
Computing and

decomposing tensors

— Tensor rank decomposition

Nick Vannieuwenhoven
(FWO / KU Leuven)

Computing and decomposing tensors: Tensor rank decomposition

1 Sensitivity
Condition numbers
Tensor rank decomposition

2 Approximation algorithms for the CPD
Pencil-based algorithms
Alternating least squares methods
Quasi-Newton optimization methods
Riemannian quasi–Newton optimization methods

3 Tensorlab
Basic operations
Tucker decomposition
Tensor rank decomposition

4 References

Computing and decomposing tensors: Tensor rank decomposition

Sensitivity

Overview

1 Sensitivity
Condition numbers
Tensor rank decomposition

2 Approximation algorithms for the CPD
Pencil-based algorithms
Alternating least squares methods
Quasi-Newton optimization methods
Riemannian quasi–Newton optimization methods

3 Tensorlab
Basic operations
Tucker decomposition
Tensor rank decomposition

4 References

Computing and decomposing tensors: Tensor rank decomposition

Sensitivity

Condition numbers

Overview

1 Sensitivity
Condition numbers
Tensor rank decomposition

2 Approximation algorithms for the CPD
Pencil-based algorithms
Alternating least squares methods
Quasi-Newton optimization methods
Riemannian quasi–Newton optimization methods

3 Tensorlab
Basic operations
Tucker decomposition
Tensor rank decomposition

4 References

Computing and decomposing tensors: Tensor rank decomposition

Sensitivity

Condition numbers

Sensitivity

In numerical computations, the sensitivity of the output of a
computation to perturbations at the input is extremely important.

We have already seen an example: computing singular values
appears to behave nicely with respect to perturbations.

Computing and decomposing tensors: Tensor rank decomposition

Sensitivity

Condition numbers

Consider the matrix

A =
1

177147

88574 88574 2
88574 88574 2

2 2 177146


Computing the singular value decomposition ÛŜV̂ T of the
floating-point representation Ã of A numerically using Matlab, we
find ‖A− ÛŜV̂ T‖ ≈ 5.66 · 10−16.

The singular values are

numerical exact

0.000000000000000098.. 0
0.9999830649121916 0.999983064912191569713288... = 1− 3−10

1.000016935087808 1.000016935087808430286711... = 1 + 3−10

In all cases, we found 16 correct digits of the exact solution.

Computing and decomposing tensors: Tensor rank decomposition

Sensitivity

Condition numbers

However, when comparing the computed left singular vector
corresponding to σ1 = 1 + 3−10 to the exact solution, we get

numerical exact

0.5773502691883747 1√
3

0.5773502691883748 1√
3

0.5773502691921281 1√
3

We have only recovered 11 digits correctly, even though the matrix
ÛŜV̂ T contains at least 15 correct digits of each entry.

How is this possible?

Computing and decomposing tensors: Tensor rank decomposition

Sensitivity

Condition numbers

We say that the problem of computing the singular values has a
different sensitivity to perturbations than the computational
problem of computing the left singular vectors.

Assuming the singular values are distinct, these problems can be
modeled as functions

f1 : Fm×n → Fmin{m,n}, respectively f2 : Fm×n → Fm×min{m,n}.

What we have observed above is that

0.4 ≈ ‖f1(x)− f1(x + δx)‖
‖δx‖

� ‖f2(x)− f2(x + δx)‖
‖δx‖

≈ 800

at least x = A and δx = Ã− A (with ‖δx‖ ≈ 5 · 10−16).

Computing and decomposing tensors: Tensor rank decomposition

Sensitivity

Condition numbers

Condition numbers

The condition number quantifies the worst-case sensitivity of f
to perturbations of the input.

•
x

• y •
f (x)

•
f (y)

ε

κε

κ[f](x) := lim
ε→0

sup
y∈Bε(x)

‖f (y)−f (x)‖
‖y−x‖ .

Computing and decomposing tensors: Tensor rank decomposition

Sensitivity

Condition numbers

If f : FM ⊃ X → Y ⊂ FN is a differentiable function, then the
condition number is fully determined by the first-order
approximation of f .

Indeed, in this case we have

f (x + ∆) = f (x) + J∆ + o(‖∆‖),

where J is the Jacobian matrix containing all first-order partial
derivatives. Then,

κ = lim
ε→0

sup
‖∆‖≤ε

‖f (x) + J∆ + o(‖∆‖)− f (x)‖
‖∆‖

= max
‖∆‖=1

‖J∆‖
‖∆‖

= ‖J‖2.

Computing and decomposing tensors: Tensor rank decomposition

Sensitivity

Condition numbers

More generally, for manifolds, we can apply Rice’s (1966)
geometric framework of conditioning:1

Proposition (Rice, 1966)

Let X ⊂ Fm be a manifold of inputs and Y ⊂ Fn a manifold of
outputs with dimX = dimY. Then, the condition number of
F : X → Y at x0 ∈ X is

κ[F](x0) = ‖ dx0 F‖ = sup
‖x‖=1

‖ dx0 F (x)‖,

where dx0 F : Tx0X → TF (x0)Y is the derivative.

1See, e.g., Blum, Cucker, Shub, and Smale (1998) or Bürgisser and Cucker
(2013) for a more modern treatment.

Computing and decomposing tensors: Tensor rank decomposition

Sensitivity

Tensor rank decomposition

Overview

1 Sensitivity
Condition numbers
Tensor rank decomposition

2 Approximation algorithms for the CPD
Pencil-based algorithms
Alternating least squares methods
Quasi-Newton optimization methods
Riemannian quasi–Newton optimization methods

3 Tensorlab
Basic operations
Tucker decomposition
Tensor rank decomposition

4 References

Computing and decomposing tensors: Tensor rank decomposition

Sensitivity

Tensor rank decomposition

The tensor rank decomposition problem

In the remainder, S1 denotes the smooth manifold of rank-1
tensors in Rn1×···×nd , called the Segre manifold.

To determine the condition number of computing a CPD, we
analyze the addition map:

Φr : S1 × · · · × S1 → Rn1×···×nd

(A1, . . . ,Ar) 7→ A1 + · · ·+ Ar

Note that the domain and codomain are smooth manifolds.

Computing and decomposing tensors: Tensor rank decomposition

Sensitivity

Tensor rank decomposition

From differential geometry, we know that Φr is a local
diffeomorphism onto its image if the derivative dx Φr is
injective, i.e., has maximal rank equal to r dimS1.

Let a = (A1, . . . ,Ar) ∈ (S1)×r and A = Φr (a). If dΦr a is injective,
then by the Inverse Function Theorem there exists a local
inverse function Φ−1

a : E → F , where E ⊂ Im(Φr) is an open
neighborhood of A, F ⊂ (S1)×r is an open neighborhood of a, and

Φr ◦ Φ−1
a = IdE and Φ−1

a ◦ Φr = IdF .

In other words, Φ−1
a computes one particular ordered CPD of A.

This function has condition number

κ[Φ−1
a](A) = ‖ dA Φ−1

a ‖2 = ‖(da Φr)−1‖2.

Computing and decomposing tensors: Tensor rank decomposition

Sensitivity

Tensor rank decomposition

The derivative da Φ is seen to be the map

da Φ : TA1S1 × · · · × TArS1 → TARn1×···×nd

(Ȧ1, . . . , Ȧr) 7→ Ȧ1 + · · ·+ Ȧr .

Hence, if Ui is an orthonormal basis of TAiS1 ⊂ TAiRn1×···×nd ,
then the map is represented in coordinates as the matrix

U =
[
U1 U2 · · · Ur

]
∈ Rn1···nd×r dimS1

Summarizing, if we are given an ordered CPD a of A, then the
condition number of computing this ordered CPD may be
computed as the inverse of the smallest singular value of U.

Computing and decomposing tensors: Tensor rank decomposition

Sensitivity

Tensor rank decomposition

From the above derivation, it also follows that

κ[Φ−1
a](A) = κ[Φ−1

a′](A)

where

a′ = (Aπ1 , . . . ,Aπr) for every permutation π ∈ Sr .

Hence, the above gives us the condition number of the tensor
decomposition problem at the CPD {A1, . . . ,Ar}. We write

κ({A1, . . . ,Ar}) := κ[Φ−1
a](A).

Computing and decomposing tensors: Tensor rank decomposition

Sensitivity

Tensor rank decomposition

Interpretation

If

A = A1 + · · ·+ Ar =
r∑

i=1

a1
i ⊗ · · · ⊗ ad

i

B = B1 + · · ·+ Br =
r∑

i=1

b1
i ⊗ · · · ⊗ bd

i

are tensors in Rn1×···×nd , then for ‖A − B‖F ≈ 0 we have the
asymptotically sharp bound

min
π∈Sr

√√√√ r∑
i=1

‖Ai − Bπi‖2
F︸ ︷︷ ︸

forward error

. κ({A1, . . . ,Ar})︸ ︷︷ ︸
condition number

· ‖A − B‖F︸ ︷︷ ︸
backward error

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Overview

1 Sensitivity
Condition numbers
Tensor rank decomposition

2 Approximation algorithms for the CPD
Pencil-based algorithms
Alternating least squares methods
Quasi-Newton optimization methods
Riemannian quasi–Newton optimization methods

3 Tensorlab
Basic operations
Tucker decomposition
Tensor rank decomposition

4 References

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Pencil-based algorithms

Overview

1 Sensitivity
Condition numbers
Tensor rank decomposition

2 Approximation algorithms for the CPD
Pencil-based algorithms
Alternating least squares methods
Quasi-Newton optimization methods
Riemannian quasi–Newton optimization methods

3 Tensorlab
Basic operations
Tucker decomposition
Tensor rank decomposition

4 References

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Pencil-based algorithms

Pencil-based algorithms

A pencil-based algorithm (PBA) is an algorithm for computing
the unique rank-r CPD of a tensor A ∈ Rn1×n2×n3 with
n1 ≥ n2 ≥ r . Let

A =
r∑

i=1

ai ⊗ bi ⊗ ci , where ‖ai‖ = 1.

The matrices A = [ai], B = [bi] and C = [ci] of A are called
factor matrices.

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Pencil-based algorithms

Fix a matrix Q ∈ Rn3×2 with two orthonormal columns. The key
step in a PBA is the projection step

B := (I , I ,QT) · A =
r∑

i=1

ai ⊗ bi ⊗ QTci︸ ︷︷ ︸
zi

,

yielding an n1 × n2 × 2 tensor B whose factor matrices are
(A,B,Z).

Thereafter, we compute the specific orthogonal Tucker
decomposition

B = (Q1,Q2, I) · S =
r∑

i=1

(Q1x′i)⊗ (Q2y′i)⊗ zi ,

where x′i = QT
1 ai and y′i = QT

2 bi .

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Pencil-based algorithms

Let X = [x′i/‖x′i‖] and Y = [y′i/‖y′i‖]. Then, the core tensor
S ∈ Rr×r×2 has the following two 3-slices:

Sj = (I , I , eTj) · S =
r∑

i=1

λj ,ixi ⊗ yi = X diag(λλλj)Y
T , j = 1, 2,

where λλλj := [zj ,i‖x′i‖‖y′i‖]ri=1 and zi = [zj ,i]
2
j=1.

If S1 and S2 are nonsingular, then we see that

S1S
−1
2 = X diag(λλλ1) diag(λλλ2)−1X−1.

Thus X is the r × r matrix of eigenvectors of S1S
−1
2 .

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Pencil-based algorithms

Recall that the factor matrices of B are (A,B,Z) and by definition
A = Q1X . The rank-1 tensors can then be recovered by noting that

A(1) =
r∑

i=1

ai (bi ⊗ ci)
T =: A(B � C)T ,

where B � C := [bi ⊗ ci]
r
i=1 ∈ Rn2n3×r .

Since A is left invertible, we get

A� (A†A(1))T = A� (B � C) = [ai ⊗ (bi ⊗ ci)] ∈ Rn1n2n3×r

which is a matrix containing the rank-1 tensors of the CPD as
columns.

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Pencil-based algorithms

Algorithm 1: Standard PBA Algorithm

input : A tensor A ∈ Rn1×n2×n3 , n1 ≥ n2 ≥ r , of rank r .
output: Rank-1 tensors ai ⊗ bi ⊗ ci of the CPD of A.

Sample a random n3 × 2 matrix Q with orthonormal columns.
B ← (I , I ,QT) · A;
Compute a rank-(r , r ,min{r , n3}) HOSVD (Q1,Q2,Q3) · S = A;

S1 ← (I , I , eT1) · S ;

S2 ← (I , I , eT2) · S ;

Compute eigendecomposition S1S
−1
2 = XDX−1;

A← Q1X ;

A� B � C ← A� (A†A(1))T ;

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Pencil-based algorithms

Numerical issues

A variant of this algorithm is implemented in Tensorlab v3.0 as
cpd gevd. Let us perform an experiment with it.

We create the first tensor that comes to mind: a rank-25 random
tensor A of size 25× 25× 25:

>> Ut{1} = randn(25,25);

>> Ut{2} = randn(25,25);

>> Ut{3} = randn(25,25);

>> A = cpdgen(Ut);

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Pencil-based algorithms

Compute A’s decomposition and compare its distance to the input
decomposition, relative to the machine precision ε ≈ 2 · 10−16:

>> Ur = cpd_gevd(A, 25);

>> E = kr(Ut) - kr(Ur);

>> norm(E(:), 2) / eps

ans =

8.6249e+04

This large number can arise because of a high condition number.
However,

>> kappa = condition_number(Ut)

ans =

2.134

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Pencil-based algorithms

It thus appears that there is something wrong with the algorithm,
even though it is a mathematically sound algorithm for computing
low-rank CPDs. The reason is the following.

Theorem (Beltrán, Breiding, V, 2018)

Many algorithms based on a reduction to Rn1×n2×2 are
numerically unstable: the forward error produced by the
algorithm divided by the backward error is “much” larger than the
condition number on an open set of inputs.

These methods should be used with care as they do not necessarily
yield the highest attainable precision.

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Pencil-based algorithms

The instability of the algorithm leads to an excess factor ω on top
of the condition number of the computational problem:

10
0

10
5

10
10

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

cpd_pba

cpd_pba2

cpd_gevd

10
0

10
5

10
10

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

cpd_pba

cpd_pba2

cpd_gevd

Test with random rank-1 tuples.

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Alternating least squares methods

Overview

1 Sensitivity
Condition numbers
Tensor rank decomposition

2 Approximation algorithms for the CPD
Pencil-based algorithms
Alternating least squares methods
Quasi-Newton optimization methods
Riemannian quasi–Newton optimization methods

3 Tensorlab
Basic operations
Tucker decomposition
Tensor rank decomposition

4 References

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Alternating least squares methods

Alternating least squares methods

The problems of computing a CPD of A ∈ Fn1×···×nd and the
problem of approximating A by a (low-rank) CPD can be
formulated as an optimization problem. For example,

min
Ak∈Fnk×r

k=1,...,d

1

2
‖A − (A1 � A2 � · · · � Ad)1‖2

F .

One of the earliest methods devised specifically for this problem is
the alternating least squares (ALS) scheme.

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Alternating least squares methods

The ALS method is based on a reformulation of the objective
function; it is equivalent to

min
Aj∈Fnk×r ,
j=1,...,d

1

2
‖A(k) − Ak(A1 � · · · � Ak−1 � Ak+1 � · · · � Ad)T‖2.

for every k = 1, 2, . . . , d .

The key observation is that if Aj , j 6= k , are fixed, then finding the
optimal Ak is a linear problem! It is namely

A(k)((A1 � · · · � Ak−1 � Ak+1 � · · · � Ad)T)†.

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Alternating least squares methods

The standard ALS method then solves the optimization problem by
cyclically fixing all but one factor matrix Ak .

Algorithm 2: ALS method

input : A tensor A ∈ Fn1×···×nd .
input : A target rank r .
output: Factor matrices (A1, . . . ,Ad) of a CPD approximating A.

Initialize factor matrices Ak ∈ Fnk×r (e.g., entries sampled i.i.d.
from N(0, 1), or truncated HOSVD);
while Not converged do

for k = 1, 2, . . . , d do

Âk ← A1 � · · · � Ak−1 � Ak+1 � · · · � Ad ;

Ak ← A(k)(Â†k)T ;

end

end

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Alternating least squares methods

The ALS scheme produces a sequence of incrementally better
approximations. However, the convergence properties of the ALS
method are very poorly understood.

The scheme has accumulation points, but it is not known if they
correspond to critical points of the objective function. That is, we
do not know if the accumulation points of the ALS scheme
correspond to points satisfying the first-order optimality conditions.

Uschmajew (2012) proved local convergence to critical points
where the Hessian is positive semi-definite and of maximal rank.

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Quasi-Newton optimization methods

Overview

1 Sensitivity
Condition numbers
Tensor rank decomposition

2 Approximation algorithms for the CPD
Pencil-based algorithms
Alternating least squares methods
Quasi-Newton optimization methods
Riemannian quasi–Newton optimization methods

3 Tensorlab
Basic operations
Tucker decomposition
Tensor rank decomposition

4 References

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Quasi-Newton optimization methods

Quasi-Newton optimization methods

The optimization problem

min
Ak∈Fnk×r ,
k=1,...,d

1

2
‖A − (A1 � A2 � · · · � Ad)1‖2.

can be solved using any of the standard optimization methods,
such as nonlinear conjugate gradient and quasi–Newton methods.

We discuss the Gauss–Newton method with trust region as
globalization method.

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Quasi-Newton optimization methods

Recall that the univariate Newton method is based on the
following idea.

−1 0 1 2 3

0

2

4

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Quasi-Newton optimization methods

Recall that the univariate Newton method is based on the
following idea.

−1 0 1 2 3
−2

0

2

4

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Quasi-Newton optimization methods

Recall that the univariate Newton method is based on the
following idea.

−1 0 1 2 3
−2

0

2

4

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Quasi-Newton optimization methods

Recall that the univariate Newton method is based on the
following idea.

−1 0 1 2 3
−2

0

2

4

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Quasi-Newton optimization methods

Recall that the univariate Newton method is based on the
following idea.

−1 0 1 2 3
−2

0

2

4

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Quasi-Newton optimization methods

Newton’s method for minimizing a smooth real function f (x)
consists of generating a sequence of iterates x0, x1, . . . where xk+1

is the optimal solution of the local second-order Taylor series
expansion of f (x), namely

f (xk + p) ≈ mxk (p)

:= f (xk) + pTgk +
1

2
pTHkp

where

gk := ∇f (xk) is the gradient of f at xk , and

Hk := ∇2f (xk) is the symmetric Hessian matrix of f at xk .

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Quasi-Newton optimization methods

Recall from calculus that the gradient f : Rn → R with coordinates
xi on Rn is

∇f (y) :=


∂
∂x1

f (y)
∂
∂x2

f (y)
...

∂
∂xn

f (y)

 .
The Hessian matrix is

∇2f (y) :=


∂2

∂x1∂x1
f (y) ∂2

∂x1∂x2
f (y) · · · ∂2

∂x1∂xn
f (y)

∂2

∂x2∂x1
f (y) ∂2

∂x2∂x2
f (y) · · · ∂2

∂x2∂xn
f (y)

...
...

...
∂2

∂xn∂x1
f (y) ∂2

∂xn∂x2
f (y) · · · ∂2

∂xn∂xn
f (y)

 .

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Quasi-Newton optimization methods

The optimal search direction p according to the second-order
model should satisfy the first-order optimality conditions. That is,

0 = ∇mxk (p) = gk + Hkp

Hence,
p = −H−1

k gk ;

this is called the Newton search direction.

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Quasi-Newton optimization methods

Hence, the basic Newton method is obtained.

Algorithm 3: Newton’s method

input : An objective function f .
input : A starting point x0 ∈ Rn.
output: A critical point x? of the objective function f

k ← 0;
while Not converged do

Compute the gradient gk = ∇f (xk);
Compute the Hessian Hk = ∇2f (xk);

pk ← −H−1
k gk ;

xk+1 ← xk + pk ;
k ← k + 1;

end

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Quasi-Newton optimization methods

Newton’s method is locally quadratically convergent: if the initial
iterate x0 is sufficiently close to the solution, then

‖x∗ − xk+1‖ = O
(
‖x∗ − xk‖2

)
.

This means that close to the solution the number of correct digits
doubles every step.

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Quasi-Newton optimization methods

For example, Newton’s method applied to

f (x , y) =

∥∥∥∥[1 2
2 4

]
−
[

1 y
x xy

]∥∥∥∥2

converges to the root at (2, 2) starting from x0 = (3, 3).

2 4 6 8
10−202

10−147

10−92

10−37

1018

k

‖x
∗
−

x k
‖

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Quasi-Newton optimization methods

While Newton’s method has great local convergence properties,
the plain version is not suitable because:

1 it has no guaranteed global convergence, and

2 the Hessian matrix can be difficult to compute.

These problems are addressed respectively by

1 incorporating a trust region scheme, and

2 using a cheap approximation of the Hessian matrix.

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Quasi-Newton optimization methods

The Gauss–Newton Hessian approximation

A cheap approximation of the Hessian matrix is available for
nonlinear least squares problems. In this case, the objective
function takes the form

f (x) =
1

2
‖F (x)‖2 =

1

2
〈F (x),F (x)〉, where F : Rn → Rm.

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Quasi-Newton optimization methods

The gradient of a least-squares objective function f at x is

∇f (x) =
(
JF (x)

)T
F (x),

where JF (x) ∈ Rm×n is the Jacobian matrix of F . That is, if
Fk(x) denotes the kth component function of F , then

JF (x) :=


∂
∂x1

F1(x) ∂
∂x2

F1(x) · · · ∂
∂xn

F1(x)
∂
∂x1

F2(x) ∂
∂x2

F2(x) · · · ∂
∂xn

F2(x)
...

...
...

∂
∂x1

Fm(x) ∂
∂x2

Fm(x) · · · ∂
∂xn

Fm(x)

 .

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Quasi-Newton optimization methods

The Hessian matrix of f is

∇2f (x) =
(
JF (x)

)T (
JF (x)

)
+ 〈dJF (x),F (x)〉.

Near a solution, we hope to have F (x∗) ≈ 0, so that the last term
often has a negligible contribution.

This reasoning leads to the Gauss–Newton approximation(
JF (x)

)T (
JF (x)

)
≈ ∇2f (x).

Replacing the Hessian with the Gauss–Newton approximation
yields local linear convergence. If f (x∗) = 0 at a solution, then the
local convergence is quadratic.

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Quasi-Newton optimization methods

Trust region globalization

The method sketched thus far has no global convergence
guarantees. Furthermore, the Gauss–Newton approximation of the
Hessian could be very ill-conditioned resulting in large updates.

The trust region globalization scheme can solve both of these
problems. Let Jk := JF (xk). The idea is to trust the local
second-order model at xk ,

mxk (p) = f (xk) + pTgk +
1

2
pT JTk Jkp,

only in a small neighborhood around xk .

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Quasi-Newton optimization methods

Instead of taking the unconstrained minimizer of m(xk + p), a
trust region method solves the trust region subproblem:

min
p∈Rn

mxk (p) subject to ‖p‖ ≤ ∆k ,

where ∆k > 0 is the trust region radius.

p xk

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Quasi-Newton optimization methods

The trust region radius is modified in every step according to the
following scheme. Let the computed update direction be pk , with
‖pk‖ ≤ ∆k .

The trustworthiness of the second order model is defined as

ρk =
f (xk)− f (xk + pk)

mxk (0)−mxk (pk)
.

If the trustworthiness ρk > 0 is very high (e.g., ρk ≥ 0.75) and if in
addition ‖pk‖ ≈ ∆k , then the trust region radius is increased (e.g,
∆k+1 = 2∆k). On the other hand, if ρk ≤ β is very low (e.g.,
ρk ≤ 0.25), then the trust region radius is decreased (e.g.,
∆k+1 = ∆k/4).

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Quasi-Newton optimization methods

The trustworthiness ρk is also used to decide whether or not to
accept a step in the direction of the computed pk . If ρk ≤ γ ≤ β
is very small (e.g., ρk ≤ 0.1), then the search direction pk is
rejected. Otherwise, pk is accepted as a good direction, and we set
xk+1 = xk + pk .

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Quasi-Newton optimization methods

For (approximately) solving the trust region subproblem

min
p∈Rn

mxk (p) subject to ‖p‖ ≤ ∆k ,

one can exploit the following fact. If the unconstrained minimizer

p∗k = −(JTk Jk)−1gk = (JTk Jk)−1JTk rk = J†krk

where rk := F (xk), falls within the trust region, ‖p∗k‖ ≤ ∆k then
this is the optimal solution of the trust region subproblem.

Otherwise, there exists a λ > 0 such that the optimal solution p∗k
satisfies

(JTk Jk + λI)p∗k = −JTk xr

with ‖p∗k‖ = ∆k . Nocedal and Wright (2006) discuss strategies for
finding λ.

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Quasi-Newton optimization methods

Several variations of this quasi–Newton method with trust region
globalization are implemented in Tensorlab as cpd nls. See
Sorber, Van Barel, De Lathauwer (2013) for details.

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Riemannian quasi–Newton optimization methods

Overview

1 Sensitivity
Condition numbers
Tensor rank decomposition

2 Approximation algorithms for the CPD
Pencil-based algorithms
Alternating least squares methods
Quasi-Newton optimization methods
Riemannian quasi–Newton optimization methods

3 Tensorlab
Basic operations
Tucker decomposition
Tensor rank decomposition

4 References

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Riemannian quasi–Newton optimization methods

Riemannian optimization

An alternative way to formulate the approximation of a tensor by a
low-rank CPD consists of optimizing over a product of Segre
manifolds:

min
(A1,...,Ar)∈(S1×···×S1)

‖Φr (A1, . . . ,Ar)− A‖F .

This is an optimization of

1 a differentiable function,

2 over a smooth manifold.

These problems are studied in Riemannian optimization.

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Riemannian quasi–Newton optimization methods

In general, if M⊂ RN is an m-dimensional smooth manifold and
F :M→ Rn a smooth function, then

min
x∈M

1

2
‖F (x)‖2

is a Riemannian optimization problem that can be solved by, e.g., a
Riemannian Gauss–Newton method; see Absil, Mahoney,
Sepulchre (2008).

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Riemannian quasi–Newton optimization methods

In a RGN method, the objective function

f (x) =
1

2
‖Φr (x)− A‖2

is locally approximated at a ∈ S×r1 by the quadratic model

ma(t) := f (a) + 〈da f , t〉+
1

2
〈t, (dp Φr

∗ ◦ da Φr)(t)〉,

where

Ha := da Φr
∗ ◦ da Φr is the GN Hessian approximation, and

〈·, ·〉 is the inner product inherited from the ambient RN .

Note that the domain of ma is now TaS×r1 .

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Riemannian quasi–Newton optimization methods

As before, the RGN method with trust region considers the model
to be accurate only in a radius ∆ about a.

p a

The trust region subproblem (TRS) is

min
t∈TaS×r

1

ma(t) subject to ‖t‖ ≤ ∆,

whose solution p ∈ TaS×r1 yields the next search direction.

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Riemannian quasi–Newton optimization methods

In Breiding, V (2018), the TRS is solved by combining a standard
dogleg step with a hot restarting scheme.

Let ga be the coordinate representation of da f , and let Ha be the
matrix of da Φr

∗ ◦ da Φr . The dogleg step approximates the
solution p of the TRS by

p̂ =


pN = −H†aga if ‖pN‖ ≤ ∆

pC = −gT
a Haga

gT
a ga

ga if ‖pN‖ > ∆ and ‖pC‖ ≥ ∆

pI := pC + (τ − 1)(pN − pC) s.t. ‖pI‖ = ∆, otherwise

.

where 1 ≤ τ ≤ 2 is the solution of ‖pC + (τ − 1)(pN−pC)‖2 = ∆2.

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Riemannian quasi–Newton optimization methods

The Newton direction
pN = −H†aga.

is vital to the dogleg step. Unfortunately, the Ha = da Φr
∗ ◦ da Φr

can be close to a singular matrix. In fact,√
‖H−1

a ‖2 =
1

ςm(da Φr)
=: κ(a),

where m = dimS×r1 .

Ha is ill-conditioned if and only if the CPD is ill-conditioned at a.

Whenever Ha is close to a singular matrix we suggest to apply
random perturbations to the current decomposition a until Ha is
sufficiently well-behaved. We call this hot restarting.

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Riemannian quasi–Newton optimization methods

Retraction

We need to advance from a ∈ S×r1 to a′ ∈ S×r1 , along the direction
p. However, while a + p ∈ TaS×r1 , this point does not lie in S×r1 !

a

p

Ra(p)
S×r1

TaS×r1

We need a retraction operator (Absil, Mahoney, Sepulchre, 2008)
for smoothly mapping a neighborhood of 0 ∈ TaS×r1 back to S×r1 .

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Riemannian quasi–Newton optimization methods

Given a retraction operator R ′ for S1, a retraction operator R for
the product manifold S×r1 = S1 × · · · × S1 at a = (A1, . . . ,Ar) is

Ra(·) := (R ′A1
× R ′A2

× · · · × R ′Ar
)(·),

which is called the product retraction.

Some known retraction operators for S1 are

the rank-(1, . . . , 1) T-HOSVD, and

the rank-(1, . . . , 1) ST-HOSVD,

both essentially proved by (Kressner, Steinlechner, Vandereycken,
2014).

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Riemannian quasi–Newton optimization methods

RGN with trust region method:

S1. Choose random initial points Ai ∈ S1.

S2. Let a(1) ← (A1, . . . ,Ar), and set k ← 0.

S3. Choose a trust region radius ∆ > 0.

S4. While not converged, do:

S4.1. Solve the trust region subproblem, resulting in pk ∈ TaS×r1 .
S4.2. Compute the tentative next iterate a(k+1) ← Ra(k) (pk) via a

retraction in the direction of pk from p(k).
S4.3. Accept or reject the next iterate. If the former, increment k.
S4.4. Update the trust region radius ∆.

The details can be found in Breiding, V (2018).

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Riemannian quasi–Newton optimization methods

Numerical experiments

We compare the RGN method of (Breiding, V, 2018) with some
state-of-the-art nonlinear least squares solvers in Tensorlab v3.0
(Vervliet et al., 2016), namely nls lm and nls gndl, both with
the LargeScale option turned off and on.

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Riemannian quasi–Newton optimization methods

We consider parameterized2 tensors in Rn1×n2×n3 with varying
condition numbers. There are three parameters:

1 c ∈ [0, 1] regulates the “colinearity” of the factor matrices

2 s ≥ 1 regulates the scaling, and

3 r is the rank.

Typically,

1 increasing c increases the geometric condition number.

2 increasing s increases the classic condition number.

3 increasing r decreases the probability of finding a
decomposition.

2See the afternotes for the precise construction.

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Riemannian quasi–Newton optimization methods

The true rank-r tensor is then

A =
r∑

i=1

a1
i ⊗ a2

i ⊗ a3
i .

Finally, we normalize the tensor and add random Gaussian noise
E ∈ Rn1×n2×n3 of magnitude τ :

B =
A
‖A‖F

+ τ
E
‖E‖F

.

The tensor B is the one we would like to approximate by a tensor
of rank r .

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Riemannian quasi–Newton optimization methods

We will choose k random starting points and then apply each of
the methods to each of the starting points.

The key performance criterion (on a single processor) is the
expected time to success (TTS).

Let

1 the probability of success be pS ,

2 the probability of failure be pF = 1− pS ,

3 a successful decomposition take mS seconds, and

4 a failed decomposition take mF seconds.

Then, the expected time to a first success is

E[TTS] =
∞∑
k=0

pk−1
F pS(mS + (k − 1)mF) =

pSmS + pFmF

pS
.

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Riemannian quasi–Newton optimization methods

Speedup of RGN-HR

Model 1, 15× 15× 15 tensors

1

2

3

4

0.0 0.25 0.5 0.75

s

c

1

1

2

1

0.60

0.83

1

2

0.83

1

4

4

0.86

3

20

∞

0.0 0.25 0.5 0.75

c

0.44

0.91

1

3

0.40

0.89

2

6

0.45

1.00

2

5

0.71

2

∞

∞

0.0 0.25 0.5 0.75

c

0.33

0.78

2

3

0.50

1

1

∞

0.42

0.75

5

3

0.59

1

10

∞

0.0 0.25 0.5 0.75

G
N

D
L
-P

C
G

c

0.26

0.61

1

∞

0.24

0.54

1

∞

0.31

0.71

∞

∞

0.45

8

5

4

1

2

3

4

s

11

9

16

15

11

19

17

21

11

14

18

30

26

30

65

38

14

18

21

23

21

20

34

52

37

29

27

30

33

92

69

66

57

40

26

53

27

70

45

16

82

49

38

44

168

53

182

246

G
N

D
L

35

31

52

132

68

44

304

∞

250

76

171

56

99

509

130

284

1

2

3

4

s

r = 15

2

1

2

2

1.00

1

2

1

2

1

1

1

1

1

1

1

r = 20

1.00

1

1

2

1.00

1.00

1

2

1.00

1

2

1

2

1

2

1

r = 25

1

1

1

2

1

1

2

0.79

1

1

3

2

2

2

2

∞

R
G

N
-R

e
g

r = 30

0.87

2

3

2

2

2

3

3

2

2

1

1

2

3

2

2

noise level τ = 10−3

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Riemannian quasi–Newton optimization methods

Speedup of RGN-HR

Model 1, 15× 15× 15 tensors

1

2

3

4

0.0 0.25 0.5 0.75 0.95

s

c

3

6

6

6

2

3

7

8

1.00

1

7

13

0.86

3

16

36

3

10

∞

∞

0.0 0.25 0.5 0.75 0.95

c

2

4

5

3

0.56

0.92

6

13

0.60

2

5

15

0.69

4

8

∞

2

30

∞

∞

0.0 0.25 0.5 0.75 0.95

c

0.94

0.45

4

6

0.40

2

6

20

0.43

1

10

∞

0.48

1.00

23

∞

2

20

∞

∞

0.0 0.25 0.5 0.75 0.95

G
N

D
L
-P

C
G

c

0.36

1

4

12

0.35

2

6

19

0.41

1

7

∞

0.44

1

∞

∞

2

∞

∞

∞

1

2

3

4

s

6

28

15

16

9

18

27

30

15

15

17

80

12

63

83

45

50

55

160

163

25

20

50

24

15

32

52

29

35

38

53

102

75

53

60

157

113

117

114

326

24

28

40

42

39

61

154

89

134

88

89

110

496

107

115

145

∞

298

439

264

G
N

D
L

39

78

186

66

68

94

195

185

601

113

132

893

216

416

1169

489

∞

∞

∞

∞

1

2

3

4

s

r = 15

0.80

1.00

1

2

1.00

1

2

4

1.00

1

2

3

1

1

3

4

2

2

1

5

r = 20

1.00

1

2

5

1

2

2

4

1.00

1

2

3

2

2

3

3

5

2

4

6

r = 25

1.00

1

3

9

2

1

2

3

1

2

3

2

2

2

7

4

34

9

4

7

R
G

N
-R

e
g

r = 30

0.91

2

3

3

1

2

2

5

1

2

6

28

3

5

17

6

18

38

7

6

noise level τ = 10−5

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Riemannian quasi–Newton optimization methods

Speedup of RGN-HR

Model 1, 15× 15× 15 tensors

1

2

3

4

0.0 0.25 0.5 0.75 0.95

s

c

0.80

8

3

2

1.00

2

5

10

0.80

3

8

22

1

2

17

84

4

25

402

∞

0.0 0.25 0.5 0.75 0.95

c

0.44

2

2

12

0.91

1

4

13

1.00

2

6

26

0.73

4

5

31

2

10

∞

∞

0.0 0.25 0.5 0.75 0.95

c

0.74

3

4

14

0.63

0.84

4

19

0.40

2

5

19

1

3

30

∞

1

6

∞

∞

0.0 0.25 0.5 0.75 0.95

G
N

D
L
-P

C
G

c

1

0.96

4

44

0.24

1

4

9

0.38

3

9

124

0.44

3

23

∞

2

77

∞

∞

1

2

3

4

s

14

9

21

13

14

13

31

19

23

13

33

49

24

20

73

124

71

75

92

101

20

30

25

32

35

25

39

89

64

82

55

84

73

61

56

136

255

128

275

724

19

38

109

101

79

57

95

120

109

83

61

122

75

384

277

162

2143

152

1205

∞

G
N

D
L

70

50

438

164

95

118

106

462

419

391

221

1882

836

355

1576

814

∞

1025

2004

∞

1

2

3

4

s

r = 15

1.00

1.00

3

1

1.00

1.00

1

2

1.00

1

2

4

0.83

1

2

4

2

2

4

5

r = 20

1

1

1

6

1.00

3

2

3

1

2

2

5

1

2

3

4

2

2

8

3

r = 25

1

3

2

9

0.84

2

3

5

2

3

6

4

4

2

7

6

9

6

11

11

R
G

N
-R

e
g

r = 30

1

1

2

9

2

4

4

6

2

2

5

17

4

3

12

24

23

11

58

23

noise level τ = 10−7

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Riemannian quasi–Newton optimization methods

Speedup of RGN-HR

Model 2, 13× 11× 9 tensors

0

1

2

3

4

5 7 9 11 13

s

r

GNDL

3

4

4

7

4

4

5

17

16

28

10

20

31

46

40

16

31

168

381

59

58

166

452

inf

failed

5 7 9 11 13

r

GNDL-PCG

7

17

13

7

6

8

7

18

21

67

6

2

22

23

35

4

16

27

24

inf

10

24

24

inf

failed

noise level τ = 10−5

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Riemannian quasi–Newton optimization methods

Convergence plots

Model 2, rank 7, scaling s = 2, noise level τ = 10−5

10
-10

10
-8

10
-6

10
-4

10
-2

1

10
2

 0 0.5 1 1.5 2 2.5 3 3.5 4

o
b

je
c
ti
v
e

 v
a

lu
e

Time (s)

RGN-HR
RGN-Reg

GNDL
LM

GNDL-PCG
LM-PCG

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Riemannian quasi–Newton optimization methods

Convergence plots

Model 2, rank 7, scaling s = 2, noise level τ = 10−5

10
-10

10
-8

10
-6

10
-4

10
-2

1

10
2

 0 0.5 1 1.5 2 2.5 3 3.5 4

o
b

je
c
ti
v
e

 v
a

lu
e

Time (s)

RGN-HR
RGN-Reg

GNDL
LM

GNDL-PCG
LM-PCG

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Riemannian quasi–Newton optimization methods

Convergence plots

Model 2, rank 7, scaling s = 2, noise level τ = 10−5

10
-10

10
-8

10
-6

10
-4

10
-2

1

10
2

 0 0.5 1 1.5 2 2.5 3 3.5 4

o
b

je
c
ti
v
e

 v
a

lu
e

Time (s)

RGN-HR
RGN-Reg

GNDL
LM

GNDL-PCG
LM-PCG

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Riemannian quasi–Newton optimization methods

Convergence plots

Model 2, rank 7, scaling s = 2, noise level τ = 10−5

10
-10

10
-8

10
-6

10
-4

10
-2

1

10
2

 0 0.5 1 1.5 2 2.5 3 3.5 4

o
b

je
c
ti
v
e

 v
a

lu
e

Time (s)

RGN-HR
RGN-Reg

GNDL
LM

GNDL-PCG
LM-PCG

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Riemannian quasi–Newton optimization methods

Convergence plots

Model 2, rank 7, scaling s = 2, noise level τ = 10−5

10
-10

10
-8

10
-6

10
-4

10
-2

1

10
2

 0 0.5 1 1.5 2 2.5 3 3.5 4

o
b

je
c
ti
v
e

 v
a

lu
e

Time (s)

RGN-HR
RGN-Reg

GNDL
LM

GNDL-PCG
LM-PCG

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Riemannian quasi–Newton optimization methods

Convergence plots

Model 2, rank 7, scaling s = 2, noise level τ = 10−5

10
-10

10
-8

10
-6

10
-4

10
-2

1

10
2

 0 0.5 1 1.5 2 2.5 3 3.5 4

o
b

je
c
ti
v
e

 v
a

lu
e

Time (s)

RGN-HR
RGN-Reg

GNDL
LM

GNDL-PCG
LM-PCG

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Riemannian quasi–Newton optimization methods

Convergence plots

Model 2, rank 7, scaling s = 2, noise level τ = 10−5

10
-10

10
-8

10
-6

10
-4

10
-2

1

10
2

 0 0.5 1 1.5 2 2.5 3 3.5 4

o
b

je
c
ti
v
e

 v
a

lu
e

Time (s)

RGN-HR
RGN-Reg

GNDL
LM

GNDL-PCG
LM-PCG

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Riemannian quasi–Newton optimization methods

Convergence plots

Model 2, rank 7, scaling s = 2, noise level τ = 10−5

10
-10

10
-8

10
-6

10
-4

10
-2

1

10
2

 0 0.5 1 1.5 2 2.5 3 3.5 4

o
b

je
c
ti
v
e

 v
a

lu
e

Time (s)

RGN-HR
RGN-Reg

GNDL
LM

GNDL-PCG
LM-PCG

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Riemannian quasi–Newton optimization methods

Convergence plots

Model 2, rank 7, scaling s = 2, noise level τ = 10−5

10
-10

10
-8

10
-6

10
-4

10
-2

1

10
2

 0 0.5 1 1.5 2 2.5 3 3.5 4

o
b

je
c
ti
v
e

 v
a

lu
e

Time (s)

RGN-HR
RGN-Reg

GNDL
LM

GNDL-PCG
LM-PCG

Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Riemannian quasi–Newton optimization methods

Convergence plots

Model 2, rank 7, scaling s = 2, noise level τ = 10−5

10
-10

10
-8

10
-6

10
-4

10
-2

1

10
2

 0 0.5 1 1.5 2 2.5 3 3.5 4

o
b

je
c
ti
v
e

 v
a

lu
e

Time (s)

RGN-HR
RGN-Reg

GNDL
LM

GNDL-PCG
LM-PCG

Computing and decomposing tensors: Tensor rank decomposition

Tensorlab

Overview

1 Sensitivity
Condition numbers
Tensor rank decomposition

2 Approximation algorithms for the CPD
Pencil-based algorithms
Alternating least squares methods
Quasi-Newton optimization methods
Riemannian quasi–Newton optimization methods

3 Tensorlab
Basic operations
Tucker decomposition
Tensor rank decomposition

4 References

Computing and decomposing tensors: Tensor rank decomposition

Tensorlab

Tensorlab is a package facilitating computations with both
structured and unstructured tensors in Matlab.

Development on Tensorlab v1.0 started in 2011 at KU Leuven by
the research group of L. De Lathauwer. The current version, v3.0,
was released in March 2016. Version 4.0 is anticipated next week!

Computing and decomposing tensors: Tensor rank decomposition

Tensorlab

Tensorlab focuses on interpretable models, offering algorithms for
working with

Tucker decompositions,

tensor rank decompositions, and

certain block term decompositions.

In addition, it offers a flexible framework called structured data
fusion in which the various decompositions can be coupled or
fused while imposing additional structural constraints, such as
symmetry, sparsity and nonnegativity.

Computing and decomposing tensors: Tensor rank decomposition

Tensorlab

Basic operations

Overview

1 Sensitivity
Condition numbers
Tensor rank decomposition

2 Approximation algorithms for the CPD
Pencil-based algorithms
Alternating least squares methods
Quasi-Newton optimization methods
Riemannian quasi–Newton optimization methods

3 Tensorlab
Basic operations
Tucker decomposition
Tensor rank decomposition

4 References

Computing and decomposing tensors: Tensor rank decomposition

Tensorlab

Basic operations

A dense tensor is represented as a plain Matlab array:

A = randn (3 , 5 , 7 , 1 1) ;

A (1 : 2 , 1 : 2 , 1 : 2 , 1 : 2)
ans (: , : , 1 , 1) = ans (: , : , 2 , 1) =

2.123880 −0.071091 0.088988 −0.38890
2.041218 −0.937120 1.129268 −1.10351

ans (: , : , 1 , 2) = ans (: , : , 2 , 2) =
1.251419 0.451602 0.94860 0.55588
−0.032686 −2.479674 −0.46106 −0.47215

Computing and decomposing tensors: Tensor rank decomposition

Tensorlab

Basic operations

The Frobenius norm of a tensor is computed as follows.

A = reshape (1 : 1 0 0 , [2 5 1 0]) ;

f rob (A)
ans =

581.6786

f rob (A, ’ s q u a r e d ’) − 100*101*201/6
ans =

0

Computing and decomposing tensors: Tensor rank decomposition

Tensorlab

Basic operations

Flattenings are computed as follows.

A = reshape (1 : 2 4 , [2 3 4]) ;

% mode−1 f l a t t e n i n g
tens2mat (A, [1] , [2 3])
ans =

1 3 5 7 9 11 13 15 17 19 21 23
2 4 6 8 10 12 14 16 18 20 22 24

% mode−2 f l a t t e n i n g
tens2mat (A, [2] , [])
ans =

1 2 7 8 13 14 19 20
3 4 9 10 15 16 21 22
5 6 11 12 17 18 23 24

Computing and decomposing tensors: Tensor rank decomposition

Tensorlab

Basic operations

Multilinear multiplications are computed as follows.

A = randn (5 , 5 , 5) ;
U1 = randn (5 , 5) ;
U2 = randn (5 , 5) ;
U3 = randn (5 , 5) ;

T = tmprod (A, {U1 , U2 , U3} , 1 : 3) ;
X1 = tmprod (A, {U2 , U3} , 2 : 3 , ’H ’) ;
X2 = tmprod (A, {U2 ’ , U3 ’} , 2 : 3) ;
f rob (X1−X2)
ans =

0

Computing and decomposing tensors: Tensor rank decomposition

Tensorlab

Basic operations

Tensorlab has a nice way for visualizing third-order tensors.

U = {1 . 2 5 . ˆ (−1 0 : 5) ’ , l i n s p a c e (0 , 1 , 5 0) ’ ,
2*abs (s i n (l i n s p a c e (0 ,4* pi , 5 0))) ’ } ;

A = cpdgen (U) ;
voxel3 (A)

produces the following graphic:

Computing and decomposing tensors: Tensor rank decomposition

Tensorlab

Tucker decomposition

Overview

1 Sensitivity
Condition numbers
Tensor rank decomposition

2 Approximation algorithms for the CPD
Pencil-based algorithms
Alternating least squares methods
Quasi-Newton optimization methods
Riemannian quasi–Newton optimization methods

3 Tensorlab
Basic operations
Tucker decomposition
Tensor rank decomposition

4 References

Computing and decomposing tensors: Tensor rank decomposition

Tensorlab

Tucker decomposition

Given a core tensor and the factor matrices, Tensorlab can generate
the full tensor represented by this Tucker decomposition as follows.

S = randn (5 , 5 , 5) ;
U = { randn (4 , 5) , randn (6 , 5) , randn (7 , 5) } ;
T1 = lmlragen (U, S) ;
s i z e (T1)
ans =

4 6 8

% Compare w i t h d e f i n i t i o n
T2 = tmprod (S , U, 1 : 3) ;
f rob (T2−T1)
ans =

2.4235 e−15

Computing and decomposing tensors: Tensor rank decomposition

Tensorlab

Tucker decomposition

The HOSVD is called the multilinear singular value
decomposition in Tensorlab and can be computed as follows.

[F , C] = lm l ra rnd ([2 3 29 31 3 7] , [3 5 7 1 1]) ;
A = lmlragen (F , C) ;
[U, S , sv] = mlsvd (A) ; % 0 . 3 2 s

Computing and decomposing tensors: Tensor rank decomposition

Tensorlab

Tucker decomposition

The factor-k singular values can be plotted by running

f o r k = 1 : 4 , semilogy (sv { k } , ’ x− ’) , hold a l l , end
legend (’ f a c t o r 1 ’ , ’ f a c t o r 2 ’ , ’ f a c t o r 3 ’ , ’ f a c t o r 4 ’)

which produces the graphic

Computing and decomposing tensors: Tensor rank decomposition

Tensorlab

Tucker decomposition

Of practical importance are truncated HOSVDs. The default
strategy in Tensorlab is sequential truncation, while parallel
truncation is provided as an option.

[F , C] = lm l ra rnd ([1 0 0 100 1 0 0 0 0] , [2 5 25 2 5]) ;
A = lmlragen (F , C) + 1e−5*randn ([1 0 0 100 1 0 0 0 0]) ;

% S e q u e n t i a l t r u n c a t i o n
[U1 , S1] = mlsvd (A, [2 5 25 2 5]) ; % 2 6 . 5 s
[U2 , S2] = mlsvd (A, 5e−2, 1 : 3) ; % 2 4 . 6 s

% P a r a l l e l t r u n c a t i o n
[V1 , T1] = mlsvd (A, [2 5 25 2 5] , 0) ; % 3 8 7 . 8 s
[V2 , T2] = mlsvd (A, 5e−2, 0) ; % 3 7 4 . 6 s

Computing and decomposing tensors: Tensor rank decomposition

Tensorlab

Tucker decomposition

Tensorlab also offers optimization algorithms for seeking the
optimal low multilinear rank approximation of a tensor. By
default Tensorlab chooses an initial point by either a fast
approximation to the ST-HOSVD via randomized SVDs
(mlsvd rsi), or by adaptive cross approximation (lmlra aca).

The basic usage is as follows:

[F , C] = lm l ra rnd ([1 0 0 100 1 0 0 0 0] , [2 5 25 2 5]) ;
A = lmlragen (F , C) ;

% Compute l m l r a u s i n g d e f a u l t s e t t i n g s .
[U, S] = lml ra (A, [2 5 25 2 5]) ;

Computing and decomposing tensors: Tensor rank decomposition

Tensorlab

Tensor rank decomposition

Overview

1 Sensitivity
Condition numbers
Tensor rank decomposition

2 Approximation algorithms for the CPD
Pencil-based algorithms
Alternating least squares methods
Quasi-Newton optimization methods
Riemannian quasi–Newton optimization methods

3 Tensorlab
Basic operations
Tucker decomposition
Tensor rank decomposition

4 References

Computing and decomposing tensors: Tensor rank decomposition

Tensorlab

Tensor rank decomposition

Tensorlab represents a CPD by a cell array containing its factor
matrices. For example, random factor matrices can be generated
as follows:

s i z e T e n s o r = [1 0 11 8 7] ;
rnk = 5 ;
F = cpd rnd (s i z e T e n s o r , rnk)
F =

1 x3 c e l l a r r a y
[1 0 x5 d o u b l e] [1 1 x5 d o u b l e] [8 7 x5 d o u b l e]

The tensor represented by these factor matrices can be generated
as follows:

A = cpdgen (F) ;

Computing and decomposing tensors: Tensor rank decomposition

Tensorlab

Tensor rank decomposition

Tensorlab offers several algorithms for computing CPDs. A
deterministic but unstable PBA that can be applied if the rank is
smaller than two of the dimensions is cpd gevd.

tF = cpd rnd ([2 9 11 8 5] , 5) ;
A = cpdgen (tF) ;
aF = cpd gevd (A , 5) ;
f robcpdres (A, aF)
ans =

1.1966 e−12

Warning

cpd gevd returns random factor matrices if the assumptions of the
method are not satisfied.

Computing and decomposing tensors: Tensor rank decomposition

Tensorlab

Tensor rank decomposition

Several optimization methods are implemented in Tensorlab for
approximating a tensor by a low-rank CPD.

The advised way for computing a CPD is via the driver routine
cpd, which automatically performs several steps:

1 optional Tucker compression,

2 choice of initialization (cpd gevd if possible, otherwise
random),

3 optional decompression and refinement if compression was
applied.

Computing and decomposing tensors: Tensor rank decomposition

Tensorlab

Tensor rank decomposition

The basic usage is as follows:

tF = cpd rnd ([2 9 11 8 5] , 5) ;
A = cpdgen (tF) ;
aF = cpd (A, 5) ;
f robcpdres (A, aF)
ans =

5.0921 e−14

Computing and decomposing tensors: Tensor rank decomposition

Tensorlab

Tensor rank decomposition

Optionally, some algorithm options can be specified. The most
important options are the following.

Compression: the string ’auto’, the boolean false, or a
function handle to the Tucker compression algorithm, for example
mlsvd, lmlra aca or mlsvd rsi.

Initialization: the string ’auto’, or a function handle to the
initialization method that should be employed, for example
cpd rnd or cpd gevd.

Algorithm: a function handle to the optimization method for
computing the tensor rank decomposition, for example cpd als,
cpd nls or cpd minf.

AlgorithmOptions: a structure containing the options to for the
optimization method.

Computing and decomposing tensors: Tensor rank decomposition

Tensorlab

Tensor rank decomposition

The algorithm options are important in their own right, as they
determine how much computational effort is spent and how
accurate the returned solution will be. The main options are the
following.

TolAbs: The tolerance for the squared error between the tensor
represented by the current factor matrices and the given tensor. If
it is less than this value, the optimization method halts successfully.

TolFun: The tolerance for the relative change in function value. If
it is less than this value, the optimization method halts successfully.

TolX: The tolerance for the relative change in factor matrices. If it
is less than this value, the optimization method halts successfully.

MaxIter: The maximum number of iterations the optimization
method will perform before giving up.

Computing and decomposing tensors: Tensor rank decomposition

Tensorlab

Tensor rank decomposition

For example,

a l g O p t i o n s = s t r u c t ;
a l g O p t i o n s . TolAbs = 1e−12;
a l g O p t i o n s . TolFun = 1e−12;
a l g O p t i o n s . TolX = 1e−8;
a l g O p t i o n s . M ax I t e r = 5 0 0 ;
a l g O p t i o n s . A l g o r i t h m = @ n l s g n d l ;

o p t i o n s = s t r u c t ;
o p t i o n s . Compress ion = f a l s e ;
o p t i o n s . I n i t i a l i z a t i o n = @cpd rnd ;
o p t i o n s . A l g o r i t h m = @ c p d n l s ;
o p t i o n s . A l g o r i t h m O p t i o n s = a l g O p t i o n s ;

Computing and decomposing tensors: Tensor rank decomposition

Tensorlab

Tensor rank decomposition

% C r e a t e an e a s y problem
tF = cpd rnd ([2 9 11 8 5] , 5) ;
A = cpdgen (tF) ;

% S o l v e u s i n g o p t i o n s
[aF , out] = cpd (A, 5 , o p t i o n s) ;
f robcpdres (A, aF)
ans =

6.6368 e−10

Computing and decomposing tensors: Tensor rank decomposition

Tensorlab

Tensor rank decomposition

You can also ask for detailed information about the progression of
the optimization method.

out . A l g o r i t h m
ans =

s t r u c t w i t h f i e l d s :
Name : ’ c p d n l s ’

a l p h a : []
c g i t e r a t i o n s : [2 6 10 14 15 15 15 15 15 15 15 . . . 1 5]

c g r e l r e s : [6 . 6 6 1 3 e−17 2 .3642 e−07 . . . 7 .5798 e−07]
d e l t a : [1 . 1 6 1 9 2 .3238 4 .6476 9 .2952 . . . 9 . 2 9 7 3]

f v a l : [8 . 8 6 9 4 e+04 8.8649 e+04 . . . 2 .4837 e−22]
i n f o : 4 % A b s o l u t e t o l e r a n c e r e a c h e d

i n f o p s : []
i t e r a t i o n s : 15

r e l e r r : 5 .2922 e−14
r e l f v a l : [4 . 9 8 4 7 e−04 0 .0081 . . . 1 .7052 e−15]
r e l s t e p : [0 . 3 0 0 0 0 .6032 0 .9451 . . . 2 .9188 e−08]

rho : [0 . 5 5 8 9 3 .0163 3 .3691 . . . 1 . 0 0 0 0]

Computing and decomposing tensors: Tensor rank decomposition

References

Overview

1 Sensitivity
Condition numbers
Tensor rank decomposition

2 Approximation algorithms for the CPD
Pencil-based algorithms
Alternating least squares methods
Quasi-Newton optimization methods
Riemannian quasi–Newton optimization methods

3 Tensorlab
Basic operations
Tucker decomposition
Tensor rank decomposition

4 References

Computing and decomposing tensors: Tensor rank decomposition

References

References for sensitivity

Bürgisser, Cucker, Condition: The Geometry of Numerical
Algorithms, Springer, 2013.

Blum, Cucker, Shub, Smale, Complexity and Real
Computation, Springer, 1998.

Breiding, Vannieuwenhoven, The condition number of join
decompositions, SIAM Journal on Matrix Analysis, 2017.

Rice, A theory of condition, SIAM Journal on Numerical
Analysis, 1966.

Computing and decomposing tensors: Tensor rank decomposition

References

References for algorithms

Absil, Mahony, Sepulchre, Optimization Algorithms on Matrix
Manifolds, Princeton University Press, 2008.

Beltrán, Breiding, Vannieuwenhoven, Pencil-based algorithms for
tensor decomposition are unstable, arXiv:1807.04159, 2018.

Breiding, Vannieuwenhoven, A Riemannian trust region method for
the canonical tensor rank approximation problem, SIAM Journal on
Optimization, 2018.

Kolda, Bader, Tensor decompositions and applications, SIAM
Review, 2008.

Kressner, Steinlechner, Vandereycken, Low-Rank tensor completion
by Riemannian optimization, BIT, 2014.

Leurgans, Ross, Abel, A decomposition for three-way arrays, SIAM
Journal on Matrix Analysis and Applications, 1993.

Nocedal, Wright, Numerical Optimization, Springer, 2006.

Computing and decomposing tensors: Tensor rank decomposition

References

References for algorithms

Sorber, Van Barel, De Lathauwer, Optimization-based algorithms
for tensor decompositions: Canonical polyadic decomposition,
decomposition in rank-(Lr , Lr , 1) terms, and a new generalization,
SIAM Journal on Optimization, 2013.

Uschmajew, Local convergence of the alternating least squares
algorithm for canonical tensor approximation, SIAM Journal on
Matrix Analysis and Applications, 2012.

Computing and decomposing tensors: Tensor rank decomposition

References

References for Tensorlab

Sidiropoulos, De Lathauwer, Fu, Huang, Papalexakis, Faloutsos,
Tensor decompositions for signal processing and machine learning,
IEEE Transactions on Signal Processing, 2017.

Sorber, Van Barel, De Lathauwer, Optimization-based algorithms
for tensor decompositions: Canonical polyadic decomposition,
decomposition in rank-(Lr , Lr , 1) terms, and a new generalization,
SIAM Journal on Optimization, 2013.

Vervliet, Debals, Sorber, Van Barel, De Lathauwer, Tensorlab v3.0,
www.tensorlab.net.

Vervliet, De Lathauwer, Numerical optimization based algorithms
for data fusion, 2018.

www.tensorlab.net

	Sensitivity
	Condition numbers
	Tensor rank decomposition

	Approximation algorithms for the CPD
	Pencil-based algorithms
	Alternating least squares methods
	Quasi-Newton optimization methods
	Riemannian quasi–Newton optimization methods

	Tensorlab
	Basic operations
	Tucker decomposition
	Tensor rank decomposition

	References

