Vd →W1 ⊗ · · · ⊗Wd ,

(v1, . . . , vd) 7→ (A1v1)⊗ · · · ⊗ (Advd).

The induced linear map is A1 ⊗ · · · ⊗ Ad .

Computing and decomposing tensors: Decomposition basics

Basic tensor operations

The notation

(A1, . . . ,Ad) · A := (A1 ⊗ · · · ⊗ Ad)(A)

is commonly used in the literature, specifically when working in
coordinates.

The shorthand notation

Ak ·k A := (Id, . . . , Id,Ak , Id, . . . , Id) · A

is also used in the literature.

Computing and decomposing tensors: Decomposition basics

Basic tensor operations

By definition, the action on rank-1 tensor is

(A1 ⊗ · · · ⊗ Ad)(v1 ⊗ · · · ⊗ vd) = (A1v1)⊗ · · · ⊗ (Advd).

The composition of multilinear multiplications behaves like

(A1⊗· · ·⊗Ad)
(
(B1⊗· · ·⊗Bd)(A)

)
=
(
(A1B1)⊗· · ·⊗(AdBd)

)
(A),

which follows immediately from the definition.

Practically, multilinear multiplications are often computed by
exploiting

[(A1, . . . ,Ad) ·A](k) = AkA(k)(A1⊗· · ·⊗Ak−1⊗Ak+1⊗· · ·⊗Ad)T

Computing and decomposing tensors: Decomposition basics

Tucker decomposition

Overview

1 Introduction

2 Basic tensor operations

3 Tucker decomposition
Multilinear rank
Higher-order singular value decomposition
Numerical issues
Truncation algorithms

4 Tensor rank decomposition
Rank
Border rank
Identifiability

5 References

Computing and decomposing tensors: Decomposition basics

Tucker decomposition

Multilinear rank

Overview

1 Introduction

2 Basic tensor operations

3 Tucker decomposition
Multilinear rank
Higher-order singular value decomposition
Numerical issues
Truncation algorithms

4 Tensor rank decomposition
Rank
Border rank
Identifiability

5 References

Computing and decomposing tensors: Decomposition basics

Tucker decomposition

Multilinear rank

Multilinear rank

Assume that A lives in a separable tensor subspace

A ∈W1 ⊗W2 ⊗ · · · ⊗Wd ⊂ Fn1 ⊗ Fn2 ⊗ · · · ⊗ Fnd .

Since the mode-k flattening

A(k) ∈Wk ⊗ (W1 ⊗ · · · ⊗Wk−1 ⊗Wk+1 ⊗ · · · ⊗Wd)∗,

which is a subspace of the nk × (n1 · · · nk−1nk+1 · · · nd) matrices,
it follows that the column span

span(A(k)) ⊂Wk .

Computing and decomposing tensors: Decomposition basics

Tucker decomposition

Multilinear rank

In fact, the smallest separable tensor subspace that A lives in is
W1 ⊗ · · · ⊗Wd with

Wk := span(A(k)).

The dimension of this subspace is

rk := dim Wk = dim span(A(k)) = rank(A(k)).

Definition (Hitchcock, 1928)

The multilinear rank of A is the tuple containing the dimensions
of the minimal subspaces that the standard flattenings of A live in:

mlrank(A) := (r1, r2, . . . , rd).

Computing and decomposing tensors: Decomposition basics

Tucker decomposition

Multilinear rank

In the case A ∈W1 ⊗W2 ⊂ Fn1×n2 is a matrix, the multilinear
rank is, by definition,

mlrank(A) = (dim W1, dim W2) =
(
rank(A(1)), rank(A(2))

)
=
(
rank(A), rank(AT)

)
.

In the matrix case, we attach special names to W1 and W2:

W1 is the column space or range, and

W2 is the row space.

The fundamental theorem of linear algebra states that
dim W1 = dim W2. Therefore,

mlrank(A) = (dim W1, dim W2) = (r , r).

Consequently, not all tuples are feasible multilinear ranks!

Computing and decomposing tensors: Decomposition basics

Tucker decomposition

Multilinear rank

Proposition (Carlini and Kleppe, 2011)

Let A ∈ Fn1×···×nd with multilinear rank (r1, . . . , rd). Then, for all
k = 1, . . . , d we have

rk ≤
∏
j 6=k

rj .

The proof is left as an exercise.

Computing and decomposing tensors: Decomposition basics

Tucker decomposition

Multilinear rank

Connection to algebraic geometry

The set of tensors of bounded multilinear rank

Mr1,...,rd := {A ∈ Fn1×···×nd | mlrank(A) ≤ (r1, . . . , rd)}

is easily seen to be an algebraic variety, i.e., the solution set of a
system of polynomial equations, because it is the intersection of
the determinantal varieties

Mrk := {A ∈ Fn1×···×nd | rank(A(k)) ≤ rk}

for k = 1, . . . , d .

Computing and decomposing tensors: Decomposition basics

Tucker decomposition

Higher-order singular value decomposition

Overview

1 Introduction

2 Basic tensor operations

3 Tucker decomposition
Multilinear rank
Higher-order singular value decomposition
Numerical issues
Truncation algorithms

4 Tensor rank decomposition
Rank
Border rank
Identifiability

5 References

Computing and decomposing tensors: Decomposition basics

Tucker decomposition

Higher-order singular value decomposition

Higher-order singular value decomposition

If A ∈ Fn1×···×nd lives in a separable tensor subspace V1 ⊗ · · · ⊗ Vd

with rk := dim Vk , then there exist bases

Ak = [ak
j]rkj=1 ∈ Fnk×rk for Vk ⊂ Fnk

such that

A =

r1∑
i1=1

· · ·
rd∑

id=1

ci1,...,id a1
i1 ⊗ · · · ⊗ ad

id
=: (A1,A2, . . . ,Ad) · C

for some C ∈ Fr1×r2×···×rd .

This is equivalent to stating that

mlrank(A) = (r1, r2, . . . , rd).

Computing and decomposing tensors: Decomposition basics

Tucker decomposition

Higher-order singular value decomposition

Recall that the Moore–Penrose pseudoinverse of matrix
A ∈ Fm×n of rank n is given by

A† = (AHA)−1AH .

Then, the coefficients C of A with respect to the basis
A1 ⊗ · · · ⊗ Ad satisfy

A = (A1,A2, . . . ,Ad) · C ,

so that

(A†1,A
†
2, . . . ,A

†
d) · A = (A†1,A

†
2, . . . ,A

†
d) · (A1,A2, . . . ,Ad) · C

= (A†1A1,A
†
2A2, . . . ,A

†
dAd) · C

= C .

Computing and decomposing tensors: Decomposition basics

Tucker decomposition

Higher-order singular value decomposition

In other words, if we know that A lives in V1 ⊗ · · · ⊗ Vd , and we
have chosen some bases Ak of Vk , then the coefficients (also called

core tensor) are given by C = (A†1,A
†
2, . . . ,A

†
d) · A.

The factorization
A = (A1, . . . ,Ad) · C

reveals the separable subspace V = V1 ⊗ · · · ⊗ Vd that tensor A
lives in, as Ak provides a basis of Vk from which a tensor product
basis of V can be constructed. The factorization is called a
(rank-revealing) Tucker decomposition of A in honor of
L. Tucker (1963).

Computing and decomposing tensors: Decomposition basics

Tucker decomposition

Higher-order singular value decomposition

The higher-order singular value decomposition (HOSVD),
popularized by De Lathauwer, De Moor, and Vandewalle (2000)
but already introduced by Tucker (1966), is a particular strategy
for choosing orthonormal bases Ak .

The HOSVD chooses as orthonormal basis for Vk the left singular
vectors of A(k). That is, let the thin SVD of A(k) be

A(k) = UkΣkQH
k .

Then, the HOSVD orthogonal basis for Vk is given by Uk .

Computing and decomposing tensors: Decomposition basics

Tucker decomposition

Higher-order singular value decomposition

An advantage of choosing orthonormal bases Ak , beyond improved
numerical stability, is that the Moore–Penrose inverse reduces to

U†k = (UH
k Uk)−1UH

k = UH
k ,

so that

A = (U1,U2, . . . ,Ud) ·
(
(U1,U2, . . . ,Ud)H · A

)
= (U1UH

1 ,U2UH
2 , . . . ,UdUH

d) · A
= π1π2 · · ·πdA

where
πkA := (UkUH

k) ·k A

is the HOSVD mode-k orthogonal projection.

Computing and decomposing tensors: Decomposition basics

Tucker decomposition

Higher-order singular value decomposition

The coefficients d-array

S = (U1,U2, . . . ,Ud)H · A

is called the core tensor.

The orthogonal basis of V1 ⊗ · · · ⊗ Vd ,

U1 ⊗ U2 ⊗ · · · ⊗ Ud := [u1
i1 ⊗ · · · ⊗ ud

id
]r1,...,rd
i1,...,id=1

is called the HOSVD basis.

By definition of the thin SVD, we have

rk = dim Vk = rank(Uk)

and so Uk ∈ Fnk×rk .

Computing and decomposing tensors: Decomposition basics

Tucker decomposition

Higher-order singular value decomposition

Algorithm 1: HOSVD Algorithm

input : A tensor A ∈ Fn1×n2×···×nd

output: The components (U1,U2, . . . ,Ud) of the HOSVD basis
output: Coefficients array S ∈ Fr1×r2×···×rd

for k = 1, 2, . . . , d do
Compute the compact SVD A(k) = UkΣkQH

k ;

end

S ← (UH
1 ,U

H
2 , . . . ,U

H
d) · A;

Computing and decomposing tensors: Decomposition basics

Tucker decomposition

Higher-order singular value decomposition

The HOSVD provides a natural data sparse representation of
tensors A living in a separable subspace.

If A ∈ Fn1×n2×···×nd has multilinear rank (r1, r2, . . . , rd), then it can
be represented exactly via the HOSVD as

A = (U1,U2, . . . ,Ud) · S

using only
d∏

k=1

rk +
d∑

k=1

nk rk

storage (for S and the Ui).

Computing and decomposing tensors: Decomposition basics

Tucker decomposition

Numerical issues

Overview

1 Introduction

2 Basic tensor operations

3 Tucker decomposition
Multilinear rank
Higher-order singular value decomposition
Numerical issues
Truncation algorithms

4 Tensor rank decomposition
Rank
Border rank
Identifiability

5 References

Computing and decomposing tensors: Decomposition basics

Tucker decomposition

Numerical issues

Numerical issues

Consider the mathematically simple task of computing the
multilinear rank of a tensor A. For example, rk equals the number
of nonzero singular values of A(k).

Let us take the rank-1 tensor

A =

[
1
√

2
√

2 2√
2 2 2 2

√
2

]
= v ⊗ v ⊗ v, where v =

[
1√
2

]
.

Its 1-flattening is

A(1) = v(v ⊗ v)T =

[
1
√

2
√

2 2√
2 2 2 2

√
2

]
.

Computing and decomposing tensors: Decomposition basics

Tucker decomposition

Numerical issues

Computing the singular values of A(1) in Matlab R2017b, we get
the next result:

>> svd([[1 sqrt(2) sqrt(2) 2];[sqrt(2) 2 2 2*sqrt(2)]])

ans =

5.196152422706632e+00

1.805984985273179e-16

Both singular values are nonzero, so the computed rank is 2!

However, the rank of A(1) is 1, so what have we computed? Can
we make sense of this result?

Computing and decomposing tensors: Decomposition basics

Tucker decomposition

Numerical issues

There are two sources of error that entered our computation:

1 representation errors, and

2 computation errors.

The representation error is incurred because A(1) cannot be
represented with (IEEE double-precision) floating-point numbers;
indeed,

√
2 6∈ Q.

Nevertheless, the numerical representation of A(1) is very close to
the latter. By the properties of floating-point arithmetic, we have

‖A(1) − fl(A(1))‖2
F ≤ 3

(√
2δ
)2

+
(
(2
√

2)δ
)2

= 14δ2,

where δ ≈ 1.1 · 10−16 is the unit roundoff.

Computing and decomposing tensors: Decomposition basics

Tucker decomposition

Numerical issues

The computation error arises in the computation of the singular
values of the matrix with floating-point elements. The magnitude
of this error strongly depends on the algorithm. Numerically
“stable” algorithms will only introduce “small” errors.

Matlab’s svd likely implements an algorithm satisfying1

|σ̃k(Ã)− σk(Ã + E)| ≤ p(m, n) · σ1(Ã + E) · δ

with
‖E‖2 ≤ p(m, n) · σ1(Ã) · δ

where σk(A) is the kth exact singular value of the matrix A and
σ̃k(A) is the numerically obtained kth singular value, and p(m, n)
is a “modest growth factor.”

1See http://www.netlib.org/lapack/lug/node97.html.

http://www.netlib.org/lapack/lug/node97.html

Computing and decomposing tensors: Decomposition basics

Tucker decomposition

Numerical issues

For brevity, write A := A(1) and Ã := fl(A(1)).

Even in light of these representation and computation errors, we
can extract useful information from our result by using the error
bounds and Weyl’s perturbation lemma:

|σk(X)− σk(X + Y)| ≤ ‖Y ‖2.

We have

|σk(A)− σ̃k(Ã)| = |σk(A)− σk(Ã) + σk(Ã)− σ̃k(Ã)|

≤
√

14δ + |σk(Ã)− σ̃k(Ã)|

=
√

14δ + |σk(Ã)− σk(Ã + E) + σk(Ã + E)− σ̃k(Ã)|

≤ (p(m, n)σ1(Ã) +
√

14)δ + |σk(Ã + E)− σ̃k(Ã)|

≤
(
4p(m, n)σ̃1(Ã) +

√
14
)
δ,

assuming p(m, n) max{σ1(Ã + E), σ1(Ã)} ≤ 2.

Computing and decomposing tensors: Decomposition basics

Tucker decomposition

Numerical issues

Applying this to our case, and assuming that p(m, n) ≤ 10(m + n),
we find

|σ1(A(1))− 5.196152422706632| ≤ 1.517 · 10−13

|σ2(A(1))− 1.805984985273179 · 10−16| ≤ 1.517 · 10−13;

hence, σ1(A(1)) 6= 0, but based on our error bounds we cannot
exclude that σ2(A(1)) might be 0.

We thus conclude that r1 ≥ 1 and that the distance of A(1) to the
locus of rank-1 matrices is at most about 1.517 · 10−13.

Computing and decomposing tensors: Decomposition basics

Tucker decomposition

Truncation algorithms

Overview

1 Introduction

2 Basic tensor operations

3 Tucker decomposition
Multilinear rank
Higher-order singular value decomposition
Numerical issues
Truncation algorithms

4 Tensor rank decomposition
Rank
Border rank
Identifiability

5 References

Computing and decomposing tensors: Decomposition basics

Tucker decomposition

Truncation algorithms

Truncation algorithms

It is uncommon to encounter tensors A ∈ Fn1×n2×···×nd with a
multilinear rank that is exactly smaller than (n1, n2, . . . , nd)
because of numerical errors. However, tensors A can often lie close
to a separable subspace V1⊗V2⊗ · · · ⊗Vd . This leads naturally to

The low multilinear rank approximation (LMLRA) problem

Given A ∈ Fn1×···×nd and a target multilinear rank (r1, . . . , rd), find
a minimizer of

min
mlrank(B)≤(r1,...,rd)

‖A − B‖F

In other words, find the separable subspace V1 ⊗ · · · ⊗ Vd with
dim Vk = rk that is closest to A.

Computing and decomposing tensors: Decomposition basics

Tucker decomposition

Truncation algorithms

Since mlrank(B) = (r1, . . . , rd) is equivalent to the existence of a
separable subspace V1 ⊗ · · · ⊗ Vd in which B lives, we can write

B = (U1,U2, . . . ,Ud) · S

where Uk ∈ Fnk×rk can be chosen orthonormal by the existence of
the HOSVD.

So graphically we want to approximate A by

A ≈ (U1,U2,U3) · S

A
≈ U1 U2

U
3

S

Computing and decomposing tensors: Decomposition basics

Tucker decomposition

Truncation algorithms

After choosing the separable subspace, the optimal approximation
is the orthogonal projection onto this subspace. Hence, the
LMLRA problem is equivalent to

min
Uk∈Stnk ,rk

∥∥A − P〈U1⊗···⊗Ud 〉A
∥∥
F

where 〈U〉 denotes the linear subspace spanned by the basis U, and
Stm,n is the Stiefel manifold of m × n matrices with orthonormal
columns.

Computing and decomposing tensors: Decomposition basics

Tucker decomposition

Truncation algorithms

Proposition (V, Vandebril, and Meerbergen, 2012)

Let U1 ⊗ · · · ⊗ Ud be a tensor basis of the separable subspace
V = V1 ⊗ · · · ⊗ Vd . Then, the approximation error

‖A − PV A‖2
F =

d∑
k=1

‖πpk−1
· · ·πp1 A − πpkπpk−1

· · ·πp1 A‖2
F ,

where πjA = (UjU
H
j) ·j A and p is any permutation of

{1, 2, . . . , d}.

The proof is left as an exercise.

Computing and decomposing tensors: Decomposition basics

Tucker decomposition

Truncation algorithms

Note that A − πjA = (I −UjU
H
j) ·j A is also a projection, which we

denote by
π⊥j A := (I − UjU

H
j) ·j A.

We may intuitively understand the proposition as follows. If

A ≈ Â := π1π2π3A = (U1UH
1 ,U2UH

2 ,U3UH
3) · A,

then an error expression is

− =

=‖A − π1π2π3A‖2

+ +

+ +‖π⊥1 A‖2 ‖π⊥2 π1A‖2 ‖π⊥3 π1π2A‖2

Computing and decomposing tensors: Decomposition basics

Tucker decomposition

Truncation algorithms

Since orthogonal projections only decrease unitarily invariant
norms, we also get the following corollary.

Corollary

Let U1 ⊗ · · · ⊗ Ud be a tensor basis of the separable subspace
V = V1 ⊗ · · · ⊗ Vd . Then, the approximation error satisfies

‖A − PV A‖2
F ≤

d∑
k=1

‖π⊥k A‖2
F ,

where πjA = (UjU
H
j) ·j A.

Computing and decomposing tensors: Decomposition basics

Tucker decomposition

Truncation algorithms

We may intuitively understand this corollary as follows. If

A ≈ Â := π1π2π3A = (U1UH
1 ,U2UH

2 ,U3UH
3) · A,

then an upper bound is

− ≤≤

‖A − π1π2π3A‖2

+ +

+ +‖π⊥1 A‖2 ‖π⊥2 A‖2 ‖π⊥3 A‖2

Computing and decomposing tensors: Decomposition basics

Tucker decomposition

Truncation algorithms

A closed solution of the LMLRA problem

min
Uk∈Stnk ,rk

∥∥A − P〈U1⊗···⊗Ud 〉A
∥∥
F

is not known.

However, we can use foregoing error expressions for choosing good,
even quasi-optimal, separable subspaces to project onto.

Computing and decomposing tensors: Decomposition basics

Tucker decomposition

Truncation algorithms

T-HOSVD

The idea of the truncated HOSVD (T-HOSVD) is minimizing
the upper bound on the error:

− ≤≤

‖A − π1π2π3A‖2

+ +

+ +‖π⊥1 A‖2 ‖π⊥2 A‖2 ‖π⊥3 A‖2

If the upper bound is small, then evidently the error is also small.

Computing and decomposing tensors: Decomposition basics

Tucker decomposition

Truncation algorithms

Minimizing the upper bound results in

min
π1,...,πd

‖A − π1 · · ·πdA‖2
F ≤ min

π1,...,πd

d∑
k=1

‖π⊥k A‖2
F

=
d∑

k=1

min
πk
‖π⊥k A‖2

F

=
d∑

k=1

min
Uk∈Stnk ,rk

‖A(k) − UkUH
k A(k)‖2

F

This has a closed form solution, namely the optimal Uk should
contain the rk dominant left singular vectors. That is, writing the
compact SVD of A(k) as

A(k) = UkΣkQT
k ,

then Uk contains the first rk columns of Uk .

Computing and decomposing tensors: Decomposition basics

Tucker decomposition

Truncation algorithms

The resulting T-HOSVD algorithm is thus but a minor
modification of the HOSVD algorithm.

Algorithm 2: T-HOSVD Algorithm

input : A tensor A ∈ Fn1×n2×···×nd

input : A target multilinear rank (r1, r2, . . . , rd).
output: The components (U1,U2, . . . ,Ud) of the T-HOSVD basis
output: Coefficients array S ∈ Fr1×r2×···×rd

for k = 1, 2, . . . , d do
Compute the compact SVD A(k) = UkΣkQH

k ;

Let Uk contain the first rk columns of Uk ;

end

S ← (U
H
1 ,U

H
2 , . . . ,U

H
d) · A;

Computing and decomposing tensors: Decomposition basics

Tucker decomposition

Truncation algorithms

Assume that we truncate a tensor in Fn×···×n to multilinear rank
(r , . . . , r). The computational complexity of standard T-HOSVD is

O

(
dnd+1 +

d∑
k=1

nd+1−k rk

)
operations.

Computing and decomposing tensors: Decomposition basics

Tucker decomposition

Truncation algorithms

The resulting approximation is quasi-optimal.

Proposition (Hackbusch, 2012)

Let A ∈ Fn1×···×nd , and let A∗ be the best rank-(r , . . . , r)
approximation to B, i.e.,

‖A − A∗‖F = min
mlrank(B)≤(r ,...,r)

‖A − B‖F .

Then, the rank-(r , . . . , r) T-HOSVD approximation AT is a quasi
best approximation:

‖A − AT‖F ≤
√

d‖A − A∗‖F .

Computing and decomposing tensors: Decomposition basics

Tucker decomposition

Truncation algorithms

ST-HOSVD

The idea of the sequentially truncated HOSVD (ST-HOSVD) is
sequentially choosing projections with the aim of minimizing the
error expression:

− =

=‖A − π1π2π3A‖2

+ +

+ +‖π⊥1 A‖2 ‖π⊥2 π1A‖2 ‖π⊥3 π1π2A‖2

Computing and decomposing tensors: Decomposition basics

Tucker decomposition

Truncation algorithms

ST-HOSVD greedily minimizes the foregoing error expression.
That is, it computes

π̂1 = arg min
π1

‖π⊥1 A‖2

π̂2 = arg min
π2

‖π⊥2 π̂1A‖2

...

π̂d = arg min
πd
‖π⊥d π̂d−1 · · · π̂2π̂1A‖2

Computing and decomposing tensors: Decomposition basics

Tucker decomposition

Truncation algorithms

In practice, minπk ‖π⊥k π̂k−1 · · · π̂1A‖F is computed as follows. As
π̂j are orthogonal projections, we can write them as

π̂jA := (Ûj Û
H
j) ·j A = Ûj ·j (ÛH

j ·j A).

Therefore,

min
Uk∈Stnk ,rk

‖UkUH
k A(k)(Û1ÛH

1 ⊗ · · · ⊗ Ûk−1ÛH
k−1 ⊗ I ⊗ · · · ⊗ I)T‖F

= min
Uk

‖UkUH
k A(k)(ÛH

1 ⊗ · · · ⊗ ÛH
k−1 ⊗ I ⊗ · · · ⊗ I)T‖F

= min
Uk

‖UkUH
k Sk−1

(k) ‖F ,

where we define

Sk−1 := (Û1, . . . , Ûk−1, I , . . . , I)H · A = ÛH
k−1 ·k−1 Sk−2.

Recall that the solution of minUk
‖UkUH

k Sk−1
(k) ‖F is given by the

rank-rk truncated SVD of Sk−1
(k) .

Computing and decomposing tensors: Decomposition basics

Tucker decomposition

Truncation algorithms

Visually, here’s what happens for a third-order tensor.

S0 = A S1
(1) = ÛH

1 S0
(1) S2

(2) = ÛH
2 S1

(2) S3
(3) = ÛH

3 S2
(3)

Computing and decomposing tensors: Decomposition basics

Tucker decomposition

Truncation algorithms

The resulting ST-HOSVD algorithm is thus but a minor
modification of the T-HOSVD algorithm.

Algorithm 3: ST-HOSVD Algorithm

input : A tensor A ∈ Fn1×n2×···×nd

input : A target multilinear rank (r1, r2, . . . , rd).
output: The components (Û1, Û2, . . . , Ûd) of the ST-HOSVD basis
output: Coefficients array Ŝ ∈ Fr1×r2×···×rd

Ŝ ← Â;
for k = 1, 2, . . . , d do

Compute the compact SVD S(k) = UkΣkQH
k ;

Let Ûk contain the first rk columns of Uk ;

Ŝ ← ÛH
k ·k Ŝ ;

end

Computing and decomposing tensors: Decomposition basics

Tucker decomposition

Truncation algorithms

Assume that we truncate a tensor in Fn×···×n to multilinear rank
(r , . . . , r). The computational complexity of ST-HOSVD is

O

(
nd+1 + 2

d∑
k=1

nd+1−k rk

)
operations,

which compares favorably versus T-HOSVD’s

O

(
dnd+1 +

d∑
k=1

nd+1−k rk

)
operations.

Note that much larger speedups are possible for uneven mode sizes
n1 ≥ n2 ≥ · · · ≥ nd ≥ 2, as you will show in the problem sessions.

Computing and decomposing tensors: Decomposition basics

Tucker decomposition

Truncation algorithms

The resulting approximation is also quasi-optimal.

Proposition (Hackbusch, 2012)

Let A ∈ Fn1×···×nd , and let A∗ be the best rank-(r , . . . , r)
approximation to A, i.e.,

‖A − A∗‖F = min
mlrank(B)≤(r ,...,r)

‖A − B‖F .

Then, the rank-(r , . . . , r) ST-HOSVD approximation AS is a quasi
best approximation:

‖A − AS‖F ≤
√

d‖A − A∗‖F .

Computing and decomposing tensors: Decomposition basics

Tensor rank decomposition

Overview

1 Introduction

2 Basic tensor operations

3 Tucker decomposition
Multilinear rank
Higher-order singular value decomposition
Numerical issues
Truncation algorithms

4 Tensor rank decomposition
Rank
Border rank
Identifiability

5 References

Computing and decomposing tensors: Decomposition basics

Tensor rank decomposition

Rank

Overview

1 Introduction

2 Basic tensor operations

3 Tucker decomposition
Multilinear rank
Higher-order singular value decomposition
Numerical issues
Truncation algorithms

4 Tensor rank decomposition
Rank
Border rank
Identifiability

5 References

Computing and decomposing tensors: Decomposition basics

Tensor rank decomposition

Rank

Tensor rank

The tensor rank decomposition (CPD) expresses a tensor
A ∈ V1 ⊗ · · · ⊗ Vd as a minimum-length linear combination of
rank-1 tensors:

A =
r∑

i=1

λia
1
i ⊗ · · · ⊗ ad

i , where ak
i ∈ Vk .

Often the scalars λi are absorbed into the ak
i ∈ Vk .

The rank of A is the length of any of its tensor rank
decompositions.

Computing and decomposing tensors: Decomposition basics

Tensor rank decomposition

Rank

Tensor rank is a considerably more difficult subject for d ≥ 3 than
the multilinear rank. For example,

the maximum rank of a tensor space Fn1 ⊗ · · · ⊗ Fnd is not
known in general;

the typical ranks of a tensor space Fn1 ⊗ · · · ⊗ Fnd , i.e., those
ranks occurring on nonempty Euclidean-open subsets, are not
known in general;

the rank of a real tensor can decrease when taking a field
extension, contrary to matrix and multilinear rank; and

computing tensor rank is NP Hard.

Computing and decomposing tensors: Decomposition basics

Tensor rank decomposition

Rank

Tensor rank is invariant under invertible multilinear multiplications
with A1⊗· · ·⊗Ad , where Ak : Vk →Wk are invertible linear maps.

Let A =
∑r

i=1 b1
i ⊗ · · · ⊗ bd

i . Since

(A1, . . . ,Ad) · A =
r∑

i=1

(A1b1
i)⊗ · · · ⊗ (Adbd

i),

we have rank(A) ≤ rank((A1, . . . ,Ad) · A). And so

rank(A) ≤ rank((A1, . . . ,Ad) · A)

≤ rank((A−1
1 , . . . ,A−1

d) ·
(
(A1, . . . ,Ad) · A

)
) = rank(A).

Computing and decomposing tensors: Decomposition basics

Tensor rank decomposition

Border rank

Overview

1 Introduction

2 Basic tensor operations

3 Tucker decomposition
Multilinear rank
Higher-order singular value decomposition
Numerical issues
Truncation algorithms

4 Tensor rank decomposition
Rank
Border rank
Identifiability

5 References

Computing and decomposing tensors: Decomposition basics

Tensor rank decomposition

Border rank

Border rank

Another issue with tensor rank is that the set

S≤r := {A ∈ Fn1×···×nd | rank(A) ≤ r}

is not closed in general, i.e., S≤r 6= S≤r .

For example, for any linearly independent x, y ∈ Rn, we have

lim
ε→0

(
1

ε
(x + εy)⊗3 − 1

ε
x⊗3

)
= y⊗x⊗x+x⊗y⊗x+x⊗x⊗y;

evidently, the tensors in the sequence have rank bounded by 2, but
it can be shown that the limit has rank 3.

Computing and decomposing tensors: Decomposition basics

Tensor rank decomposition

Border rank

Connection to algebraic geometry

Consider the Euclidean closure of S≤r :

S≤r := { lim
ε→0

Aε, where Aε ∈ S≤r}.

If A ∈ S≤r \S≤r−1, then we say that A has border rank equal to r .

It turns out that for F = C, the Euclidean closure of S≤r coincides
with its closure in the Zariski topology. That is, S≤r is an
algebraic, even projective, variety, i.e., the zero set of a system
of homogeneous polynomial equations.

For F = R, both S≤r and S≤r are semi-algebraic sets, i.e., the
solution set of a system of polynomial equalities and inequalities.

Computing and decomposing tensors: Decomposition basics

Tensor rank decomposition

Identifiability

Overview

1 Introduction

2 Basic tensor operations

3 Tucker decomposition
Multilinear rank
Higher-order singular value decomposition
Numerical issues
Truncation algorithms

4 Tensor rank decomposition
Rank
Border rank
Identifiability

5 References

Computing and decomposing tensors: Decomposition basics

Tensor rank decomposition

Identifiability

Identifiability

A key property of the tensor rank decomposition is that the
decomposition of A as a sum of rank-1 tensors Ai is often unique.

We say that A ∈ Fn1×···×nd is r-identifiable if the set of rank-1
tensors {A1, . . . ,Ar} whose sum is A, i.e.,

A = A1 + · · ·+ Ar ,

is uniquely determined by A.

Computing and decomposing tensors: Decomposition basics

Tensor rank decomposition

Identifiability

Note that the components of a rank-1 tensor A ∈ Fn1 ⊗ · · · ⊗ Fnd

are themselves also uniquely determined (in projective space) by A.
Precisely, the points

[ak] ∈ P(Fnk)

are uniquely determined given A = a1 ⊗ · · · ⊗ ad .

Computing and decomposing tensors: Decomposition basics

Tensor rank decomposition

Identifiability

This r -identifiability is radically different from the matrix case
(d = 2). Indeed, if A ∈ Fm×n is a rank-r matrix, then

A = UV T = (UX)(X−1V T) for all X ∈ GLr (F)

For a generic choice of X , i.e., outside of some Zariski-closed set,
(UX)i 6= αuπi , so that the tensor rank decompositions are distinct.

Note that in the matrix case there is even a positive-dimensional
family of distinct decompositions! (Can you prove this?)

Computing and decomposing tensors: Decomposition basics

Tensor rank decomposition

Identifiability

A classic result on r -identifiability of CPDs is Kruskal’s lemma,
which relies on the notion of the Kruskal rank of a set of vectors.

Definition (Kruskal, 1977)

The Kruskal rank kV of a set of vectors V = {v1, . . . , vr} ⊂ Fn is
the largest k integer such that every subset of k vectors of V is
linearly independent.

For example,

{v, v} has Kruskal rank 1;

{v,w, v} has Kruskal rank 1; and

{v,w, v + w} has Kruskal rank 2 if v and w are linearly
independent.

Computing and decomposing tensors: Decomposition basics

Tensor rank decomposition

Identifiability

Kruskal proved, among others, the following result.

Theorem (Kruskal, 1977)

Let A =
∑r

i=1 a1
i ⊗ a2

i ⊗ a3
i and Ak := [ak

i]ri=1. If kA1 , kA2 , kA3 > 1
and

r ≤ 1

2
(kA1 + kA2 + kA3 − 2)

then A is r -identifiable.

The condition kA1 > 1 is necessary for r ≥ 2 because otherwise
A ∈ 〈v〉 ⊗ Fn2 ⊗ Fn3 ' Fn2×n3 , and likewise for the other factors.

Computing and decomposing tensors: Decomposition basics

Tensor rank decomposition

Identifiability

Computing the Kruskal rank of r vectors in Fn is very expensive, in
general, as one needs to compute the ranks of all

(r
k

)
subsets of k

vectors for k = 1, . . . ,min{r , n}. Computing one of these ranks
already has a complexity of nk2.

Notwithstanding this limitation, applying Kruskal’s lemma is a
popular technique for verifying that a tensor given as the sum of r
rank-1 tensors has rank equal to r . Indeed, a rank-r tensor is never
r ′-identifiable with r ′ > r .

Computing and decomposing tensors: Decomposition basics

Tensor rank decomposition

Identifiability

Kruskal’s lemma can also be applied to higher-order tensors

A ∈ V1 ⊗ · · · ⊗ Vd

simply by grouping the factors:

A ∈ (Vπ1 ⊗ · · · ⊗ Vπs)⊗ (Vπs+1 ⊗ · · · ⊗ Vπt)⊗ (Vπt+1 ⊗ · · · ⊗ Vπd)

where 1 ≤ s < t ≤ d and π is a permutation of {1, . . . , d}.

In other words, Kruskal’s lemma is applied to the reshaped tensor
(coordinate array).

Computing and decomposing tensors: Decomposition basics

Tensor rank decomposition

Identifiability

While r -identifiability seems like a special property admitted by
only few tensors, the phenomenon is very general. It is an open
problem to prove the following conjecture:

Conjecture (Chiantini, Ottaviani, V, 2014)

Let n1 ≥ n2 ≥ · · · ≥ nd ≥ 2, d ≥ 3. If r <
∏d

k=1 nk
1+

∑d
k=1(nk−1)

, then

Fn1 ⊗ · · · ⊗ Fnd is generically r-identifiable (there exists a proper
Zariski-closed subset Z of S≤r such that every A ∈ S≤r \ Z is
r -identifiable), unless:

1 (n1, n2, n3) = (4, 4, 3) and r = 5;

2 (n1, n2, n3) = (4, 4, 4) and r = 6;

3 (n1, n2, n3) = (6, 6, 3) and r = 8;

4 (n1, n2, n3, n4) = (n, n, 2, 2) and r = 2n − 1, n ≥ 2;

5 (n1, n2, n3, n4, n5) = (2, 2, 2, 2, 2) and r = 5; and

6 n1 >
∏d

k=2 nk −
∑d

k=2(nk − 1) =: c and r ≥ c .

Computing and decomposing tensors: Decomposition basics

References

Overview

1 Introduction

2 Basic tensor operations

3 Tucker decomposition
Multilinear rank
Higher-order singular value decomposition
Numerical issues
Truncation algorithms

4 Tensor rank decomposition
Rank
Border rank
Identifiability

5 References

Computing and decomposing tensors: Decomposition basics

References

References for basic tensor operations

Greub, Multilinear Algebra, 2nd ed., Springer, 1978.

de Silva, Lim, Tensor rank and the ill-posedness of the best
low-rank approximation problem, SIAM Journal on Matrix
Analysis and Applications, 2008.

Kolda, Bader, Tensor decompositions and applications, SIAM
Review, 2008.

Landsberg, Tensors: Geometry and Applications, AMS, 2012.

Computing and decomposing tensors: Decomposition basics

References

References for Tucker decomposition

Carlini, Kleppe, Ranks derived from multilinear maps, Journal
of Pure and Applied Algebra, 2011.

De Lathauwer, De Moor, Vandewalle, A multilinear singular
value decomposition, SIAM Journal on Matrix Analysis and
Applications, 2000.

Hackbusch, Tensor Spaces and Numerical Tensor Calculus,
Springer, 2012.

Hitchcock, Multiple invariants and generalized rank of a
P-way matrix or tensor, Journal of Mathematics and Physics,
1928.

Tucker, Some mathematical notes on three-mode factor
analysis, Psychometrika, 1966.

Vannieuwenhoven, Vandebril, Meerbergen, A new truncation
strategy for the higher-order singular value decomposition,
SIAM Journal on Scientific Computing, 2012.

Computing and decomposing tensors: Decomposition basics

References

References for tensor rank decomposition

Chiantini, Ottaviani, Vannieuwenhoven, An algorithm for
generic and low-rank specific identifiability of complex tensors,
SIAM Journal on Matrix Analysis, 2014.

Chiantini, Ottaviani, Vannieuwenhoven, Effective criteria for
specific identifiability of tensors and forms, SIAM Journal on
Matrix Analysis, 2017.

de Silva, Lim, Tensor rank and the ill-posedness of the best
low-rank approximation problem, SIAM Journal on Matrix
Analysis and Applications, 2008.

Hitchcock, The expression of a polyadic or tensor as a sum of
products, Journal of Mathematics and Physics, 1927.

Kruskal, Three-way arrays: rank and uniqueness of trilinear
decompositions, with application to arithmetic complexity and
statistics, Linear Algebra and its Applications, 1977.

Landsberg, Tensors: Geometry and Applications, AMS, 2012.

	Introduction
	Basic tensor operations
	Tucker decomposition
	Multilinear rank
	Higher-order singular value decomposition
	Numerical issues
	Truncation algorithms

	Tensor rank decomposition
	Rank
	Border rank
	Identifiability

	References

