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Sensitivity

In numerical computations, the sensitivity of the output of a
computation to perturbations at the input is extremely important.

We have already seen an example: computing singular values
appears to behave nicely with respect to perturbations.
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Consider the matrix

A =
1

177147

88574 88574 2
88574 88574 2

2 2 177146


Computing the singular value decomposition ÛŜV̂ T of the
floating-point representation Ã of A numerically using Matlab, we
find ‖A− ÛŜV̂ T‖ ≈ 5.66 · 10−16.

The singular values are

numerical exact

0.000000000000000098.. 0
0.9999830649121916 0.999983064912191569713288... = 1− 3−10

1.000016935087808 1.000016935087808430286711... = 1 + 3−10

In all cases, we found 16 correct digits of the exact solution.
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However, when comparing the computed left singular vector
corresponding to σ1 = 1 + 3−10 to the exact solution, we get

numerical exact

0.5773502691883747 1√
3

0.5773502691883748 1√
3

0.5773502691921281 1√
3

We have only recovered 11 digits correctly, even though the matrix
ÛŜV̂ T contains at least 15 correct digits of each entry.

How is this possible?
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We say that the problem of computing the singular values has a
different sensitivity to perturbations than the computational
problem of computing the left singular vectors.

Assuming the singular values are distinct, these problems can be
modeled as functions

f1 : Fm×n → Fmin{m,n}, respectively f2 : Fm×n → Fm×min{m,n}.

What we have observed above is that

0.4 ≈ ‖f1(x)− f1(x + δx)‖
‖δx‖

� ‖f2(x)− f2(x + δx)‖
‖δx‖

≈ 800

at least x = A and δx = Ã− A (with ‖δx‖ ≈ 5 · 10−16).
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Condition numbers

The condition number quantifies the worst-case sensitivity of f
to perturbations of the input.

•
x

• y •
f (x)

•
f (y)

ε

κε

κ[f ](x) := lim
ε→0

sup
y∈Bε(x)

‖f (y)−f (x)‖
‖y−x‖ .
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If f : FM ⊃ X → Y ⊂ FN is a differentiable function, then the
condition number is fully determined by the first-order
approximation of f .

Indeed, in this case we have

f (x + ∆) = f (x) + J∆ + o(‖∆‖),

where J is the Jacobian matrix containing all first-order partial
derivatives. Then,

κ = lim
ε→0

sup
‖∆‖≤ε

‖f (x) + J∆ + o(‖∆‖)− f (x)‖
‖∆‖

= max
‖∆‖=1

‖J∆‖
‖∆‖

= ‖J‖2.
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More generally, for manifolds, we can apply Rice’s (1966)
geometric framework of conditioning:1

Proposition (Rice, 1966)

Let X ⊂ Fm be a manifold of inputs and Y ⊂ Fn a manifold of
outputs with dimX = dimY. Then, the condition number of
F : X → Y at x0 ∈ X is

κ[F ](x0) = ‖ dx0 F‖ = sup
‖x‖=1

‖ dx0 F (x)‖,

where dx0 F : Tx0X → TF (x0)Y is the derivative.

1See, e.g., Blum, Cucker, Shub, and Smale (1998) or Bürgisser and Cucker
(2013) for a more modern treatment.
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The tensor rank decomposition problem

In the remainder, S1 denotes the smooth manifold of rank-1
tensors in Rn1×···×nd , called the Segre manifold.

To determine the condition number of computing a CPD, we
analyze the addition map:

Φr : S1 × · · · × S1 → Rn1×···×nd

(A1, . . . ,Ar ) 7→ A1 + · · ·+ Ar

Note that the domain and codomain are smooth manifolds.
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From differential geometry, we know that Φr is a local
diffeomorphism onto its image if the derivative dx Φr is
injective, i.e., has maximal rank equal to r dimS1.

Let a = (A1, . . . ,Ar ) ∈ (S1)×r and A = Φr (a). If dΦr a is injective,
then by the Inverse Function Theorem there exists a local
inverse function Φ−1

a : E → F , where E ⊂ Im(Φr ) is an open
neighborhood of A, F ⊂ (S1)×r is an open neighborhood of a, and

Φr ◦ Φ−1
a = IdE and Φ−1

a ◦ Φr = IdF .

In other words, Φ−1
a computes one particular ordered CPD of A.

This function has condition number

κ[Φ−1
a ](A) = ‖ dA Φ−1

a ‖2 = ‖(da Φr )−1‖2.
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The derivative da Φ is seen to be the map

da Φ : TA1S1 × · · · × TArS1 → TARn1×···×nd

(Ȧ1, . . . , Ȧr ) 7→ Ȧ1 + · · ·+ Ȧr .

Hence, if Ui is an orthonormal basis of TAiS1 ⊂ TAiRn1×···×nd ,
then the map is represented in coordinates as the matrix

U =
[
U1 U2 · · · Ur

]
∈ Rn1···nd×r dimS1

Summarizing, if we are given an ordered CPD a of A, then the
condition number of computing this ordered CPD may be
computed as the inverse of the smallest singular value of U.
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From the above derivation, it also follows that

κ[Φ−1
a ](A) = κ[Φ−1

a′ ](A)

where

a′ = (Aπ1 , . . . ,Aπr ) for every permutation π ∈ Sr .

Hence, the above gives us the condition number of the tensor
decomposition problem at the CPD {A1, . . . ,Ar}. We write

κ({A1, . . . ,Ar}) := κ[Φ−1
a ](A).
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Interpretation

If

A = A1 + · · ·+ Ar =
r∑

i=1

a1
i ⊗ · · · ⊗ ad

i

B = B1 + · · ·+ Br =
r∑

i=1

b1
i ⊗ · · · ⊗ bd

i

are tensors in Rn1×···×nd , then for ‖A − B‖F ≈ 0 we have the
asymptotically sharp bound

min
π∈Sr

√√√√ r∑
i=1

‖Ai − Bπi‖2
F︸ ︷︷ ︸

forward error

. κ({A1, . . . ,Ar})︸ ︷︷ ︸
condition number

· ‖A − B‖F︸ ︷︷ ︸
backward error
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Pencil-based algorithms

A pencil-based algorithm (PBA) is an algorithm for computing
the unique rank-r CPD of a tensor A ∈ Rn1×n2×n3 with
n1 ≥ n2 ≥ r . Let

A =
r∑

i=1

ai ⊗ bi ⊗ ci , where ‖ai‖ = 1.

The matrices A = [ai ], B = [bi ] and C = [ci ] of A are called
factor matrices.
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Fix a matrix Q ∈ Rn3×2 with two orthonormal columns. The key
step in a PBA is the projection step

B := (I , I ,QT ) · A =
r∑

i=1

ai ⊗ bi ⊗ QTci︸ ︷︷ ︸
zi

,

yielding an n1 × n2 × 2 tensor B whose factor matrices are
(A,B,Z ).

Thereafter, we compute the specific orthogonal Tucker
decomposition

B = (Q1,Q2, I ) · S =
r∑

i=1

(Q1x′i )⊗ (Q2y′i )⊗ zi ,

where x′i = QT
1 ai and y′i = QT

2 bi .
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Let X = [x′i/‖x′i‖] and Y = [y′i/‖y′i‖]. Then, the core tensor
S ∈ Rr×r×2 has the following two 3-slices:

Sj = (I , I , eTj ) · S =
r∑

i=1

λj ,ixi ⊗ yi = X diag(λλλj)Y
T , j = 1, 2,

where λλλj := [zj ,i‖x′i‖‖y′i‖]ri=1 and zi = [zj ,i ]
2
j=1.

If S1 and S2 are nonsingular, then we see that

S1S
−1
2 = X diag(λλλ1) diag(λλλ2)−1X−1.

Thus X is the r × r matrix of eigenvectors of S1S
−1
2 .
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Recall that the factor matrices of B are (A,B,Z ) and by definition
A = Q1X . The rank-1 tensors can then be recovered by noting that

A(1) =
r∑

i=1

ai (bi ⊗ ci )
T =: A(B � C )T ,

where B � C := [bi ⊗ ci ]
r
i=1 ∈ Rn2n3×r .

Since A is left invertible, we get

A� (A†A(1))T = A� (B � C ) = [ai ⊗ (bi ⊗ ci )] ∈ Rn1n2n3×r

which is a matrix containing the rank-1 tensors of the CPD as
columns.
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Algorithm 1: Standard PBA Algorithm

input : A tensor A ∈ Rn1×n2×n3 , n1 ≥ n2 ≥ r , of rank r .
output: Rank-1 tensors ai ⊗ bi ⊗ ci of the CPD of A.

Sample a random n3 × 2 matrix Q with orthonormal columns.
B ← (I , I ,QT ) · A;
Compute a rank-(r , r ,min{r , n3}) HOSVD (Q1,Q2,Q3) · S = A;

S1 ← (I , I , eT1 ) · S ;

S2 ← (I , I , eT2 ) · S ;

Compute eigendecomposition S1S
−1
2 = XDX−1;

A← Q1X ;

A� B � C ← A� (A†A(1))T ;
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Numerical issues

A variant of this algorithm is implemented in Tensorlab v3.0 as
cpd gevd. Let us perform an experiment with it.

We create the first tensor that comes to mind: a rank-25 random
tensor A of size 25× 25× 25:

>> Ut{1} = randn(25,25);

>> Ut{2} = randn(25,25);

>> Ut{3} = randn(25,25);

>> A = cpdgen(Ut);
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Compute A’s decomposition and compare its distance to the input
decomposition, relative to the machine precision ε ≈ 2 · 10−16:

>> Ur = cpd_gevd(A, 25);

>> E = kr(Ut) - kr(Ur);

>> norm( E(:), 2 ) / eps

ans =

8.6249e+04

This large number can arise because of a high condition number.
However,

>> kappa = condition_number( Ut )

ans =

2.134
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It thus appears that there is something wrong with the algorithm,
even though it is a mathematically sound algorithm for computing
low-rank CPDs. The reason is the following.

Theorem (Beltrán, Breiding, V, 2018)

Many algorithms based on a reduction to Rn1×n2×2 are
numerically unstable: the forward error produced by the
algorithm divided by the backward error is “much” larger than the
condition number on an open set of inputs.

These methods should be used with care as they do not necessarily
yield the highest attainable precision.
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The instability of the algorithm leads to an excess factor ω on top
of the condition number of the computational problem:
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Test with random rank-1 tuples.
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Alternating least squares methods

The problems of computing a CPD of A ∈ Fn1×···×nd and the
problem of approximating A by a (low-rank) CPD can be
formulated as an optimization problem. For example,

min
Ak∈Fnk×r

k=1,...,d

1

2
‖A − (A1 � A2 � · · · � Ad)1‖2

F .

One of the earliest methods devised specifically for this problem is
the alternating least squares (ALS) scheme.
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The ALS method is based on a reformulation of the objective
function; it is equivalent to

min
Aj∈Fnk×r ,
j=1,...,d

1

2
‖A(k) − Ak(A1 � · · · � Ak−1 � Ak+1 � · · · � Ad)T‖2.

for every k = 1, 2, . . . , d .

The key observation is that if Aj , j 6= k , are fixed, then finding the
optimal Ak is a linear problem! It is namely

A(k)((A1 � · · · � Ak−1 � Ak+1 � · · · � Ad)T )†.
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The standard ALS method then solves the optimization problem by
cyclically fixing all but one factor matrix Ak .

Algorithm 2: ALS method

input : A tensor A ∈ Fn1×···×nd .
input : A target rank r .
output: Factor matrices (A1, . . . ,Ad) of a CPD approximating A.

Initialize factor matrices Ak ∈ Fnk×r (e.g., entries sampled i.i.d.
from N(0, 1), or truncated HOSVD);
while Not converged do

for k = 1, 2, . . . , d do

Âk ← A1 � · · · � Ak−1 � Ak+1 � · · · � Ad ;

Ak ← A(k)(Â†k)T ;

end

end
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The ALS scheme produces a sequence of incrementally better
approximations. However, the convergence properties of the ALS
method are very poorly understood.

The scheme has accumulation points, but it is not known if they
correspond to critical points of the objective function. That is, we
do not know if the accumulation points of the ALS scheme
correspond to points satisfying the first-order optimality conditions.

Uschmajew (2012) proved local convergence to critical points
where the Hessian is positive semi-definite and of maximal rank.
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Quasi-Newton optimization methods

The optimization problem

min
Ak∈Fnk×r ,
k=1,...,d

1

2
‖A − (A1 � A2 � · · · � Ad)1‖2.

can be solved using any of the standard optimization methods,
such as nonlinear conjugate gradient and quasi–Newton methods.

We discuss the Gauss–Newton method with trust region as
globalization method.
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Recall that the univariate Newton method is based on the
following idea.
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Newton’s method for minimizing a smooth real function f (x)
consists of generating a sequence of iterates x0, x1, . . . where xk+1

is the optimal solution of the local second-order Taylor series
expansion of f (x), namely

f (xk + p) ≈ mxk (p)

:= f (xk) + pTgk +
1

2
pTHkp

where

gk := ∇f (xk) is the gradient of f at xk , and

Hk := ∇2f (xk) is the symmetric Hessian matrix of f at xk .
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Recall from calculus that the gradient f : Rn → R with coordinates
xi on Rn is

∇f (y) :=


∂
∂x1

f (y)
∂
∂x2

f (y)
...

∂
∂xn

f (y)

 .
The Hessian matrix is

∇2f (y) :=


∂2

∂x1∂x1
f (y) ∂2

∂x1∂x2
f (y) · · · ∂2

∂x1∂xn
f (y)

∂2

∂x2∂x1
f (y) ∂2

∂x2∂x2
f (y) · · · ∂2

∂x2∂xn
f (y)

...
...

...
∂2

∂xn∂x1
f (y) ∂2

∂xn∂x2
f (y) · · · ∂2

∂xn∂xn
f (y)

 .
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The optimal search direction p according to the second-order
model should satisfy the first-order optimality conditions. That is,

0 = ∇mxk (p) = gk + Hkp

Hence,
p = −H−1

k gk ;

this is called the Newton search direction.
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Hence, the basic Newton method is obtained.

Algorithm 3: Newton’s method

input : An objective function f .
input : A starting point x0 ∈ Rn.
output: A critical point x? of the objective function f

k ← 0;
while Not converged do

Compute the gradient gk = ∇f (xk);
Compute the Hessian Hk = ∇2f (xk);

pk ← −H−1
k gk ;

xk+1 ← xk + pk ;
k ← k + 1;

end
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Newton’s method is locally quadratically convergent: if the initial
iterate x0 is sufficiently close to the solution, then

‖x∗ − xk+1‖ = O
(
‖x∗ − xk‖2

)
.

This means that close to the solution the number of correct digits
doubles every step.
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For example, Newton’s method applied to

f (x , y) =

∥∥∥∥[1 2
2 4

]
−
[

1 y
x xy

]∥∥∥∥2

converges to the root at (2, 2) starting from x0 = (3, 3).

2 4 6 8
10−202

10−147

10−92

10−37

1018

k

‖x
∗
−

x k
‖
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While Newton’s method has great local convergence properties,
the plain version is not suitable because:

1 it has no guaranteed global convergence, and

2 the Hessian matrix can be difficult to compute.

These problems are addressed respectively by

1 incorporating a trust region scheme, and

2 using a cheap approximation of the Hessian matrix.
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The Gauss–Newton Hessian approximation

A cheap approximation of the Hessian matrix is available for
nonlinear least squares problems. In this case, the objective
function takes the form

f (x) =
1

2
‖F (x)‖2 =

1

2
〈F (x),F (x)〉, where F : Rn → Rm.
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The gradient of a least-squares objective function f at x is

∇f (x) =
(
JF (x)

)T
F (x),

where JF (x) ∈ Rm×n is the Jacobian matrix of F . That is, if
Fk(x) denotes the kth component function of F , then

JF (x) :=


∂
∂x1

F1(x) ∂
∂x2

F1(x) · · · ∂
∂xn

F1(x)
∂
∂x1

F2(x) ∂
∂x2

F2(x) · · · ∂
∂xn

F2(x)
...

...
...

∂
∂x1

Fm(x) ∂
∂x2

Fm(x) · · · ∂
∂xn

Fm(x)

 .
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The Hessian matrix of f is

∇2f (x) =
(
JF (x)

)T (
JF (x)

)
+ 〈dJF (x),F (x)〉.

Near a solution, we hope to have F (x∗) ≈ 0, so that the last term
often has a negligible contribution.

This reasoning leads to the Gauss–Newton approximation(
JF (x)

)T (
JF (x)

)
≈ ∇2f (x).

Replacing the Hessian with the Gauss–Newton approximation
yields local linear convergence. If f (x∗) = 0 at a solution, then the
local convergence is quadratic.
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Trust region globalization

The method sketched thus far has no global convergence
guarantees. Furthermore, the Gauss–Newton approximation of the
Hessian could be very ill-conditioned resulting in large updates.

The trust region globalization scheme can solve both of these
problems. Let Jk := JF (xk). The idea is to trust the local
second-order model at xk ,

mxk (p) = f (xk) + pTgk +
1

2
pT JTk Jkp,

only in a small neighborhood around xk .
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Quasi-Newton optimization methods

Instead of taking the unconstrained minimizer of m(xk + p), a
trust region method solves the trust region subproblem:

min
p∈Rn

mxk (p) subject to ‖p‖ ≤ ∆k ,

where ∆k > 0 is the trust region radius.

p xk
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The trust region radius is modified in every step according to the
following scheme. Let the computed update direction be pk , with
‖pk‖ ≤ ∆k .

The trustworthiness of the second order model is defined as

ρk =
f (xk)− f (xk + pk)

mxk (0)−mxk (pk)
.

If the trustworthiness ρk > 0 is very high (e.g., ρk ≥ 0.75) and if in
addition ‖pk‖ ≈ ∆k , then the trust region radius is increased (e.g,
∆k+1 = 2∆k). On the other hand, if ρk ≤ β is very low (e.g.,
ρk ≤ 0.25), then the trust region radius is decreased (e.g.,
∆k+1 = ∆k/4).
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The trustworthiness ρk is also used to decide whether or not to
accept a step in the direction of the computed pk . If ρk ≤ γ ≤ β
is very small (e.g., ρk ≤ 0.1), then the search direction pk is
rejected. Otherwise, pk is accepted as a good direction, and we set
xk+1 = xk + pk .
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For (approximately) solving the trust region subproblem

min
p∈Rn

mxk (p) subject to ‖p‖ ≤ ∆k ,

one can exploit the following fact. If the unconstrained minimizer

p∗k = −(JTk Jk)−1gk = (JTk Jk)−1JTk rk = J†krk

where rk := F (xk), falls within the trust region, ‖p∗k‖ ≤ ∆k then
this is the optimal solution of the trust region subproblem.

Otherwise, there exists a λ > 0 such that the optimal solution p∗k
satisfies

(JTk Jk + λI )p∗k = −JTk xr

with ‖p∗k‖ = ∆k . Nocedal and Wright (2006) discuss strategies for
finding λ.
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Several variations of this quasi–Newton method with trust region
globalization are implemented in Tensorlab as cpd nls. See
Sorber, Van Barel, De Lathauwer (2013) for details.
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Riemannian optimization

An alternative way to formulate the approximation of a tensor by a
low-rank CPD consists of optimizing over a product of Segre
manifolds:

min
(A1,...,Ar )∈(S1×···×S1)

‖Φr (A1, . . . ,Ar )− A‖F .

This is an optimization of

1 a differentiable function,

2 over a smooth manifold.

These problems are studied in Riemannian optimization.
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In general, if M⊂ RN is an m-dimensional smooth manifold and
F :M→ Rn a smooth function, then

min
x∈M

1

2
‖F (x)‖2

is a Riemannian optimization problem that can be solved by, e.g., a
Riemannian Gauss–Newton method; see Absil, Mahoney,
Sepulchre (2008).
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In a RGN method, the objective function

f (x) =
1

2
‖Φr (x)− A‖2

is locally approximated at a ∈ S×r1 by the quadratic model

ma(t) := f (a) + 〈da f , t〉+
1

2
〈t, (dp Φr

∗ ◦ da Φr )(t)〉,

where

Ha := da Φr
∗ ◦ da Φr is the GN Hessian approximation, and

〈·, ·〉 is the inner product inherited from the ambient RN .

Note that the domain of ma is now TaS×r1 .
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As before, the RGN method with trust region considers the model
to be accurate only in a radius ∆ about a.

p a

The trust region subproblem (TRS) is

min
t∈TaS×r

1

ma(t) subject to ‖t‖ ≤ ∆,

whose solution p ∈ TaS×r1 yields the next search direction.
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In Breiding, V (2018), the TRS is solved by combining a standard
dogleg step with a hot restarting scheme.

Let ga be the coordinate representation of da f , and let Ha be the
matrix of da Φr

∗ ◦ da Φr . The dogleg step approximates the
solution p of the TRS by

p̂ =


pN = −H†aga if ‖pN‖ ≤ ∆

pC = −gT
a Haga

gT
a ga

ga if ‖pN‖ > ∆ and ‖pC‖ ≥ ∆

pI := pC + (τ − 1)(pN − pC) s.t. ‖pI‖ = ∆, otherwise

.

where 1 ≤ τ ≤ 2 is the solution of ‖pC + (τ − 1)(pN−pC)‖2 = ∆2.
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The Newton direction
pN = −H†aga.

is vital to the dogleg step. Unfortunately, the Ha = da Φr
∗ ◦ da Φr

can be close to a singular matrix. In fact,√
‖H−1

a ‖2 =
1

ςm(da Φr )
=: κ(a),

where m = dimS×r1 .

Ha is ill-conditioned if and only if the CPD is ill-conditioned at a.

Whenever Ha is close to a singular matrix we suggest to apply
random perturbations to the current decomposition a until Ha is
sufficiently well-behaved. We call this hot restarting.



Computing and decomposing tensors: Tensor rank decomposition

Approximation algorithms for the CPD

Riemannian quasi–Newton optimization methods

Retraction

We need to advance from a ∈ S×r1 to a′ ∈ S×r1 , along the direction
p. However, while a + p ∈ TaS×r1 , this point does not lie in S×r1 !

a

p

Ra(p)
S×r1

TaS×r1

We need a retraction operator (Absil, Mahoney, Sepulchre, 2008)
for smoothly mapping a neighborhood of 0 ∈ TaS×r1 back to S×r1 .
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Given a retraction operator R ′ for S1, a retraction operator R for
the product manifold S×r1 = S1 × · · · × S1 at a = (A1, . . . ,Ar ) is

Ra(·) := (R ′A1
× R ′A2

× · · · × R ′Ar
)(·),

which is called the product retraction.

Some known retraction operators for S1 are

the rank-(1, . . . , 1) T-HOSVD, and

the rank-(1, . . . , 1) ST-HOSVD,

both essentially proved by (Kressner, Steinlechner, Vandereycken,
2014).
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RGN with trust region method:

S1. Choose random initial points Ai ∈ S1.

S2. Let a(1) ← (A1, . . . ,Ar ), and set k ← 0.

S3. Choose a trust region radius ∆ > 0.

S4. While not converged, do:

S4.1. Solve the trust region subproblem, resulting in pk ∈ TaS×r1 .
S4.2. Compute the tentative next iterate a(k+1) ← Ra(k) (pk) via a

retraction in the direction of pk from p(k).
S4.3. Accept or reject the next iterate. If the former, increment k.
S4.4. Update the trust region radius ∆.

The details can be found in Breiding, V (2018).
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Numerical experiments

We compare the RGN method of (Breiding, V, 2018) with some
state-of-the-art nonlinear least squares solvers in Tensorlab v3.0
(Vervliet et al., 2016), namely nls lm and nls gndl, both with
the LargeScale option turned off and on.
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We consider parameterized2 tensors in Rn1×n2×n3 with varying
condition numbers. There are three parameters:

1 c ∈ [0, 1] regulates the “colinearity” of the factor matrices

2 s ≥ 1 regulates the scaling, and

3 r is the rank.

Typically,

1 increasing c increases the geometric condition number.

2 increasing s increases the classic condition number.

3 increasing r decreases the probability of finding a
decomposition.

2See the afternotes for the precise construction.
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The true rank-r tensor is then

A =
r∑

i=1

a1
i ⊗ a2

i ⊗ a3
i .

Finally, we normalize the tensor and add random Gaussian noise
E ∈ Rn1×n2×n3 of magnitude τ :

B =
A
‖A‖F

+ τ
E
‖E‖F

.

The tensor B is the one we would like to approximate by a tensor
of rank r .
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We will choose k random starting points and then apply each of
the methods to each of the starting points.

The key performance criterion (on a single processor) is the
expected time to success (TTS).

Let

1 the probability of success be pS ,

2 the probability of failure be pF = 1− pS ,

3 a successful decomposition take mS seconds, and

4 a failed decomposition take mF seconds.

Then, the expected time to a first success is

E[TTS] =
∞∑
k=0

pk−1
F pS(mS + (k − 1)mF ) =

pSmS + pFmF

pS
.
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Convergence plots

Model 2, rank 7, scaling s = 2, noise level τ = 10−5
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Convergence plots

Model 2, rank 7, scaling s = 2, noise level τ = 10−5
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Convergence plots

Model 2, rank 7, scaling s = 2, noise level τ = 10−5
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Convergence plots

Model 2, rank 7, scaling s = 2, noise level τ = 10−5
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Convergence plots

Model 2, rank 7, scaling s = 2, noise level τ = 10−5
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Convergence plots

Model 2, rank 7, scaling s = 2, noise level τ = 10−5
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Convergence plots

Model 2, rank 7, scaling s = 2, noise level τ = 10−5
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Convergence plots

Model 2, rank 7, scaling s = 2, noise level τ = 10−5
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Convergence plots

Model 2, rank 7, scaling s = 2, noise level τ = 10−5
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Riemannian quasi–Newton optimization methods

Convergence plots

Model 2, rank 7, scaling s = 2, noise level τ = 10−5
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Tensorlab

Tensorlab is a package facilitating computations with both
structured and unstructured tensors in Matlab.

Development on Tensorlab v1.0 started in 2011 at KU Leuven by
the research group of L. De Lathauwer. The current version, v3.0,
was released in March 2016. Version 4.0 is anticipated next week!
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Tensorlab

Tensorlab focuses on interpretable models, offering algorithms for
working with

Tucker decompositions,

tensor rank decompositions, and

certain block term decompositions.

In addition, it offers a flexible framework called structured data
fusion in which the various decompositions can be coupled or
fused while imposing additional structural constraints, such as
symmetry, sparsity and nonnegativity.
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Tensorlab

Basic operations

A dense tensor is represented as a plain Matlab array:

A = randn ( 3 , 5 , 7 , 1 1 ) ;

A ( 1 : 2 , 1 : 2 , 1 : 2 , 1 : 2 )
ans ( : , : , 1 , 1 ) = ans ( : , : , 2 , 1 ) =

2.123880 −0.071091 0.088988 −0.38890
2.041218 −0.937120 1.129268 −1.10351

ans ( : , : , 1 , 2 ) = ans ( : , : , 2 , 2 ) =
1.251419 0.451602 0.94860 0.55588
−0.032686 −2.479674 −0.46106 −0.47215
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Tensorlab

Basic operations

The Frobenius norm of a tensor is computed as follows.

A = reshape ( 1 : 1 0 0 , [ 2 5 1 0 ] ) ;

f rob (A)
ans =

581.6786

f rob (A, ’ s q u a r e d ’ ) − 100*101*201/6
ans =

0
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Tensorlab

Basic operations

Flattenings are computed as follows.

A = reshape ( 1 : 2 4 , [ 2 3 4 ] ) ;

% mode−1 f l a t t e n i n g
tens2mat (A, [ 1 ] , [ 2 3 ] )
ans =

1 3 5 7 9 11 13 15 17 19 21 23
2 4 6 8 10 12 14 16 18 20 22 24

% mode−2 f l a t t e n i n g
tens2mat (A, [ 2 ] , [ ] )
ans =

1 2 7 8 13 14 19 20
3 4 9 10 15 16 21 22
5 6 11 12 17 18 23 24
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Tensorlab

Basic operations

Multilinear multiplications are computed as follows.

A = randn ( 5 , 5 , 5 ) ;
U1 = randn ( 5 , 5 ) ;
U2 = randn ( 5 , 5 ) ;
U3 = randn ( 5 , 5 ) ;

T = tmprod (A, {U1 , U2 , U3} , 1 : 3 ) ;
X1 = tmprod (A, {U2 , U3} , 2 : 3 , ’H ’ ) ;
X2 = tmprod (A, {U2 ’ , U3 ’} , 2 : 3 ) ;
f rob (X1−X2)
ans =

0
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Tensorlab

Basic operations

Tensorlab has a nice way for visualizing third-order tensors.

U = {1 . 2 5 . ˆ ( −1 0 : 5 ) ’ , l i n s p a c e ( 0 , 1 , 5 0 ) ’ ,
2*abs ( s i n ( l i n s p a c e (0 ,4* pi , 5 0 ) ) ) ’ } ;

A = cpdgen (U ) ;
voxel3 (A)

produces the following graphic:
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Tensorlab

Tucker decomposition

Given a core tensor and the factor matrices, Tensorlab can generate
the full tensor represented by this Tucker decomposition as follows.

S = randn ( 5 , 5 , 5 ) ;
U = { randn ( 4 , 5 ) , randn ( 6 , 5 ) , randn ( 7 , 5 ) } ;
T1 = lmlragen (U, S ) ;
s i z e (T1)
ans =

4 6 8

% Compare w i t h d e f i n i t i o n
T2 = tmprod ( S , U, 1 : 3 ) ;
f rob (T2−T1)
ans =

2.4235 e−15
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Tucker decomposition

The HOSVD is called the multilinear singular value
decomposition in Tensorlab and can be computed as follows.

[ F , C ] = lm l ra rnd ( [ 2 3 29 31 3 7 ] , [ 3 5 7 1 1 ] ) ;
A = lmlragen (F , C ) ;
[ U, S , sv ] = mlsvd (A ) ; % 0 . 3 2 s
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Tensorlab

Tucker decomposition

The factor-k singular values can be plotted by running

f o r k = 1 : 4 , semilogy ( sv { k } , ’ x− ’ ) , hold a l l , end
legend ( ’ f a c t o r 1 ’ , ’ f a c t o r 2 ’ , ’ f a c t o r 3 ’ , ’ f a c t o r 4 ’ )

which produces the graphic
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Tensorlab

Tucker decomposition

Of practical importance are truncated HOSVDs. The default
strategy in Tensorlab is sequential truncation, while parallel
truncation is provided as an option.

[ F , C ] = lm l ra rnd ( [ 1 0 0 100 1 0 0 0 0 ] , [ 2 5 25 2 5 ] ) ;
A = lmlragen (F , C) + 1e−5*randn ( [ 1 0 0 100 1 0 0 0 0 ] ) ;

% S e q u e n t i a l t r u n c a t i o n
[ U1 , S1 ] = mlsvd (A, [ 2 5 25 2 5 ] ) ; % 2 6 . 5 s
[ U2 , S2 ] = mlsvd (A, 5e−2, 1 : 3 ) ; % 2 4 . 6 s

% P a r a l l e l t r u n c a t i o n
[ V1 , T1 ] = mlsvd (A, [ 2 5 25 2 5 ] , 0 ) ; % 3 8 7 . 8 s
[ V2 , T2 ] = mlsvd (A, 5e−2, 0 ) ; % 3 7 4 . 6 s
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Tensorlab

Tucker decomposition

Tensorlab also offers optimization algorithms for seeking the
optimal low multilinear rank approximation of a tensor. By
default Tensorlab chooses an initial point by either a fast
approximation to the ST-HOSVD via randomized SVDs
(mlsvd rsi), or by adaptive cross approximation (lmlra aca).

The basic usage is as follows:

[ F , C ] = lm l ra rnd ( [ 1 0 0 100 1 0 0 0 0 ] , [ 2 5 25 2 5 ] ) ;
A = lmlragen (F , C ) ;

% Compute l m l r a u s i n g d e f a u l t s e t t i n g s .
[ U, S ] = lml ra (A, [ 2 5 25 2 5 ] ) ;
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Tensor rank decomposition

Tensorlab represents a CPD by a cell array containing its factor
matrices. For example, random factor matrices can be generated
as follows:

s i z e T e n s o r = [ 1 0 11 8 7 ] ;
rnk = 5 ;
F = cpd rnd ( s i z e T e n s o r , rnk )
F =

1 x3 c e l l a r r a y
[ 1 0 x5 d o u b l e ] [ 1 1 x5 d o u b l e ] [ 8 7 x5 d o u b l e ]

The tensor represented by these factor matrices can be generated
as follows:

A = cpdgen ( F ) ;
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Tensorlab

Tensor rank decomposition

Tensorlab offers several algorithms for computing CPDs. A
deterministic but unstable PBA that can be applied if the rank is
smaller than two of the dimensions is cpd gevd.

tF = cpd rnd ( [ 2 9 11 8 5 ] , 5 ) ;
A = cpdgen ( tF ) ;
aF = cpd gevd (A , 5 ) ;
f robcpdres (A, aF )
ans =

1.1966 e−12

Warning

cpd gevd returns random factor matrices if the assumptions of the
method are not satisfied.
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Tensorlab

Tensor rank decomposition

Several optimization methods are implemented in Tensorlab for
approximating a tensor by a low-rank CPD.

The advised way for computing a CPD is via the driver routine
cpd, which automatically performs several steps:

1 optional Tucker compression,

2 choice of initialization (cpd gevd if possible, otherwise
random),

3 optional decompression and refinement if compression was
applied.
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Tensorlab

Tensor rank decomposition

The basic usage is as follows:

tF = cpd rnd ( [ 2 9 11 8 5 ] , 5 ) ;
A = cpdgen ( tF ) ;
aF = cpd (A, 5 ) ;
f robcpdres (A, aF )
ans =

5.0921 e−14
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Tensorlab

Tensor rank decomposition

Optionally, some algorithm options can be specified. The most
important options are the following.

Compression: the string ’auto’, the boolean false, or a
function handle to the Tucker compression algorithm, for example
mlsvd, lmlra aca or mlsvd rsi.

Initialization: the string ’auto’, or a function handle to the
initialization method that should be employed, for example
cpd rnd or cpd gevd.

Algorithm: a function handle to the optimization method for
computing the tensor rank decomposition, for example cpd als,
cpd nls or cpd minf.

AlgorithmOptions: a structure containing the options to for the
optimization method.
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Tensor rank decomposition

The algorithm options are important in their own right, as they
determine how much computational effort is spent and how
accurate the returned solution will be. The main options are the
following.

TolAbs: The tolerance for the squared error between the tensor
represented by the current factor matrices and the given tensor. If
it is less than this value, the optimization method halts successfully.

TolFun: The tolerance for the relative change in function value. If
it is less than this value, the optimization method halts successfully.

TolX: The tolerance for the relative change in factor matrices. If it
is less than this value, the optimization method halts successfully.

MaxIter: The maximum number of iterations the optimization
method will perform before giving up.
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Tensorlab

Tensor rank decomposition

For example,

a l g O p t i o n s = s t r u c t ;
a l g O p t i o n s . TolAbs = 1e−12;
a l g O p t i o n s . TolFun = 1e−12;
a l g O p t i o n s . TolX = 1e−8;
a l g O p t i o n s . M ax I t e r = 5 0 0 ;
a l g O p t i o n s . A l g o r i t h m = @ n l s g n d l ;

o p t i o n s = s t r u c t ;
o p t i o n s . Compress ion = f a l s e ;
o p t i o n s . I n i t i a l i z a t i o n = @cpd rnd ;
o p t i o n s . A l g o r i t h m = @ c p d n l s ;
o p t i o n s . A l g o r i t h m O p t i o n s = a l g O p t i o n s ;
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Tensorlab

Tensor rank decomposition

% C r e a t e an e a s y problem
tF = cpd rnd ( [ 2 9 11 8 5 ] , 5 ) ;
A = cpdgen ( tF ) ;

% S o l v e u s i n g o p t i o n s
[ aF , out ] = cpd (A, 5 , o p t i o n s ) ;
f robcpdres (A, aF )
ans =

6.6368 e−10



Computing and decomposing tensors: Tensor rank decomposition
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Tensor rank decomposition

You can also ask for detailed information about the progression of
the optimization method.

out . A l g o r i t h m
ans =

s t r u c t w i t h f i e l d s :
Name : ’ c p d n l s ’

a l p h a : [ ]
c g i t e r a t i o n s : [ 2 6 10 14 15 15 15 15 15 15 15 . . . 1 5 ]

c g r e l r e s : [ 6 . 6 6 1 3 e−17 2 .3642 e−07 . . . 7 .5798 e−07]
d e l t a : [ 1 . 1 6 1 9 2 .3238 4 .6476 9 .2952 . . . 9 . 2 9 7 3 ]

f v a l : [ 8 . 8 6 9 4 e+04 8.8649 e+04 . . . 2 .4837 e−22]
i n f o : 4 % A b s o l u t e t o l e r a n c e r e a c h e d

i n f o p s : [ ]
i t e r a t i o n s : 15

r e l e r r : 5 .2922 e−14
r e l f v a l : [ 4 . 9 8 4 7 e−04 0 .0081 . . . 1 .7052 e−15]
r e l s t e p : [ 0 . 3 0 0 0 0 .6032 0 .9451 . . . 2 .9188 e−08]

rho : [ 0 . 5 5 8 9 3 .0163 3 .3691 . . . 1 . 0 0 0 0 ]
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